9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · contents!...

38

Upload: others

Post on 28-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

A GIVING SMARTER GUIDE TO ACCELERATEDEVELOPMENT OF NEW THERAPIES

Page 2: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!    

 

CONTENTS  

Executive  Summary  ................................................................................................................  5  

Overview  ................................................................................................................................  6  

Imperative  to  Advance  Alzheimer’s  Research  ...................................................................................................  6  

Population  Burden  ...............................................................................................................................................  6  

Economic  Burden  .................................................................................................................................................  7  

AD  Awareness  Falls  Behind  Compared  to  Other  Diseases  .................................................................................  8  

Public  Policies  Adressing  AD  Unmet  Needs  ..............................................................................  9  

National  Alzheimer's  Project  Act  ......................................................................................................................  9  

Alzheimer’s  Accountability  Act  .......................................................................................................................  10  

Risk,  Diagnosis,  and  Progression  ...........................................................................................  11  

Risk  Factors  ....................................................................................................................................................  11  

Three  Stages  of  Alzheimer’s  disease  ...............................................................................................................  11  

Preclinical  AD  .....................................................................................................................................................  12  

Mild  Cognitive  Impairment  Due  to  AD  ...............................................................................................................  12  

Dementia  Due  to  AD  ..........................................................................................................................................  12  

Measuring  Cognitive  Impairment  for  Diagnosis  ..............................................................................................  13  

Disease  Biology  ....................................................................................................................  14  

Beta  Amyloid  Protein  Build-­‐Up  in  the  Brain  Leads  to  Plaques  .........................................................................  14  

Tau  Protein  Build-­‐Up  in  the  Brain  Leads  to  Tangles  ........................................................................................  15  

Neurotransmitter  Dysfunction  .......................................................................................................................  16  

Treatments  ...........................................................................................................................  17  

Clinical  Trials  and  Investigational  Therapies  .........................................................................  18  

Clinical  Trials  -­‐  Overview  ................................................................................................................................  18  

Investigational  Therapies  ...............................................................................................................................  18  

Page 3: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!    

 

Amyloid-­‐Targeting  Therapies  .............................................................................................................................  19  

Tau-­‐Targeting  Therapies  ....................................................................................................................................  19  

Neurotransmitter  Targeting  Therapies  ..............................................................................................................  20  

Immunotherapy  .................................................................................................................................................  21  

Stem  Cells  ...........................................................................................................................................................  22  

Nutraceuticals  ....................................................................................................................................................  22  

Challenges  Impeding  AD  Research  and  Key  Philanthropic  Opportunities  ...............................  24  

Lack  of  Reliable  Biomarkers  ...........................................................................................................................  24  

The  Problem  .......................................................................................................................................................  24  

Potential  Solutions  .............................................................................................................................................  24  

Examples  of  Corresponding  Philanthropic  Opportunities  ..................................................................................  25  

Inadequate  Preclinical  Models  .......................................................................................................................  25  

The  Problem  .......................................................................................................................................................  25  

Potential  Solutions  .............................................................................................................................................  25  

Examples  of  Corresponding  Philanthropic  Opportunities  ..................................................................................  25  

Identifying  New  Druggable  Molecular  Targets  ................................................................................................  26  

The  Problem  .......................................................................................................................................................  26  

Potential  Solutions  .............................................................................................................................................  26  

Examples  of  Corresponding  Philanthropic  Opportunities  ..................................................................................  26  

AD  Research  Is  Conducted  in  Silos  ..................................................................................................................  26  

The  Problem  .......................................................................................................................................................  26  

Potential  Solutions  .............................................................................................................................................  27  

Examples  of  Corresponding  Philanthropic  Opportunities  ..................................................................................  27  

Key  Stakeholders  in  the  Alzheimer’s  Community  ...................................................................  28  

Research  Grantmaking  Organizations  .............................................................................................................  28  

Alzheimer’s  Association  .....................................................................................................................................  28  

Page 4: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!    

 

Alzheimer’s  Drug  Discovery  Foundation  ............................................................................................................  29  

BrightFocus  Foundation  .....................................................................................................................................  29  

Cure  Alzheimer’s  Fund  .......................................................................................................................................  29  

New  York  Stem  Cell  Foundation  .........................................................................................................................  29  

Key  Initiatives  and  Strategic  Partnerships  .......................................................................................................  30  

Alzheimer’s  Disease  International  ......................................................................................................................  30  

Dementia  Discovery  Fund  ..................................................................................................................................  30  

Global  Alzheimer’s  and  Dementia  Action  Alliance  .............................................................................................  30  

Global  CEO  Initiative  on  Alzheimer’s  ..................................................................................................................  30  

US  Against  Alzheimer’s  .......................................................................................................................................  31  

World  Dementia  Council  ....................................................................................................................................  31  

Academic  Consortia  .......................................................................................................................................  31  

Alzheimer’s  Disease  Neuroimaging  Initiative  .....................................................................................................  31  

Cohorts  for  Alzheimer’s  Prevention  Action  ........................................................................................................  32  

Global  Alzheimer’s  Association  Interactive  Network  .........................................................................................  32  

Global  Biomarker  Standardization  Consortium  .................................................................................................  32  

Alzheimer's  Disease  Cooperative  Study  .............................................................................................................  32  

Glossary  ...............................................................................................................................  34  

References  ............................................................................................................................  36  

 

   

Page 5: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!    

 

EXECUTIVE  SUMMARY    

Alzheimer’s  disease  (AD)  is  the  sixth    leading  cause  of  death  in  the  United  States  and  claims  the  lives  of  more  than  500,000  people  in  the  United  States  alone  each  year.  Currently,  more  than  5  million  Americans  are  living  with  this  disease.  The  economic  impact  of  AD  is  significant,  costing  the  United  States  $214  billion  in  2014  and  on  pace  to  escalate  to  more  than  $1  trillion  over  the  next  four  decades.    

Despite  significant  attention  and  investment  from  government  and  industry,  progress  in  the  areas  of  clinical  research  and  integrated  care  has  been  modest  at  best.  Our  society  remains  at  the  mercy  of  this  disease  as  a  result  of:  

• poor  understanding  of  disease  onset  and  progression,  • gaps  in  funding  to  support  high-­‐risk  research  efforts,  • insufficient  research  tools  and  companion  resources,  • lack  of  disease-­‐modifying  treatment  options,  and  • limited  public  awareness  of  the  societal  impact  of  this  disease.  

It  is  imperative  that  we  significantly  improve  upon  the  aforementioned  deficiencies  to  avoid  the  economic  and  social  catastrophe  that  accompanies  AD.  Strategic  focus  on  funding  high-­‐impact  research  and  critical  infrastructure  to  support  both  AD  research  and  patients  will  be  essential  to  reaching  this  goal.  

The  FasterCures  Philanthropy  Advisory  Service  has  developed  this  Giving  Smarter  Guide  for  Alzheimer’s  disease  with  the  specific  aim  of  empowering  patients,  supporters,  and  stakeholders  to  make  strategic  and  informed  decisions  with  respect  to  directing  their  philanthropic  investments  and  energy  into  research  and  development  efforts.  Readers  will  be  able  to  use  this  guide  ultimately  to  pinpoint  research  solutions  aligned  with  their  interests.    

The  guide  will  help  to  answer  the  following  questions:    

• Why  is  it  important  to  invest  in  AD  research?  • What  key  things  should  I  know  about  the  disease?  • What  is  the  current  state  of  care?  • What  is  the  state  of  research?  • What  are  the  barriers  to  progress?  • How  can  philanthropy  advance  new  therapies  for  AD?  

   

Page 6: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!    

 

OVERVIEW  

AD  is  a  neurodegenerative  disease  that  severely  impairs  memory,  cognition,  and  a  person’s  ability  to  conduct  common  daily  activities.  As  the  nerve  cells  of  an  AD  patient  become  diseased  and  ultimately  die,  communication  among  the  cells  that  direct  memory,  speech,  and  executive  function  (motor  skills,  speech,  swallowing,  etc.)  is  lost,  ultimately  leading  to  the  death  of  the  patient.    

AD  most  commonly  occurs  in  people  aged  65  or  older;  however,  some  individuals,  especially  those  with  a  familial  gene  for  Alzheimer’s,  experience  symptoms  before  the  age  of  65.  This  is  commonly  referred  to  as  early  onset  Alzheimer’s  disease.    

Because  age  is  one  of  the  most  important  risk  factors  for  AD,  the  burden  of  AD  will  increase  with  longer  life  expectancies  and  the  aging  of  baby  boomers.  It  is  estimated  that  by  2050,  nearly  15  million  people  will  suffer  from  the  disease  in  the  United  States,  which  will  lead  to  significant  population  and  economic  burdens.    

IMPERATIVE  TO  ADVANCE  ALZHEIMER’S  RESEARCH  

POPULATION  BURDEN  

In  2014,  the  Alzheimer’s  Association  estimated  that  there  are  5.2  million  AD  patients  in  the  United  States.  It  is  estimated  that  one  in  three  people  (33  percent)  age  85  and  older  have  Alzheimer’s,  and  one  in  nine  people  (11  percent)  age  65  and  older  is  stricken  with  this  disease.  By  2025,  the  number  of  people  age  65  and  older  with  AD  is  expected  to  more  than  triple  from  5  million  to  nearly  16  million  if  there  are  no  significant  medical  breakthroughs  to  slow,  prevent,  or  cure  the  disease.  

Alzheimer’s  is  the  sixth  leading  cause  of  death  in  the  United  States,  claiming  the  lives  of  more  than  500,000  people  each  year.  According  to  the  Alzheimer’s  Association,  deaths  attributed  to  AD  increased  dramatically  between  2000  and  2010,  increasing  by  68  percent,  while  deaths  from  other  major  diseases  decreased  during  this  decade.  Among  the  top  10  leading  causes  of  death  in  the  United  States,  AD  is  the  only  disease  that  cannot  be  prevented,  slowed,  or  cured.    

Subjectively,  it  is  without  question  that  the  overall  burden  of  AD  is  catastrophic;  however,  objective  evaluation  of  disease  burden  based  on  disability-­‐adjusted  life  years  (DALYs)  underscores  the  magnitude  of  this  burden  and  highlights  the  steep  upward  trajectory  of  continued  burden  in  the  coming  decades.    

Figure  1:  Proportion  of  people  with  AD  in  the  United  States  according  to  age.  Source:  Alzheimer’s  Association,  2014  Alzheimer’s  Disease  Facts  and  Figures,  Alzheimer’s  &  Dementia,  Volume  10,  Issue  2.  

4%  15%  

38%  

43%  

Alzheimer's  Pa`ent  Popula`on  Breakdown  by  Age  

Under  65   65-­‐74   75-­‐84   85+  

Page 7: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!    

 

DALYs  are  the  sum  of  the  number  of  years  of  life  lost  due  to  premature  mortality  and  the  number  of  years  lived  with  disability.  According  to  an  article  published  in  the  Journal  of  the  American  Medical  Association  by  the  U.S.  Burden  of  Disease  Collaborators,  AD  was  ranked  as  the  25th  most  burdensome  disease  in  the  United  States  in  1990.  In  2010,  the  ranking  of  AD  rose  to  the  12th  most  burdensome  disease.  It  is  important  to  note  that  no  other  disease  or  condition  has  increased  in  rank  that  much  within  a  10-­‐year  time  span.  When  the  same  study  exclusively  evaluated  years  of  life  lost  due  to  premature  mortality,  the  data  showed  that  the  AD  ranking  rose  from  32nd  to  9th,  the  largest  increase  for  any  disease.  Overall,  these  data  punctuate  the  point  that  AD  is  not  only  taking  the  lives  of  an  increasing  number  of  Americans,  but  it  is  also  attributing  to  increased  incidence  and  prevalence  of  poor  health  and  disability  in  the  Unites  States.  

ECONOMIC  BURDEN  

Alzheimer’s  disease  is  the  most  costly  disease  to  the  American  healthcare  system.  The  National  Institutes  of  Health  (NIH)  estimated  the  direct  annual  cost  of  AD  during  the  1990s  to  be  more  than  $100  billion.  Today  the  annual  cost  of  AD  has  more  than  doubled  to  $214  billion  and  is  on  track  to  surge  to  $1.2  trillion  (today’s  dollars)  by  2050  if  we  cannot  find  a  suitable  intervention  to  prevent,  slow,  or  cure  this  disease.    

Given  that  this  disease  primarily  affects  the  elderly,  more  than  half  of  the  $214  billion  cost  is  borne  by  the  Centers  for  Medicare  &  Medicaid  Services  through  Medicare  and  Medicaid  reimbursements  (Figure  2).  According  to  the  Alzheimer’s  Association,  the  average  per-­‐person  Medicare  spending  for  those  with  Alzheimer's  and  other  dementias  is  three  times  higher  than  for  those  without  these  conditions.  The  average  per-­‐person  Medicaid  spending  for  seniors  with  Alzheimer's  and  other  dementias  is  19  times  higher  than  average  per-­‐person  Medicaid  spending  for  all  other  seniors.  

It  is  important  to  remember  that  AD  significantly  impacts  both  the  patient  and  caregivers.  Given  the  physical,  mental,  and  emotional  strain  of  caring  for  someone  with  Alzheimer’s,  the  health  of  caregivers  often  declines  steadily  throughout  the  duration  of  care.  In  addition  to  suffering  from  physical  illness,  caregivers  are  more  likely  to  experience  depression  and  abuse  substances.  These  physical  manifestations  on  the  health  of  caregivers  add  to  the  cost  of  AD  to  our  healthcare  system  and  our  overall  economy.    

Furthermore,  due  to  the  intense  level  of  care  that  many  AD  patients  require,  caregivers  must  often  reduce  working  hours,  take  less  demanding  jobs,  or  discontinue  work  altogether.  While  this  often  creates  financial  hardship  for  the  caregiver,  employers  are  also  impacted.  According  to  the  Alzheimer’s  Association,  businesses  lose  more  than  $61  billion  per  year  as  a  result  of  costs  related  to  caregiver  absenteeism,  employee  replacement,  related  productivity  loss,  and  employee  assistance  programs.  

Figure  2:  Impact  of  Alzheimer’s  disease  on  the  U.S.  healthcare  system.    Source:  Alzheimer’s  Association,  2014  Alzheimer’s  Disease  Facts  and  Figures,  Alzheimer’s  &  Dementia,  Volume  10,  Issue  2.  

Medicaid  17%  

Medicare  53%  

Out-­‐of-­‐pocket  17%  

Other  13%  

Breakdown  of  Alzheimer's  $214  Billion  Impact  on  the  US  Healthcare  System  

Medicaid   Medicare   Out-­‐of-­‐pocket   Other  

Page 8: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!    

 

AD  AWARENESS  FALLS  BEHIND  COMPARED  TO  OTHER  DISEASES    

People  are  often  under  the  misconception  that  AD  is  a  disease  that  only  affects  older  people,  and  that  dementia  in  general  is  a  normal  part  of  the  aging  process.  We  now  know  that  dementia  is  caused  by  specific  neurodegenerative  diseases  and  is  thus  not  a  normal  part  of  aging.  In  addition,  while  it  is  true  that  this  disease  predominantly  affects  the  elderly  population,  the  societal  and  economic  consequences  of  the  disease  affects  all  generations.  The  emotional  and  financial  strain  that  this  disease  places  on  the  families  of  loved  ones  with  Alzheimer’s  in  addition  to  the  economic  strain  placed  on  our  healthcare  system  will  cripple  our  society  if  we  cannot  cure  or  prevent  this  disease  in  the  near  term.  By  raising  awareness  among  individuals  not  yet  affected  by  Alzheimer’s  and  educating  those  who  are,  the  community  can  better  mobilize  the  masses  to:  

• advocate  to  policymakers  for  additional  resources  to  boost  research  efforts  and  improve  infrastructures  to  support  AD  patients  and  families;  

• participate  in  healthy  brain  aging  studies  to  help  researchers  better  understand  factors  that  may  either  protect  against  AD  and  other  forms  of  dementia,  or  increase  susceptibility  to  these  disorders;  and  

• participate  in  clinical  research  studies  aimed  at  preventing  and/or  curing  AD.  

In  order  to  attenuate  the  massive  threat  that  AD  poses  to  global  health  and  the  global  economy,  commitment  of  focused  resources  aimed  at  raising  awareness,  supporting  research,  and  encouraging  citizen  participation  in  clinical  research  studies  is  imperative.    

   

Page 9: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!    

 

“We  spend  one  penny  on  research  for  every  dollar  the  federal  government  spends  on  care  for  patients  with  Alzheimer’s.  That  just  doesn’t  make  sense.  We  really  need  to  step  up  the  investment.”  –Senator  Susan  Collins  (R-­‐Maine),  National  Alzheimer’s  Project  Act  co-­‐sponsor  

OUR  DOLLARS  MUST  MAKE  SENSE  

PUBLIC  POLICIES  ADRESSING  AD  UNMET  NEEDS  

To  face  the  growing  problem  that  is  AD,  public  policies  are  needed  to  address  the  systemic  issues  that  impede  research  progress.  Core  challenges  that  make  Alzheimer’s  research  especially  difficult  to  study  include  large-­‐scale  funding  of  research,  regulatory  issues,  and  improving  care  for  patients.    Despite  the  growing  understanding  of  the  burden  of  AD,  there  are  major  impediments  to  progress  toward  effective  treatment.  First,  AD  necessitates  massive  large-­‐scale,  long-­‐term  studies  that  are  coordinated  nationally  to  identify  the  best  molecular  targets  for  the  disease  and  ultimately  treatments  and  interventions  that  will  be  successful.  Second,  the  ability  to  properly  diagnose  and  study  targets  and  progress  toward  successes  has  proven  extremely  difficult  using  the  traditional  clinical  trial  framework.  Finally,  barring  a  dramatic  shift  in  the  trajectory  of  this  disease,  combined  with  an  aging  population,  the  growing  burden  of  this  disease  will  vastly  outpace  the  care.  

A  number  of  policy  solutions  that  seek  to  address  some  of  these  issues  have  recently  been  signed  into  law  in  the  United  States.  Those  that  are  notable  include  the  National  Alzheimer's  Project  Act  (NAPA)  and  the  Alzheimer’s  Accountability  Act.  

NATIONAL  ALZHEIMER'S  PROJECT  ACT  

NAPA  was  signed  into  law  in  2011  after  unanimous  passage  by  both  houses  of  Congress.  The  law  mandates  the  creation  of  a  national  strategic  plan  to  address  the  Alzheimer’s  crisis  with  the  specific  goal  of  preventing  and/or  effectively  treating  AD  by  2025.  This  act  created  the  opportunity  to  improve,  leverage,  and  coordinate  existing  U.S.  Department  of  Health  and  Human  Services  programs  and  other  federal  efforts  with  the  aim  of  changing  the  trajectory  of  AD.  The  law  calls  for  a  National  Plan  for  AD  with  input  from  a  public-­‐private  Advisory  Council  on  Alzheimer's  Research,  Care  and  Services.  This  plan,  first  completed  in  2012  and  revised  annually,  presents  a  recurring  opportunity  for  Congress  to  assess  the  efforts  to  combat  AD.    

Unfortunately,  Congress  has  not  mandated  funding  to  support  activities  outlined  in  the  NAPA  strategic  plan.  Alzheimer’s  advocacy  groups,  such  as  the  Alzheimer’s  Association,  has  recommended  to  Congress  that  NAPA  include  at  least  a  $2  billion  annual  increase  to  Alzheimer’s  research  funding,  in  order  to  have  the  desired  impact  on  AD;  however,  this  recommendation  has  gone  largely  unsupported  by  lawmakers,  to  the  detriment  of  taxpayers  and  the  U.S.  economy.    

To  jumpstart  the  plan,  the  Obama  administration’s  fiscal  year  2014  budget  proposal  included  $100  million  in  additional  funding  for  research,  awareness,  education,  outreach,  and  caregiver  support.  While  the  investment  falls  far  short  of  what  is  necessary  for  actual  impact,  the  inclusion  in  the  budget  helped  to  refocus  attention  on  this  very  important  problem  and  the  strategic  framework  poised  to  potentially  provide  solutions.  

To  learn  more  about  NAPA,  please  visit  http://aspe.hhs.gov/daltcp/napa/.  

Page 10: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

ALZHEIMER’S  ACCOUNTABILITY  ACT    

Building  on  the  coordinated  goals  of  NAPA,  the  Alzheimer’s  Accountability  Act,  signed  into  law  at  the  end  of  2014,  requires  the  director  of  the  NIH  to  submit  to  the  President  for  review  and  transmittal  to  Congress  an  annual  budget  estimate  for  the  NIH  initiatives  under  NAPA.  The  secretary  of  Health  and  Human  Services  and  the  Advisory  Council  on  Alzheimer's  Research,  Care  and  Services  are  provided  an  opportunity  to  comment  on  the  budget  but  cannot  change  the  content.  The  Alzheimer’s  Accountability  Act  creates  a  formal  process  for  NAPA  recommendations  to  directly  impact  government  funding  allocation  for  AD  each  year  until  2025.  Again  it  is  important  to  note  that  this  provision  does  not  increase  funding  to  the  recommended  level  of  an  additional  $2  billion  annually,  but  it  does  help  to  strategically  reallocate  resources  toward  the  strategic  plan  put  forth  by  NAPA.    

   

Page 11: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!!    

 

RISK,  DIAGNOSIS,  AND  PROGRESSION  

RISK  FACTORS    

While  the  cause  of  Alzheimer’s  disease  is  not  well  understood,  research  has  shown  that  there  are  both  general  and  genetic  factors  that  increase  the  risk  of  developing  AD.    

General  risk  factors  include  the  following:  

• Age  –  The  risk  of  developing  AD  doubles  every  five  years  starting  at  age  65.  

• Education  –  Lower  educational  attainment  has  been  linked  with  higher  risk  of  developing  AD.    

• Medical  conditions  –  Medical  conditions  such  as  head  trauma,  diabetes,  depression,  high  cholesterol,  and  cardiovascular  diseases  (including  stroke)  are  associated  with  a  higher  risk  of  developing  AD.    

There  are  also  genetic  risk  factors  that  have  been  shown  to  play  a  role  in  the  development  of  AD.  Based  on  our  understanding  of  AD  to  date,  researchers  have  found  that  there  are  two  primary  forms  of  Alzheimer’s  that  can  be  categorized  based  on  age  of  onset  and  genetic  mutations.    

• Early  onset  /  familial  AD  –  affects  people  under  the  age  of  65.  Mutations  in  the  following  genes  are  strongly  associated  with  this  form  of  AD:  

§ Amyloid  precursor  protein  (APP)  § Presenilin  1  (PSEN1)  § Presenilin  2  (PSEN2)  

• Late  onset  AD  /  sporadic  AD  –  affects  people  over  the  age  of  65  and  is  the  most  common  form  of  AD.  There  are  currently  two  genetic  alleles  (regions  of  DNA)  shown  to  be  strongly  associated  with  this  form  of  AD:  

§ ApoE  epsilon  4  (ApoE4)  

The  genes  listed  above  are  only  a  subset  of  genes  thought  to  be  involved  in  the  development  of  AD.  Researchers  are  continuously  identifying  new  genes  through  the  use  of  cutting-­‐edge  sequencing  technologies  that  enable  mapping  of  genetic  mutations  to  clinical  manifestations  of  AD.  

THREE  STAGES  OF  ALZHEIMER’S  DISEASE    

In  2011,  Alzheimer’s  diagnostic  guidelines  were  updated  for  the  first  time  in  nearly  30  years.  The  previous  guidelines  published  in  1984  were  the  first  official  criteria  to  outline  diagnosis;  however,  the  guidelines  defined  AD  as  a  single-­‐stage  disease  that  only  included  dementia.  In  addition,  diagnostic  criteria  were  based  solely  on  clinical  symptoms,  and  diagnosis  could  only  be  confirmed  upon  autopsy  of  the  brain.    

As  a  result  of  modern  research,  we  now  know  that  AD  is  a  multi-­‐stage  disease  that  may  cause  changes  in  the  brain  a  decade  or  more  before  the  display  of  clinical  symptoms;  however,  these  symptoms  do  not  always  relate  to  abnormal  changes  in  the  brain  caused  by  AD.  The  updated  guidelines  cover  the  full  spectrum  of  the  disease,  outlining  diagnostic  criteria  for  dementia  due  to  AD,  mild  cognitive  impairment  due  to  AD,  and  preclinical  AD.  The  guidelines  also  now  address  the  use  of  imaging  and  biomarkers  (biochemical  and  genetic  characteristics  that  can  

Page 12: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

• Age-­‐Associated  Memory  Impairment/Cognitive  Decline  

• Parkinson’s  Disease  • Lewy  Body  Dementia  • Cerebrovascular  Disease  • Frontotemporal  Lobar  Degeneration  

 

OTHER  CAUSES  OF  MCI  

be  used  to  track  disease-­‐related  changes)  in  blood  and  spinal  fluid.  Additional  descriptions  of  each  of  the  three  stages  of  AD  are  provided  in  the  sections  below.    

PRECLINICAL  AD  

Preclinical  is  the  earliest  stage  of  AD.  This  stage  refers  to  instances  where  AD-­‐related  changes  in  the  brain  are  underway  but  clinical  symptoms,  such  as  memory  impairment  or  behavioral  alterations,  are  not  yet  evident.  While  the  guidelines  identify  these  preclinical  changes  as  an  Alzheimer's  stage,  they  do  not  currently  establish  diagnostic  criteria  that  doctors  can  use  to  categorize  patients.  Instead  these  guidelines  apply  only  in  a  research  setting.    

The  key  challenge  faced  by  the  AD  community  is  that  it  is  clear  that  early  intervention  will  be  essential  to  optimally  preserving  cognition.  The  amendment  of  the  guidelines  to  address  this  issue  is  helpful  to  the  research  community  as  it  presents  a  framework  for  additional  research  on  biomarkers  to  determine  which  ones  can  be  used  to  track  AD-­‐related  changes  in  the  brain  and  how  best  to  measure  them.  

MILD  COGNITIVE  IMPAIRMENT  DUE  TO  AD  

Patients  suspected  of  having  mild  cognitive  impairment  (MCI)  due  to  AD  generally  experience  mild  changes  in  memory  and  thinking  that  are  enough  to  be  noticed  and  measured  using  mental  status  tests,  but  are  not  severe  enough  to  compromise  personal  independence  or  overall  executive  function  in  daily  life.  People  with  MCI  may  or  may  not  progress  to  Alzheimer’s  dementia.  

It  is  important  to  note  that  MCI  may  be  attributed  to  one  or  more  etiologies  (causes)  outside  of  AD  (see  Figure  3);  however  AD  accounts  for  60  to  80  percent  of  all  dementia  cases.  Clinicians  may  incorporate  the  use  of  biomarkers  to  help  identify  with  more  certainty  whether  or  not  a  patient  is  experiencing  MCI  due  to  AD  or  other  disorders  that  can  lead  to  MCI.  

DEMENTIA  DUE  TO  AD  

Dementia  due  to  Alzheimer’s  refers  to  the  final  stage  of  the  disease.  In  this  stage,  impairments  in  memory,  thinking,  and  behavior  decrease  a  person's  ability  to  function  independently  in  everyday  life.  At  this  stage,  biomarker  test  results  may  be  used  in  some  cases  to  increase  or  decrease  the  level  of  certainty  about  a  diagnosis  of  Alzheimer’s  dementia;  however,  these  biomarker  tests  are  primarily  used  as  a  complementary  tool  for  clinicians  rather  than  an  official  diagnostic.  

 

   

Figure  3:  Alternative  causes  of  mild  cognitive  impairment  

Page 13: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

MEASURING  COGNITIVE  IMPAIRMENT  FOR  DIAGNOSIS  

Multiple  clinical  tests  have  been  developed  to  measure  mental  decline  by  asking  patients  to  memorize  and  associate  words,  complete  simple  mathematical  calculations,  or  draw  an  object  that  can  simultaneously  enable  the  evaluation  of  multiple  brain  functions.    

Such  tests  include  but  are  not  limited  to  the  following:  

• The  Mini  Mental  State  Examination  (MMSE)    • Clock  Drawing  Test  and  Mini-­‐Cog  Test  • Montreal  Cognitive  Assessment  

Once  mental  decline  is  confirmed,  standard  medical  tests  are  conducted  to  dismiss  other  potential  causes  of  dementia,  such  as  stroke,  Parkinson’s  disease,  or  tumors.  Such  tests  include  blood  tests  and  neuro-­‐diagnostic  tests  such  as  brain  screening.  

 

   

Page 14: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

DISEASE  BIOLOGY  

Alzheimer’s  is  a  form  of  dementia,  which  is  an  umbrella  term  used  to  describe  a  state  in  which  there  is  a  loss  in  cognitive  function  –  thinking,  reasoning,  memory,  etc.  –  and  behavioral  abilities  to  the  extent  where  these  losses  interfere  with  routine  daily  activities.  There  are  a  number  of  disorders  categorized  as  forms  of  dementia  (Figure  4);  however,  AD  is  the  most  common,  accounting  for  60  to  80  percent  of  all  cases  of  dementia.    

AD  is  caused  by  irreversible  loss  of  neurons.  Neurons  are  nerve  cells  responsible  for  processing  and  transmitting  information  through  electrical  and  chemical  signals.  These  signals  can  be  transmitted  from  neuron  to  neuron  by  traveling  through  cellular  appendages  called  axons  and  exiting  through  synapses.  Transmission  of  neuronal  signals  is  essential  to  all  processes  involving  the  central  nervous  system.    

While  the  cause  of  AD  is  unclear,  there  are  some  key  pathological  features  of  the  disease  that  scientists  strongly  believe  can  lead  to  Alzheimer’s.  These  hallmark  features  of  Alzheimer’s  include  the  following:  

• Build-­‐up  of  beta-­‐amyloid  protein  in  the  brain    • Abnormal  modification  of  tau  protein  in  the  brain  

These  events  can  lead  to  disruption  in  neuronal  communication  and/or  neuronal  death,  which  ultimately  brings  about  the  clinical  symptoms  of  Alzheimer’s  –  memory  impairment,  cognitive  decline,  and  behavioral  problems  that  impair  or  prohibit  independent  living.  Detailed  descriptions  of  each  of  the  aforementioned  hallmarks  are  provided  below.    

BETA  AMYLOID  PROTEIN  BUILD-­‐UP  IN  THE  BRAIN  LEADS  TO  PLAQUES  

Beta-­‐amyloid  protein  is  derived  from  a  larger  protein  called  amyloid  precursor  protein  (APP),  which  is  found  in  the  synapses  of  neurons.  The  role  of  APP  is  not  altogether  clear;  however,  various  research  studies  suggest  that  it  plays  a  role  in  regulating  synapse  formation,  neural  plasticity,  and  iron  export.  Beta-­‐amyloid  protein  is  generated  when  APP  is  severed  in  the  cell  by  other  proteins  called  enzymes.  Cleavage  of  APP  into  the  truncated  beta-­‐amyloid  form  encourages  the  protein  to  assume  a  new  three-­‐dimensional  structure  that  allows  the  surfaces  of  beta-­‐amyloid  to  attract  to  other  beta-­‐amyloid  molecules,  forming  a  sticky  aggregate  that  clumps  together  to  form  what  is  commonly  referred  to  as  amyloid  plaques  (Figure  5).  We  now  know  that  beta-­‐amyloid,  which  deposits  in  senile  plaques,  can  promote  formation  of  neurofibrillary  tangles  and  inflammation,  leading  to  neuronal  cell  death.  Clumps  of  beta-­‐amyloid  called  oligomers  can  also  impair  transmission  of  signals  across  neuronal  synapses.  

Figure  4:  Select  forms  of  dementia  

Page 15: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

 

Figure  5:  Amyloid  precursor  protein  (APP)  being  snipped  by  enzymes  to  form  beta-­‐amyloid  proteins  that  stick  together  to  form  beta-­‐amyloid  plaques.  Source:  National  Institute  on  Aging,  National  Institutes  of  Health.  

TAU  PROTEIN  BUILD-­‐UP  IN  THE  BRAIN  LEADS  TO  TANGLES  

Tau  proteins  are  essential  to  stabilizing  microtubules  –  the  scaffolding  structure  of  neurons  (Figure  6).  The  abnormal  modification  of  tau  (namely  the  addition  of  phosphorous  group)  leads  to  a  structural  change  that  impedes  the  ability  of  tau  to  stabilize  microtubules,  leading  to  structural  collapse  of  the  neuron.  This  collapse  prohibits  the  delivery  of  nutrients  to  the  neuron,  ultimately  leading  to  neuronal  death.  In  addition,  the  abnormal  tau  proteins  aggregate  such  that  they  tangle  together  to  form  what  is  referred  to  as  neurofibrillary  tangles  (Figure  7).  

 

 

 

Figure  6:  Healthy  neurons  –  Microtubule  scaffold  of  the  neuron  is  stabilized  by  tau  protein  molecules.  Source:  Alzheimer’s  Disease  Education  and  Referral  Center,  National  Institute  on  Aging.  

Figure  7:  Diseased  neurons  in  AD  –  Tau  proteins  are  modified  with  phosphate  groups,  which  change  the  structure  of  tau  and  compromises  its  ability  to  stabilize  microtubules  leading  to  neuron  collapse  and  the  formation  of  tangled  fibers.  Source:  Alzheimer’s  Disease  Education  and  Referral  Center,  National  Institute  on  Aging.  

Page 16: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

NEUROTRANSMITTER  DYSFUNCTION  

In  addition  to  amyloid-­‐beta  and  tau  build-­‐up  in  the  brain,  neurotransmitter  deficiency  is  also  an  important  pathological  feature  of  AD.  Neurotransmitters  are  responsible  for  carrying  information  from  one  cell  to  another.  In  AD,  the  processes  by  which  neurotransmitters  are  produced  and/or  function  are  disrupted.  Studies  show  that  neurotransmitter  deficiency  over  time  leads  to  memory  and  cognition  deficits  commonly  observed  in  AD.  

Treatment  strategies  to  date  have  focused  on  targeting  the  following  neurotransmitters:    

• Acetylcholine    • Glutamate  • Serotonin  

As  shown  in  Table  1,  all  currently  U.S.  Food  and  Drug  Administration  (FDA)-­‐approved  therapies  for  the  treatment  of  AD  target  either  acetylcholine  or  glutamate.  New  drugs  targeting  serotonin  are  currently  in  late-­‐stage  clinical  trials.    

   

Page 17: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

TREATMENTS  

There  is  no  cure  for  AD,  and  currently  approved  therapies  by  the  FDA  treat  only  the  symptoms  of  AD  rather  than  modifying  the  disease  to  cure  or  slow  it  down.  Consequently  one  of  the  largest  unmet  needs  for  AD  patients  is  access  to  effective  disease-­‐modifying  therapies.    

Currently,  there  are  four  FDA-­‐approved  drugs  for  the  treatment  of  AD  (Table  1).  Three  of  these  agents  –  donepezil,  galantamine,  and  rivastigmine  –  target  the  process  by  which  the  neurotransmitter,  acetylcholine,  is  broken  down  by  an  enzyme  called  cholinesterase.  The  hypothesis  behind  the  use  of  this  agent  is  that  the  inhibition  of  the  breakdown  of  acetylcholine  will  consequently  slow  down  mental  degradation  that  leads  to  impaired  learning,  memory,  and/or  judgment.  Cholinesterase  inhibitors  are  believed  to  delay  the  disease  process  by  6  to  12  months,  but  the  symptoms  eventually  worsen  with  additional  destruction  of  neurons  through  other  AD  pathological  pathways,  such  as  amyloid-­‐beta  and  tau  buildup.  

Memantine  differs  from  the  other  agents  in  that  it  inhibits  glutamate,  a  neurotransmitter  that  controls  communication  among  neurons  by  regulating  calcium  ion  levels  in  the  cells.  Excess  glutamate  can  lead  to  an  imbalance  in  calcium  ions  in  neurons,  ultimately  resulting  in  their  death.  This  effect  is  called  excitotoxicity.  By  interfering  with  the  action  of  glutamate,  memantine  reduces  this  toxic  effect  of  calcium  ion  imbalance.    

As  mentioned  previously,  the  efficacy  and  benefits  of  all  of  the  current  FDA-­‐approved  treatment  options  for  AD  are  marginal  at  best  and  work  only  to  alleviate  the  symptoms.  New  and  effective  AD  treatment  options  are  desperately  needed.    

Table  1:  FDA-­‐approved  treatments  for  Alzheimer’s  disease    

      Stage  of  Disease  Treated  

Drug  Name   Mechanism  of  Action  

Mild   Moderate   Severe  

Donepezil   Cholinesterase  Inhibitor  

X   X   X  

Galantamine   Cholinesterase  Inhibitor  

X   X    

Rivastigmine   Cholinesterase  Inhibitor  

X   X   X  

Memantine   Glutamate  receptor  antagonist  

  X   X  

*  Tacrine,  a  cholinesterase  inhibitor,  was  previously  approved  for  AD,  but  was  withdrawn  from  the  U.S.  market  in  May  2012  

 

   

Page 18: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

CLINICAL  TRIALS  AND  INVESTIGATIONAL  THERAPIES  

CLINICAL  TRIALS  -­‐  OVERVIEW  

Clinical  research  is  research  in  human  subjects  aiming  toward  approved  products  for  use  in  patients.  Clinical  trials  determine  whether  a  particular  product  is  as  effective  in  people  as  it  is  in  the  laboratory  or  in  animal  models,  which  often  fail  to  adequately  mimic  human  responses.  Further,  clinical  trials  provide  information  on  potential  adverse  reactions  or  side  effects  that  need  to  be  weighed  against  the  potential  benefits.    

Clinical  research  for  drugs  and  vaccines  is  broken  into  four  key  phases.  Each  phase  is  described  in  Table  2.    

Table  2:  Phases  of  clinical  development  

Clinical  Phase  

Description   Number  of  Patients  

Phase  I   Examines  the  safety  of  the  product  in  a  very  small  group  of  healthy  volunteers  or  patients  afflicted  with  a  specific  disease.  Also  used  to  determine  appropriate  dose  ranges.  

20-­‐80  

Phase  II   Evaluates  the  safety  and  efficacy  of  the  product  at  a  pre-­‐determined  dose  in  comparison  to  the  current  standard  of  care  treatment  (commercially  available  therapies  commonly  used  to  treat  the  same  disorder  or  disease).    

100-­‐300  

Phase  III   Evaluates  the  product  compared  to  the  standard  of  care  in  a  large  diverse  population  to  determine  broader  efficacy  and  develop  usage  guidelines.  

1,000-­‐3,000  

Phase  IV   Evaluates  the  long-­‐term  effects  of  a  drug  post-­‐FDA  approval  for  public  use.  

All  patients  prescribed  the  drug  by  a  treating  physician  

 

INVESTIGATIONAL  THERAPIES  

As  of  March  2015,  there  were  115  products  in  clinical  development  for  AD.  Figure  8  illustrates  the  distribution  of  these  trials  by  phase  of  clinical  development.    

In  the  sections  below  we  discuss  key  therapeutic  strategies  that  are  being  explored  in  AD  clinical  trials.    

   

Figure  8:  Agents  in  research  and  clinical  development  for  AD.  

48  

3  

46  

3   15  

Phase  I   Phase  I/II   Phase  II   Phase  II/III   Phase  III  

AD  Drug  Development  Pipeline  

Page 19: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

AMYLOID-­‐TARGETING  THERAPIES  

There  are  a  number  of  drugs  in  development  for  AD  that  specifically  target  beta-­‐amyloid  proteins.  The  goal  of  this  therapeutic  strategy  is  to  clear  beta-­‐amyloid  build-­‐up  in  the  brain  to  deter  plaque  formation  by  either:    

• decreasing  the  production  of  beta-­‐amyloid  protein,  or    • increasing  removal  of  beta-­‐amyloid  protein  from  the  brain.  

As  mentioned  previously,  the  cleavage  of  amyloid  precursor  protein  (APP)  gives  rise  to  a  short  toxic  form  of  the  protein  –  beta-­‐amyloid.  There  are  three  enzymes  that  are  primarily  responsible  for  cleaving  APP  to  form  beta-­‐amyloid:    

• beta-­‐secretase,  • gamma-­‐secretase,  and  • alpha-­‐secretase.  

These  proteins  have  been  key  targets  in  AD  drug  development  because  of  their  role  in  regulating  the  production  of  beta-­‐amyloid  and  ultimately  plaque  formation.  Table  3  outlines  the  type  of  therapeutic  required  for  impact  on  beta-­‐amyloid  production  and  drug  class  descriptors  commonly  used  by  the  research  and  drug  development  communities.  

Table  3:  AD  drug  classes  targeting  specific  proteins  critical  to  the  production  of  beta-­‐amyloid  

Protein  name   Function  with  respect  to  beta-­‐amyloid  production  

Type  of  targeted  therapeutic  required  for  impact  on  beta-­‐

amyloid  

Drug  class  descriptor  

Beta-­‐secretase   Increases  production  of  beta-­‐amyloid   Inhibitor  of  beta-­‐secretase   BACE1  inhibitors  

Gamma-­‐secretase   Increases  production  of  beta-­‐amyloid   Inhibitor  of  gamma-­‐secretase   GSI  and  GSM  

Alpha-­‐secretase   Decreases  production  of  beta-­‐amyloid   Activator  of  alpha-­‐secretase   Alpha  secretase  activators  

 

Challenges  

While  a  number  of  drugs  targeting  beta-­‐amyloid  have  been  evaluated  in  AD  clinical  trials,  there  is  not  yet  any  clear  indication  that  these  drugs  can  improve  Alzheimer’s  symptoms  or  protect  brain  cells.    

TAU-­‐TARGETING  THERAPIES  

As  mentioned  previously,  tau  proteins  play  a  key  role  in  stabilizing  the  walls  of  neurons.  The  abnormal  modification  of  tau,  primarily  phosphorylation  (deposit  of  phosphorous  and  oxygen  groups  onto  a  protein  by  molecules  called  kinases  –  see  Figure  9),  leads  to  the  collapse  of  the  neuronal  wall,  neuronal  dysfunction  and/or  death,  and  neurotransmitter  deficits.  In  addition,  the  accumulation  of  abnormal  tau  protein  leads  to  neurofibrillary  tangles  that  are  also  toxic  to  neurons  and  is  a  key  hallmark  of  AD.    

Page 20: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

Tau-­‐targeting  therapies  prevent  tau  aggregation  or  dissolve  existing  aggregates  to  interfere  with  the  aforementioned  pathological  consequences  of  abnormal  tau.  Given  the  key  role  that  kinases  play  in  tau  pathology,  a  number  of  tau-­‐targeting  therapies  aim  to  modulate  the  process  by  which  kinases  phosphorylate  tau.  There  are  many  types  of  kinases;  however,  research  studies  have  shown  that  GSK3-­‐beta  (GSK3β)  and  cyclin  dependent  kinase  5  (cdk5)  play  key  roles  in  tau  phosphorylation  and  tangle  formation.  Tau  antibodies  (also  referred  to  as  tau  immunotherapy)  have  the  potential  to  target  synaptic  tau  and  interfere  with  the  spread  of  tau  among  neurons.  

The  development  of  tau  antibodies  and  drugs  that  inhibit  the  aforementioned  kinase  targets  have  been  of  intense  focus  in  Alzheimer’s  research  and  are  currently  in  clinical  development.  

Challenges  

The  development  of  kinase  inhibitors  is  an  approach  riddled  with  inherent  challenges.  As  mentioned  previously,  there  are  numerous  variations  of  kinases,  many  of  which  play  a  redundant  role  in  targeting  and  phosphorylating  various  proteins  such  as  tau.  Because  kinases  interact  with  many  different  proteins,  inhibition  of  these  molecules  will  invariably  inhibit  kinase  interactions  necessary  for  normal  cellular  functions  throughout  the  body.  This  inhibition  of  normal  function  leads  to  unintentional  and  potentially  severe  side  effects.    

The  redundant  roles  of  kinases  also  add  to  the  challenge,  that  is,  the  inhibition  of  one  kinase  that  phosphorylates  tau  does  not  necessarily  lead  to  the  inhibition  of  another  kinase  that  also  phosphorylates  tau.  Researchers  have  attempted  to  circumvent  this  challenge  by  developing  drugs  that  can  target  more  than  one  kinase.  The  multi-­‐targeting  approach  has  been  to  chemically  link  together  two  drugs  that  target  different  kinases.  The  outcome  of  this  type  of  approach  has  been  poor  to  date,  primarily  because  this  technique  leads  to  large  drugs  with  high  molecular  weights,  which  are  less  than  optimal  for  penetrating  the  blood-­‐brain  barrier.    

While  protein  kinases  are  promising  drug  targets,  more  work  needs  to  be  done  to  develop  kinase  inhibitors  that  have  the  following  properties:  

• can  target  multiple  kinases,  • low  molecular  weight  so  the  drug  can  efficiently  enter  the  brain,  and  • focused  targeting  of  specific  kinases  to  minimize  cellular  toxicity  as  a  result  of  off-­‐target  effects.  

NEUROTRANSMITTER  TARGETING  THERAPIES  

As  mentioned  previously,  the  processes  by  which  neurotransmitters  are  produced,  released,  and/or  used  are  disrupted  in  AD.  Many  of  the  key  neurotransmitters  affected  by  AD  pathology  are  critical  to  learning,  memory,  and  cognition.  

It  is  debated  that  acetylcholine  is  perhaps  the  most  critical  neurotransmitter  affected  by  AD  pathology.  The  vital  neurotransmitter  is  of  particular  importance  to  AD  as  it  is  the  primary  neurotransmitter  utilized  by  memory  systems  of  the  hippocampus,  a  key  structure  affected  in  AD.  The  emphasis  on  acetylcholine  does  not  completely  overshadow  the  role  of  the  other  aforementioned  neurotransmitters  –  glutamate  and  serotonin  –as  many  of  them  are  also  involved  in  the  overall  metabolism  (production,  use,  and  breakdown)  of  acetylcholine.  To  strengthen  the  

Figure  9:  Proteins  called  kinases  deposit  phosphorous  groups  onto  tau.  Structural  modification  of  tau  with  phosphoryl  groups  compromises  tau’s  ability  to  hold  together  neuronal  walls.    

Page 21: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

argument  that  acetylcholine  metabolism  is  central  to  AD  progression,  multiple  research  studies  strongly  link  acetylcholine  deficiency  to  loss  of  brain  volume  and  the  severity  of  dementia.  

Challenges  

While  FDA-­‐approved  AD  treatments  to  date  exclusively  target  neurotransmitter  deficiencies,  these  drugs  have  proven  to  be  ineffective  in  modifying  the  disease  or  significantly  slowing  progression.  While  an  identified  link  between  neurotransmitter  deficiency  and  AD  progression  provides  strong  evidence  that  the  research  is  on  the  right  track,  real-­‐world  clinical  experience  demonstrating  limited  efficacy  of  these  agents  suggests  that  they  may  need  to  be  used  in  combination  with  other  treatment  strategies.    

IMMUNOTHERAPY  

As  mentioned  previously,  much  of  the  focus  of  Alzheimer’s  research  has  been  figuring  out  ways  to  prevent  and/or  slow  down  the  process  by  which  amyloid  beta  and  tau  build  up  in  the  brain.  In  addition  to  exploring  small  molecule  drugs  to  serve  this  purpose,  researchers  have  also  identified  ways  to  activate  the  immune  system  to  target  amyloid  beta  and  tau.  These  strategies,  referred  to  as  immunotherapy,  work  by  soliciting  either  an  active  or  passive  immune  response.  Active  immunotherapy  involves  the  administration  of  a  substance  (drug,  vaccine,  etc.)  into  the  body  that  induces  an  immune  response  leading  to  the  natural  production  of  antibodies  against  the  target  (i.e.,  amyloid  beta  or  tau).  Passive  immunotherapy  differs  in  that  the  desired  antibodies  against  the  target  are  manufactured  outside  of  the  body  and  administered  as  a  drug.    

While  immunotherapy  strategies  targeting  amyloid  beta  have  been  extensively  studied,  tau-­‐directed  immunotherapies  are  not  as  advanced.  Despite  encouraging  pre-­‐clinical  and  early-­‐stage  data  demonstrating  that  this  approach  can  successfully  clear  amyloid  beta  build-­‐up  in  mice,  success  in  human  trials  has  been  moderate  at  best.  A  key  challenge  to  this  approach  is  managing  the  immune  response  such  that  the  immune  system  does  not  over-­‐react  to  the  treatment.  This  can  lead  to  excessive  brain  inflammation,  brain  hemorrhaging,  and  other  severe  side  effects.    

In  addition  to  these  challenges,  it  is  also  unclear  when  patients  should  be  treated  to  fully  benefit  from  these  treatments.  Data  from  two  late-­‐stage  trials  of  passive  immunotherapies  that  failed  to  meet  their  goals  of  improving  cognition  in  patients  with  mild  to  moderate  AD  underscore  the  common  belief  that  the  pathology  (amyloid  or  tau  buildup)  may  be  too  far  advanced  for  significant  clinical  benefit  at  this  stage.  Much  of  the  data  generated  thus  far  suggest  that  patients  should  be  treated  well  before  they  display  clinical  symptoms.  However,  identifying  high-­‐risk  AD  patients  with  reasonable  confidence  that  they  will  develop  AD  and  determining  when  to  treat  is  a  highly  complicated,  long-­‐term  undertaking.    

   

Page 22: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!!    

 

STEM  CELLS  

Scientists  are  currently  exploring  the  use  of  stem  cells  to  study  the  molecular  features  of  Alzheimer’s  and  as  a  potential  treatment  option  for  patients.    

Using  Stem  Cells  to  Model  AD  and  Screen  New  Therapies  

Research  has  shown  that  the  pathological,  molecular,  and  genetic  features  of  AD  can  vary  significantly  among  patients,  and  it  is  important  to  study  the  mechanisms  driving  the  heterogeneity  of  the  disease  in  order  to  find  a  cure.  The  tremendous  progress  in  stem  cell  research  –  including  breakthrough  work  on  three-­‐dimensional  cell  culture  systems  that  can  recapitulate  Alzheimer’s  –  has  enabled  researchers  to  use  this  technology  to  create  patient-­‐specific  models  of  AD  in  a  petri  dish.  This  is  done  by  taking  skin  cells  from  an  Alzheimer’s  patient  (donor)  and  reprogramming  them  to  make  a  type  of  stem  cell  called  induced  pluripotent  stem  (iPS)  cells.  These  iPS  cells  can  be  programmed  to  become  all  different  types  of  cells  in  the  body,  but  for  the  purpose  of  AD  research,  they  are  reprogrammed  to  become  neurons.  Because  the  cells  are  derived  directly  from  a  patient,  despite  being  grown  in  petri  dishes,  they  display  the  same  molecular  and  pathological  features  as  identified  in  the  donor  patient.  The  coupling  of  the  patient’s  clinical  symptoms  to  the  biology  and  behavior  of  the  stem  cells  could  provide  new  insights  into  the  key  mechanisms  of  Alzheimer’s.  

These  iPS  cells  can  also  be  used  to  test  new  drugs.  The  use  of  iPS  cells  to  screen  drugs  that  may  be  effective  against  AD  provides  an  additional  method  to  validate  results  observed  in  animals  studies.  This  is  important  because  a  major  impediment  to  Alzheimer’s  research  is  the  poor  translation  of  animal  results  to  humans.  This  occurs  because  the  biology  of  mice  and  other  small  animals  is  different  from  that  of  humans,  thus  positive  results  observed  in  animal  models  often  cannot  be  recapitulated  in  humans.    

Using  Stem  Cells  to  Treat  Alzheimer’s  

Stem  cells  are  not  currently  used  to  treat  AD,  but  researchers  are  pursuing  this  possibility.  Treatment  with  neuronal  stem  cells  could  theoretically  replace  brain  cells  damaged  by  AD  and  encourage  the  generation  of  new  healthy  neurons.  While  the  technology  holds  great  promise,  there  are  significant  challenges  that  must  be  overcome  before  this  type  of  treatment  can  become  a  reality.  The  first  challenge  is  that  AD  affects  many  different  types  of  neurons  in  various  parts  of  the  brain.  Therefore,  the  stem  cells  would  not  only  need  to  be  able  to  generate  a  wide  variety  of  neurons,  but  would  also  have  to  travel  specifically  to  regions  of  the  brain  damaged  by  AD.  In  addition,  the  new  neurons  would  need  to  integrate  effectively  into  the  complex  network  of  the  brain  in  order  to  complete  synaptic  circuits  that  control  communication  between  neurons  in  the  brain.  Finally,  there  has  not  yet  been  a  safe  protocol  developed  for  conducting  these  types  of  neural  stem  cell  transplants.    

NUTRACEUTICALS  

There  is  evidence  that  suggests  that  properties  of  certain  foods  may  provide  protection  against  neurodegenerative  disorders  such  as  Alzheimer’s.  These  foods  or  food  components  are  commonly  referred  to  as  nutraceuticals.  Key  nutraceuticals  that  have  been  studied  for  their  neuroprotective  effects  against  AD  include  the  following:  

• Flavonoids  are  a  group  of  compounds  commonly  found  in  fruits,  vegetables,  and  several  types  of  tea,  cocoa,  and  wine.  These  compounds  have  been  shown  to  modulate  several  neurological  processes  including  inducing  changes  in  cerebral  blood  flow,  increasing  antioxidants  involved  in  synaptic  plasticity  

Page 23: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

and  neuronal  repair,  and  inhibiting  neuro-­‐pathological  processes  in  brain  regions  typically  involved  in  AD  pathogenesis.    

• Resveratrol  is  a  compound  found  in  seeds  and  fruit  skins.  Evidence  has  shown  that  resveratrol  can  increase  activity  of  serotonin,  reduce  inflammation,  and  protect  neurons  from  death.    

• Curcumin  is  the  most  active  element  of  turmeric  and  has  antioxidant  and  anti-­‐inflammatory  properties.  It  has  been  shown  to  reduce  amyloid-­‐beta  cerebral  burden  and  inflammation  in  AD  mouse  models.    

• B  vitamins  (B6  and  B12)  have  been  shown  to  be  essential  for  maintaining  the  integrity  of  the  nervous  and  hematopoietic  systems  and  are  involved  in  the  regulation  of  mental  function  and  mood.  Some  studies  suggest  that  the  metabolite  homocysteine  is  a  risk  factor  for  dementia  or  cognitive  impairment  and  that  supplementation  with  B  vitamins  can  reduce  homocysteine  levels  in  the  blood.    

While  there  is  significant  interest  in  the  neuroprotective  properties  of  nutraceuticals,  evidence  supporting  their  use  to  prevent  or  delay  Alzheimer’s  remains  inconclusive.  There  is  very  little  standardization  among  clinical  trials  evaluating  the  effect  of  these  dietary  agents  on  cognitive  impairment,  which  makes  it  very  difficult  to  meaningfully  analyze  and  compare  results  across  trials.  While  the  potential  for  nutraceutical  development  is  promising,  more  work  needs  to  be  done  to  improve  clinical  trial  design  and  make  it  uniform.    

 

   

Page 24: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

CHALLENGES  IMPEDING  AD  RESEARCH  AND  KEY  PHILANTHROPIC  OPPORTUNITIES    

There  are  a  number  of  challenges  and  unmet  needs  that  stand  in  the  way  of  desperately  needed  progress  in  Alzheimer’s  research.  In  January  2015,  FasterCures  convened  12  world-­‐renowned  Alzheimer’s  experts  to  discuss  the  state  of  science  relevant  to  AD  and  the  challenges  currently  impeding  research  progress.  Below  we  present  the  key  issues  that  were  prioritized  by  the  group  and  recommendations  to  address  these  challenges  with  strategic  philanthropic  investments.    

It  is  important  to  note  that  the  list  below  is  in  no  way  exhaustive,  and  the  philanthropic  opportunities  presented  here  should  be  considered  carefully  with  respect  to  your  philanthropic  goals  and  discussed  in  detail  with  a  philanthropic  advisor.  

LACK  OF  RELIABLE  BIOMARKERS  

THE  PROBLEM    

The  AD  community  is  in  desperate  need  of  biomarkers  that  will:    

• help  clinicians  diagnose  and  measure  AD  progression,    

• determine  whether  drugs  are  engaging  intended  molecular  targets  to  better  predict  side  effects  and  inform  dosing  strategies,  and    

• enable  accurate  monitoring  of  treatment  responses.    

At  this  time  there  is  not  a  single  biomarker  that  can  be  used  confidently  for  these  purposes.  Current  methods  used  to  track  AD  pathology  (primarily  brain  imaging  along  with  amyloid  beta  and  tau  biomarkers  found  in  the  cerebral  spinal  fluid,  or  CSF),  are  compromised  by  variability.  These  challenges  significantly  impede  both  standard  of  care  and  clinical  development  in  that  we  do  not  have  a  reliable  way  to  track  disease  progression  in  patients,  nor  do  we  have  the  tools  necessary  to  effectively  evaluate  behavior  and  performance  of  drug  candidates  in  pre-­‐clinical  models.  The  inherent  limitations  of  the  preclinical  data  due  to  lack  of  biomarkers  have  partially  led  to  the  large  number  of  failed  clinical  trials.    

POTENTIAL  SOLUTIONS  

Biomarker  validation  and  standardization  –  A  concerted  effort  to  both  validate  and  standardize  current  imaging  and  CSF  biomarkers  to  raise  confidence  levels  and  mitigate  variability  will  be  key  to  addressing  this  challenge.    

Identification  of  new  biomarkers  –  There  is  a  need  for  a  strategic  clinical  program  that  would  incentivize  the  collection  of  fluids  (blood,  plasma,  serum,  platelets,  CSF,  saliva,  urine)  as  a  standard  to  enable  researchers  to  rationally  explore  various  protocols  that  may  unveil  not  only  new  biomarkers,  but  also  new  ways  to  quantify  current  biomarkers.    

Studies  correlating  genotype,  phenotype,  and  biomarkers  –  Collection  of  the  various  types  of  fluids  mentioned  above  would  enable  an  integrated  research  program  that  would  allow  researchers  to  correlate  the  relationship  between  an  individual  patient’s  genes  (genotype),  clinical  display  of  AD  symptoms  (phenotype),  disease  stage,  and  various  biomarkers.  This  will  improve  clinicians’  understanding  of  AD  patient  subpopulations  with  the  aim  of  

Page 25: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

elucidating  which  groups  of  patients  may  respond  better  or  worse  to  various  treatments.  This  method  will  also  help  to  unveil  biomarkers  that  can  be  used  to  diagnose  and  monitor  progression  and/or  treatment  response.  

EXAMPLES  OF  CORRESPONDING  PHILANTHROPIC  OPPORTUNITIES:  

• Support  initiatives  that  focus  on  standardizing  imaging  parameters  and  CSF  biomarkers.  

• Support  researchers  who  are  willing  to  validate  old  and  new  biomarkers  by  attempting  to  replicate  the  original  data  and  publishing  the  results,  whether  they  are  positive  or  negative.    

• Support  a  team  of  researchers  that  proposes  the  best  plan  for  conducting  a  large-­‐scale  genotype-­‐biomarker-­‐phenotype  correlation  study  in  various  patient  populations,  stratified  by  stage  of  disease,  using  fluid  and  imaging  samples.  

 

INADEQUATE  PRECLINICAL  MODELS  

THE  PROBLEM    

Both  cellular  and  animal  models  used  to  test  agents  before  entering  clinical  trials  do  not  adequately  recapitulate  AD  pathology.  Part  of  the  reason  is  that  it  is  very  difficult  to  mimic  the  complexity  of  the  brain  in  laboratory  models.  As  a  result,  drugs  that  seemingly  modify  the  disease  in  animals  or  conventional  cell  lines  do  not  have  the  same  effect  in  humans,  and  a  large  number  these  agents  fail  in  clinical  trials.    

POTENTIAL  SOLUTIONS  

Humanized  cells  as  an  alternative  to  animal  models  –  In  this  approach,  induced  pluripotent  stem  cells  are  made  from  skin  cells  and  reprogrammed  to  become  neurons.  These  neuronal-­‐like  cells  can  be  used  to  study  genetic  variants  of  AD  that  are  specific  to  individual  patients.  These  patient-­‐  and  disease-­‐specific  human  iPS  cells  can  be  used  as  a  drug  discovery  platform  that  will  ultimately  enable  a  personalized  medicine  approach  for  AD  and  potentially  shave  years  off  of  the  drug  development  timeline.  While  this  approach  is  exciting  and  considered  to  be  a  major  breakthrough,  more  work  needs  to  be  done  to  validate  the  likeness  of  these  cells  to  human  tissue.  

EXAMPLES  OF  CORRESPONDING  PHILANTHROPIC  OPPORTUNITIES  

• Support  studies  that  validate  iPS  cells  as  models  of  in  vivo  human  cells  by  comparing  the  transcriptional  profile  (the  pattern  by  which  the  cells  make  DNA)  of  cells  from  human  tissue  samples  with  that  of  differentiated  iPS  cell  transcriptional  profiles.  

• Support  a  personalized  medicine  study  using  iPS  cells  from  a  specific  patient,  enabling  researchers  to  recreate  the  patient’s  specific  disease  pathology  in  a  petri  dish  and  allow  for  testing  of  experimental  and/or  repurposed  drugs.  

 

   

Page 26: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

IDENTIFYING  NEW  DRUGGABLE  MOLECULAR  TARGETS  

THE  PROBLEM    

The  identification  of  new  molecular  targets  is  critical  to  the  development  of  new  agents  for  AD.  Historically,  AD  drug  discovery  has  primarily  focused  on  amyloid  beta  and  tau  proteins  as  key  drug  targets.  While  there  is  evidence  that  drugs  targeting  amyloid  beta  and  tau  can  successfully  engage  these  molecules,  they  demonstrate  very  little  efficacy  with  respect  to  mitigating  the  clinical  manifestations  of  AD.  As  a  result,  these  drugs  have  largely  failed  in  clinical  trials.    

POTENTIAL  SOLUTIONS  

Rather  than  continuing  to  explore  the  same  avenues  of  AD  pathology  that  have  led  to  no  treatment  breakthroughs,  other  processes  suspected  of  playing  a  role  in  AD  pathology  must  be  studied  in  greater  detail.  These  processes  include  but  are  not  limited  to  synaptic  interaction,  vascular  changes  in  the  brain,  the  role  of  inflammation,  and  the  study  of  genetic  mutations  that  protect  against  Alzheimer’s.  

EXAMPLES  OF  CORRESPONDING  PHILANTHROPIC  OPPORTUNITIES  

• Support  studies  that  evaluate  the  role  of  synaptic  biology  in  healthy  and  AD-­‐affected  brains  using  optogenetics  and  other  cutting-­‐edge  technologies.    

• Support  studies  that  explore  the  role  of  vascular  changes  on  AD  onset  and  progression,  including  the  identification  of  genes  relevant  to  AD  that  affect  vascular  function.  

• Support  studies  that  explore  the  role  of  the  immune  system  by  studying  the  communication  between  the  peripheral  and  central  immune  systems  and  how  this  communication  relates  to  AD  susceptibility.  

• Support  genotyping  of  individuals  who  are  at  high  risk  for  the  development  of  AD  but  who  have  maintained  normal  cognition  into  old  age.  These  studies  can  potentially  identify  mutational  variants  that  can  protect  against  AD.    

• Support  longitudinal  studies  focused  on  deepening  understanding  of  the  physiology  of  healthy  brain  aging  with  the  purpose  of  comparing  results  to  the  physiological  changes  of  AD  brains  and  potentially  identifying  physiological  processes  and/or  genes  that  protect  against  AD.  

 

AD  RESEARCH  IS  CONDUCTED  IN  SILOS  

THE  PROBLEM    

Alzheimer’s  research  is  currently  conducted  in  silos,  meaning  that  research  conducted  on  different  aspects  of  the  disease  is  not  always  linked  together  in  an  efficient  way.  For  example,  a  researcher  studying  tau  pathology  may  not  regularly  communicate  with  a  researcher  studying  vascular  system  changes  in  AD  patients.    

These  silos  also  unintentionally  facilitate  duplication  of  efforts.  For  example,  drug  leads  that  are  either  highly  similar  or  the  same  are  often  developed  at  multiple  institutions  because  there  is  no  efficient  way  of  knowing  

Page 27: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

exactly  which  molecules  have  been  created  and  tested  if  the  results  are  not  published.  This  is  an  enormous  waste  of  resources  and  time,  particularly  if  the  drug  lead  has  failed  testing  and  the  data  have  not  been  shared.  Often,  researchers  are  only  able  to  build  on  the  work  of  others  once  that  work  has  been  published  or  shared  pre-­‐publication  through  an  agreed  collaboration  between  researchers.    

POTENTIAL  SOLUTIONS  

The  silos  that  are  currently  impacting  acceleration  of  AD  research  can  be  broken  down  by:    

• Providing  more  in-­‐person  opportunities  to  communicate  and  share  ideas  among  experts  working  in  areas  of  the  field  that  are  currently  not  well  connected.  

• Providing  additional  centralized  infrastructures  to  support  sharing  of  ideas  and  data  among  researchers.  

• Developing  and  using  a  systems-­‐based  infrastructure  that  can  be  populated  with  all  published  information  on  AD  research  with  the  aim  of  creating  a  knowledge  network  that  will  enable  the  assembly  of  a  more  complete  picture  of  the  etiology,  pathology,  and  progression  patterns  of  AD.  

EXAMPLES  OF  CORRESPONDING  PHILANTHROPIC  OPPORTUNITIES  

• Support  interactive  workshops  for  AD  experts  working  in  diverse  fields,  as  well  as  outside  experts  working  in  related  fields  (e.g.,  immunologists,  data  scientists,  etc.),  to  come  together  to  present  their  work,  discuss  research  roadblocks,  identify  ways  to  address  these  roadblocks,  and  potentially  build  collaborations.  

• Support  initiatives  that  incentivize  sharing  of  medicinal  chemistry  data,  which  can  serve  as  key  starting  points  for  motivated  stakeholders  in  the  AD  community  to  develop  new  chemical  entities  and  ultimately  diverse  drug  classes.  Consider  funding  projects  that  will:  

§ Provide  an  infrastructure  for  academic  centers  to  catalogue  agents  being  developed  in  their  labs  and  incentivize  the  use  of  this  type  of  resource.  

§ Incentivize  drug  development  companies  to  share  structural  safety  databases.    

• Support  the  development  of  a  “Bloomberg-­‐like”  data  infrastructure  that  can  be  populated  with  all  published  information  on  AD  research  and  used  to  create  a  knowledge  network  that  will  enable  rational  testing  of  drug  candidates  based  on  human  AD  pathology  and  molecular  pharmacology.  This  will  attenuate  (but  not  completely  alleviate)  the  AD  community’s  current  dependence  on  seemingly  encouraging  results  from  animal  models,  which  often  do  not  translate  to  humans,  leading  to  failed  clinical  trials.    

 

   

Page 28: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

KEY  STAKEHOLDERS  IN  THE  ALZHEIMER’S  COMMUNITY  

RESEARCH  GRANTMAKING  ORGANIZATIONS  

This  section  provides  a  brief  overview  of  the  nonprofit  organizations  involved  in  AD  research.  Their  involvement  can  be  through  directly  funding  research  or  supporting  research  (for  example,  by  charting  the  research  roadmap  for  the  disease  or  collecting  tissue  samples).  This  analysis  includes  only  organizations  with  a  research  focus.  Organizations  that  are  involved  solely  in  patient  support,  advocacy,  awareness,  or  whose  mission  is  to  fund  one  specific  research  center  are  also  excluded  here.  Figure  10  shows  the  top  three  funders  of  AD  research  exclusively.  The  sections  below  describe  these  organizations  as  well  as  others  that  do  not  exclusively  fund  AD  research,  but  are  considered  to  be  major  grantmakers  in  the  field.    

ALZHEIMER’S  ASSOCIATION  

Incorporated  in  1980  as  the  Alzheimer’s  Disease  and  Related  Disorders  Association,  the  Alzheimer’s  Association  is  a  voluntary  health  organization  dedicated  to  Alzheimer’s  research,  support,  care,  and  education.  Its  mission  is  “to  eliminate  Alzheimer’s  through  the  advancement  of  research,  to  provide  and  enhance  care  and  support  for  all  affected,  and  to  reduce  the  risk  of  dementia  through  the  promotion  of  brain  health.”  It  has  a  national  office  in  Chicago,  along  with  a  nationwide  presence  through  a  network  of  77  chapters.  Providing  research  funding  is  one  of  the  key  activities  of  the  Alzheimer’s  Association.  Research  grants  accounted  for  $15.6  million  (12.7  percent  of  total  expenses)  in  2013.  In  addition  to  directly  funding  research,  the  organization  also  emphasizes  its  role  as  a  nonprofit  entity,  focusing  on  building  collaboration  and  leveraging  resources  for  research  advancement.  The  Alzheimer’s  Association  is  currently  sponsoring  the  Global  Alzheimer’s  Association  Interactive  Network  (GAAIN).  GAAIN  is  a  big  data  community  that  enables  data  sharing  and  collaboration  among  AD  researchers  around  the  world.    

The  organization  also  has  multiple  activities  focused  on  strengthening  the  AD  research  community,  including  organizing  scientific  meetings,  publishing  a  journal,  and  building  a  professional  society.  In  addition,  the  association  is  also  active  in  providing  patient  support,  increasing  public  awareness  on  AD,  providing  information  for  healthcare  professionals,  and  conducting  advocacy  efforts.    

   

$4,576  

$7,137  

$15,601  

$0   $3,000   $6,000   $9,000   $12,000   $15,000   $18,000  

Cure  Alzheimer's  Fund  

Alzheimer's  Drug  Discovery  Foundaron  

Alzheimer's  Associaron  

THOUSANDS  

2013  RESEARCH  EXPENDITURES  (THOUSANDS)  

Figure  10:  Expenditures  on  AD  research  grants  by  AD  research  funding  organizations,  FY2013.    

Page 29: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

ALZHEIMER’S  DRUG  DISCOVERY  FOUNDATION  

The  Alzheimer’s  Drug  Discovery  Foundation  (ADDF)  was  founded  in  2004  as  an  affiliate  to  the  Institute  for  the  Study  of  Aging,  a  private  foundation  of  the  Estee  Lauder  family  founded  in  1998.  The  ADDF  focuses  its  funding  on  pre-­‐clinical  and  early-­‐stage  clinical  trials  involving  new  drug  targets  that  may  not  be  far  enough  along  in  the  pipeline  to  receive  financial  support  from  the  pharmaceutical  industry  or  other  partners.  By  bridging  the  gap  between  basic  research  and  drug  development,  ADDF  enables  scientists  to  pursue  innovative  and  novel  therapies  that  might  otherwise  go  unexplored.  Over  the  years,  ADDF  has  successfully  used  the  venture  philanthropy  model  to  invest  more  than  $14  million  in  drug  discovery  research  and  clinical  trials,  and  nearly  $3  million  of  that  investment  has  been  returned  and  immediately  invested  in  other  drug  research  programs.  In  2013,  its  grants  amounted  to  $7.1  million,  or  92  percent  of  total  expenses.  

BRIGHTFOCUS  FOUNDATION  

Founded  in  1973  (and  known  as  the  American  Health  Assistance  Foundation  until  2013),  the  BrightFocus  Foundation  is  based  in  Clarksburg,  Md.  Supporting  research  and  public  education  to  eradicate  brain  and  eye  disease,  including  AD,  macular  degeneration,  and  glaucoma,  this  nonprofit  is  “working  to  save  mind  and  sight.”  The  AD  research  program  was  initiated  in  1985  and  currently  supports  64  research  projects  out  of  133  total  foundation  grants.  In  2013,  its  total  research  grant  budget  amounted  to  $7.5  million,  or  32  percent  of  total  expenses.  The  research  program  focuses  on  providing  initial  funding  for  highly  innovative  or  experimental  ideas.  Most  awardees  use  the  funding  to  demonstrate  key  findings  that  lead  to  later  interest  and  additional  funding.    

CURE  ALZHEIMER’S  FUND  

Cure  Alzheimer’s  Fund  was  founded  in  2004  and  has  raised  $48.3  million  since  its  inception.  The  mission  of  the  organization  is  “to  fund  research  with  the  highest  probability  of  slowing,  stopping,  or  reversing  Alzheimer’s  disease.”  Instead  of  funding  investigator-­‐initiated  project  proposals,  the  fund’s  Research  Consortium  selects  the  researchers  who  are  aligned  with  its  research  agenda  and  solicits  proposals  directly.  In  2013,  research  grants  amounted  to  $4.5  million,  or  71  percent  of  total  expenses.  The  fund’s  research  approach  is  to  identify  all  genes  associated  with  late-­‐onset  AD,  clarify  their  roles,  and  facilitate  treatment  development  based  on  the  knowledge  derived.  The  fund  does  not  support  indirect  costs  of  the  grant  recipient’s  institution,  and  all  of  the  fund’s  administrative  costs  are  funded  by  the  founders  and  board  members.  

NEW  YORK  STEM  CELL  FOUNDATION  

The  New  York  Stem  Cell  Foundation  (NYSCF)  was  founded  in  2005  with  the  mission  of  accelerating  cures  for  the  major  diseases  of  our  time  through  stem  cell  research.  Its  programs  focus  on  research,  fellowships  and  investigator  awards,  their  conference  and  symposia,  and  the  Robertson  prize  (awarded  to  a  stem  cell  researcher  under  the  age  of  40).  NYSCF  works  in  a  variety  of  disease  areas  including  ALS,  Alzheimer’s,  diabetes,  multiple  sclerosis,  and  Parkinson’s  disease.  Its  work  in  AD  includes  collecting  patient  samples  to  develop  stem  cells  that  can  aid  in  studying  Alzheimer’s  and  screening  chemical  compounds  to  find  new  drugs.  In  2013,  its  total  research  grant  budget  amounted  to  $6.1  million,  about  31  percent  of  total  expenses.    

   

Page 30: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

KEY  INITIATIVES  AND  STRATEGIC  PARTNERSHIPS  

ALZHEIMER’S  DISEASE  INTERNATIONAL  

Alzheimer’s  Disease  International  (ADI)  is  the  international  federation  of  more  than  80  Alzheimer  associations  around  the  world.  The  organization  works  to  focus  attention  on  the  AD  epidemic  and  campaign  for  policy  change  from  national  governments  and  the  World  Health  Organization.  The  group  runs  a  series  of  workshops  –  Alzheimer’s  University  –  that  focuses  on  helping  local  Alzheimer’s  associations  strengthen  their  organizations.  The  group  also  hosts  the  longest-­‐running  annual  conference  on  dementia,  the  Annual  International  Conference  of  ADI.    

DEMENTIA  DISCOVERY  FUND  

The  Dementia  Discovery  Fund  is  a  $100  million  global  venture  fund  that  aims  to  accelerate  efforts  to  find  treatments  and  a  cure  for  Alzheimer’s.  Announced  in  March  2015,  this  venture  fund  is  the  first  of  its  kind  solely  focused  on  dementia.  Initial  financing  for  the  fund  has  been  committed  by  the  British  government,  Alzheimer’s  Research  UK,  Johnson  &  Johnson,  Eli  Lilly,  Pfizer,  Biogen  Idec,  and  GlaxoSmithKline.  Resources  from  the  fund  will  be  used  to  support  innovative  research  in  academia  and  small  biotech  firms.  Research  projects  that  secure  funding  will  also  gain  mentored  guidance  from  industry  partners  throughout  the  funding  cycle.  Once  a  project  matures,  individual  pharmaceutical  companies  will  have  an  opportunity  to  bid  on  the  rights  to  commercially  develop  the  technology.  The  money  raised  from  the  bidding  process  will  be  reinvested  in  the  fund.    

GLOBAL  ALZHEIMER’S  AND  DEMENTIA  ACTION  ALLIANCE  

In  May  2014,  Alzheimer’s  Disease  International,  the  Alzheimer’s  Society  (England,  Wales,  and  Northern  Ireland),  and  the  Department  of  Health  in  England  announced  the  formation  of  the  Global  Alzheimer’s  and  Dementia  Action  Alliance  (GADAA).  This  alliance  was  formed  in  response  to  a  call  for  action  during  the  2013  G8  Summit  on  Dementia,  which  called  for  research  funding  increases,  improved  infrastructure  to  support  dementia  care,  and  community  programs  to  change  societal  attitude  towards  dementia.  GADAA  is  designed  to  foster  global  collaboration  among  international  non-­‐governmental  organizations,  professional  associations,  governments,  and  international  statutory  bodies  to  deliver  on  these  actions  while  continuously  raising  Alzheimer’s  and  dementia  awareness.    

GLOBAL  CEO  INITIATIVE  ON  ALZHEIMER’S  

The  Global  CEO  Initiative  on  Alzheimer’s  represents  an  acceptance  of  the  invitation  from  public  authorities,  domestically  and  internationally,  to  the  private  sector  to  forge  robust  public-­‐  private  partnerships  to  stop  Alzheimer’s  and  dementia.  According  to  its  Web  site,  its  “vision  is  that  the  CEO  Initiative  becomes  the  leading  business  voice  on  this  seminal  public  health  issue  of  our  time,  which  will  have  profound  impact  in  fiscal,  social,  and  political  matters  as  we  ‘change  the  game’  on  Alzheimer’s.”    Among  other  efforts,  the  group  is  currently  working  to  develop  a  Global  Alzheimer’s  Platform,  which  will  be  a  global  network  of  clinical  trial  sites,  functioning  under  a  globally  convergent  and  synchronized  regulatory  body  with  alignment  on  key  issues  related  to  clinical  trial  design.  The  vision  of  this  effort  is  to  create  a  global  infrastructure  in  which  sites  can  quickly  and  efficiently  recruit  participants,  with  the  aim  of  reducing  redundancy,  expense,  and  time.  This  platform  will  also  support  data  sharing  to  advance  basic  discovery  and  translational  research.    

Page 31: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

US  AGAINST  ALZHEIMER’S  

US  Against  Alzheimer’s  (USA2)  is  fiercely  devoted  to  advocacy  by  pressuring  political,  business,  and  civic  leaders  to  devote  the  necessary  resources  to  outcomes-­‐oriented  research  and  to  reform  the  drug  development  systems  that  currently  impede  the  development  and  availability  of  promising  treatments.  The  organization  is  committed  to  increasing  public-­‐  and  private-­‐sector  resources  to  stopping  Alzheimer’s  disease,  accelerating  the  drug  development  process  to  deliver  therapies  to  patients  in  need,  and  dramatically  improving  the  care  infrastructure  for  Alzheimer’s  patients  and  caregivers.  Key  milestones  highlighted  by  the  organization  include  helping  to  secure  more  than  $200  million  in  additional  public  funding  for  AD  research  over  the  past  few  years,  driving  global  efforts  that  have  resulted  in  the  collaboration  of  G7  world  leaders  to  embrace  the  goal  of  curing  Alzheimer’s  by  2025,  forging  collaborations  to  improve  efficiencies  for  expedited  drug  discovery  and  approval  for  AD,  and  inspiring  clearer  research  milestones  to  measure  progress  of  the  National  Alzheimer’s  Project  Act.  

WORLD  DEMENTIA  COUNCIL  

The  World  Dementia  Council  was  formed  in  2014  as  a  result  of  a  commitment  declared  during  the  G8  Dementia  Summit  in  December  2013.  The  primary  goals  of  the  council  are  to  stimulate  innovative  development  and  commercialization  of  life-­‐enhancing  treatments  and  care  for  people  with  dementia,  or  at  risk  of  dementia,  within  a  generation.  The  council  has  committed  to  executing  on  these  goals  by  providing  independent,  non-­‐governmental  advocacy  and  global  leadership.    

ACADEMIC  CONSORTIA  

ALZHEIMER’S  DISEASE  NEUROIMAGING  INITIATIVE  

The  Alzheimer’s  Disease  Neuroimaging  Initiative  (ADNI)  is  a  public-­‐private  research  partnership  tasked  to  identify  diagnostic  biomarkers  for  AD.  Through  the  analysis  of  brain  scans,  genetic  profiles,  and  biomarkers  in  blood  and  CSF,  the  group  hopes  to  identify  reliable  biomarkers  that  can  consistently  detect  AD  and  indicate  progression.  The  study  includes  scientists  at  55  research  centers  in  the  United  States  and  Canada,  and  involves  more  than  800  study  participants  at  various  stages  of  AD,  including  no  memory  problems,  MCI,  and  dementia  due  to  AD.  To  date  the  ADNI  study  has  helped  to  develop  a  diagnostic  test  that  can  help  diagnose  the  beginning  stages  of  AD  sooner  and  more  accurately  by  measuring  tau  and  amyloid  beta  in  CSF.  

In  2010,  the  ADNI  study  moved  into  the  second  phase  of  development,  termed  ADNI  GO.  This  research  effort  focuses  on  participants  that  exhibit  the  earliest  signs  of  memory  loss  in  mild  cognitive  impairment.  This  work  is  ongoing.    

ADNI  stakeholders  are  currently  planning  for  the  next  phase  of  ADNI  (ADNI  2),  which  will  focus  on  identifying  the  earliest  signs  of  AD  by  building  on  the  successes  of  ADNI  and  ADNI  GO.  This  study  is  based  on  the  hypothesis  that  measurable  changes  in  the  brain  likely  occur  well  before  AD  symptoms  appear.  This  study  will  enroll  a  large  number  of  new  volunteers  in  the  earliest  stages  of  cognitive  impairment.    

Page 32: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

COHORTS  FOR  ALZHEIMER’S  PREVENTION  ACTION  

Cohorts  for  Alzheimer’s  Prevention  Action  (CAPA)  is  a  consortium  focused  on  optimizing  how  existing  observational  data  are  used  to  answer  questions  about  actionable  strategies  for  prevention  of  Alzheimer’s.  The  study  evaluates  large  datasets  gathered  from  different  groups  of  people  to  determine  lifestyle  and  risk  patterns  that  may  correlate  to  the  development  of  AD.  By  the  end  of  2014,  CAPA  successfully  received  consent  from  more  than  180,000  people  included  in  40  data  cohorts.  

GLOBAL  ALZHEIMER’S  ASSOCIATION  INTERACTIVE  NETWORK  

GAAIN  is  a  big  data  community  sponsored  and  managed  by  the  Alzheimer’s  Association.  GAINN  enables  data  sharing  among  a  federated,  global  network  of  data  partners  who  are  studying  Alzheimer’s  and  other  dementias.  The  platform  is  meant  to  assist  scientists  working  to  advance  research  in  AD  and  other  neurodegenerative  disorders  by  enabling  integration  and  search  of  aggregated  datasets.    

GLOBAL  BIOMARKER  STANDARDIZATION  CONSORTIUM  

The  Global  Biomarker  Standardization  Consortium  (GBSC)  was  established  by  the  Alzheimer's  Association  to  convene  key  stakeholders  in  Alzheimer’s  research  to  achieve  consensus  on  the  best  ways  to  both  standardize  and  validate  biomarkers  for  use  in  the  clinical  settings  worldwide.  The  regularly  convened  stakeholders  include  leading  researchers  and  clinicians,  as  well  as  industry,  regulatory,  and  government  leaders.  Some  of  the  key  issues  that  the  group  works  to  address  and  develop  standards  for  are  the  following:  

• Variability  in  the  extraction,  handling,  and  storage  of  cerebrospinal  fluid  for  biomarker  measurement.  

• Variability  in  brain  imaging  protocols  used  to  diagnose  AD  by  measuring  the  volume  of  the  hippocampal  region  of  the  brain.    

ALZHEIMER'S  DISEASE  COOPERATIVE  STUDY  

The  Alzheimer’s  Disease  Cooperative  Study  (ADCS)  is  a  cooperative  agreement  between  the  National  Institute  on  Aging  and  the  University  of  California,  San  Diego  that  was  established  in  1991.  The  overall  mission  of  ADCS  is  to  facilitate  the  discovery,  development,  and  testing  of  new  drugs  for  the  treatment  of  AD.  The  organization  specifically  focuses  on  developing  drugs  for  AD  that  might  not  be  developed  by  industry,  including  agents  that  lack  patent  protection,  are  under  patent  protection  but  are  already  marked  for  other  indications,  and  novel  compounds  developed  by  individuals,  academic  institutions,  and  drug  discovery  units.  The  mandate  of  ADCS  is  to:    

• improve  cognition,  slow  the  rate  of  decline,  or  delay  the  appearance  of  AD;  

• develop  studies  for  promising  agents  designed  to  ameliorate  behavioral  symptoms;  

• design  new  instruments  for  use  in  clinical  studies;  

• conceive  of  novel  and  innovative  approaches  to  clinical  study  design  and  AD  clinical  study  analysis;  

• expand  the  range  of  patients  in  AD  studies;  and  

• enhance  the  recruitment  of  minority  groups  into  AD  studies.    

Page 33: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!!    

 

Key  ADCS  activities  include:  

• the  development  of  AD  centers  capable  of  carrying  out  AD  studies  in  the  United  States  and  Canada;  • widespread  sharing  of  assessment  tools,  trial  methods,  and  data  with  academic  investigators  and  

commercial  entities  around  the  world;  • development  of  the  concept  of  mild  cognitive  impairment  as  a  treatable  entity  and  a  clinical  study  to  

delay  conversion  from  mild  cognitive  impairment  to  AD;  and  • standardization  and  development  of  worksheets  for  the  use  of  the  Clinical  Dementia  Rating  Scale.      

Page 34: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

GLOSSARY  

Acetylcholine:  a  neurotransmitter  released  at  autonomic  synapses  and  neuromuscular  junctions,  active  in  the  transmission  of  nerve  impulses.  

Active  immunotherapy:  administration  of  a  vaccine  into  the  body  to  induce  an  immune  response  leading  to  the  natural  production  of  antibodies  against  a  target.  

Amyloid  plaques:  aggregates  of  beta-­‐amyloid  protein  molecules  that  accumulate  in  the  spaces  between  the  brain’s  neurons.  They  are  one  of  the  two  anatomical  hallmarks  that  define  Alzheimer’s  disease;  the  other  hallmark  is  neurofibrillary  tangles.  

Amyloid  precursor  protein  (APP):  a  transmembrane  protein  found  in  neuronal  synapses  from  which  beta-­‐amyloid  protein  is  derived.  

Axon:  the  appendage  of  a  neuron  that  transmits  impulses  away  from  the  cell  body.  

Beta-­‐amyloid  protein:  a  protein  that  is  derived  from  amyloid  precursor  protein  and  is  the  primary  component  of  plaques  characteristic  of  Alzheimer’s  disease.  

Biomarker:  a  distinct  biochemical,  genetic,  or  molecular  characteristic  that  is  objectively  measured  and  evaluated  as  an  indicator  of  a  particular  biological  condition  or  process.  

Blood-­‐brain  barrier:  a  layer  of  cells  lining  the  inner  surface  of  brain  capillaries.  It  protects  the  brain  from  infectious  agents  and  toxic  compounds  by  letting  nutrients  and  oxygen  in  and  waste  products  out.  Because  the  barrier  strictly  regulates  the  passage  of  larger  molecules  and  often  prevents  drug  molecules  from  entering  the  brain,  it  has  long  posed  one  of  the  most  difficult  challenges  in  developing  treatments  for  brain  disorders.  

Cholinesterase:  an  enzyme  that  catalyzes  the  hydrolysis  of  acetylcholine.  

Clinical  trials:  prospective  biomedical  or  behavioral  research  studies  on  human  subjects  that  are  designed  to  answer  specific  questions  about  potential  interventions  (vaccines,  drugs,  medical  devices,  etc.),  generating  safety  and  efficacy  data.  

Dementia:  a  usually  progressive  condition  marked  by  the  development  of  multiple  cognitive  deficits,  such  as  memory  impairment,  aphasia,  and  inability  to  plan  and  initiate  complex  behavior.  Types  of  dementia  include  Alzheimer’s  disease,  vascular  dementia,  Lewy  body  dementia,  and  Parkinson’s  disease.  

Enzyme:  a  protein  originating  from  living  cells  that  catalyzes  specific  biochemical  reactions.  

Etiology:  the  cause(s)  of  a  disease  or  abnormal  condition.  

Excitotoxicity:  pathological  process  by  which  neurons  are  damaged  and  killed  by  the  overactivation  of  receptors  for  the  excitatory  neurotransmitter  glutamate.  

Glutamate:  an  excitatory  neurotransmitter  that  controls  communication  among  neurons  by  regulating  intracellular  calcium  ion  levels.  

Page 35: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

Kinase:  an  enzyme  that  catalyzes  the  addition  of  phosphorous  and  oxygen  groups  to  a  protein.  

Microtubule:  a  hollow  cylindrical  protein  structure  in  neurons  that  holds  the  cell  in  its  proper  shape  and  also  helps  transport  nutrients  within  the  cell.  

Neurofibrillary  tangles:  collections  of  twisted  protein  threads  found  inside  diseased  neurons,  composed  primarily  of  abnormally  modified  tau  protein.  They  are  one  of  the  two  anatomical  hallmarks  that  define  Alzheimer’s  disease;  the  other  hallmark  is  amyloid  plaques.    

Neuron:  a  cell  that  processes  and  transmits  information  through  electrical  and  chemical  signals.  

Neurotransmitter:  an  endogenous  chemical  that  transmits  signals  across  a  synapse  from  one  neuron  to  another.  

Parasympathetic  nervous  system:  the  part  of  the  nervous  system  that  regulates  activities  such  as  salivation,  urination,  digestion,  defecation,  and  tear  generation.  

Passive  immunotherapy:  administration  of  antibodies  or  other  immune  system  components  that  are  made  outside  of  the  body  (i.e.,  in  the  laboratory)  to  patients  in  order  to  activate  their  immune  systems.  

Phosphorylation:  the  addition  of  phosphorus  and  oxygen  groups  onto  a  protein.  

Serotonin:  a  neurotransmitter  that  is  involved  in  sleep,  depression,  memory,  and  other  neurological  processes.  

Synapse:  specialized  connections  between  neurons  where  information  is  transmitted.  

Tau  protein:  a  protein  that  binds  to  and  regulates  the  assembly  and  stability  of  neuronal  microtubules;  found  in  an  abnormal  form  in  Alzheimer’s  disease.  

 

 

 

 

 

 

 

 

 

 

 

Page 36: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

 

REFERENCES  

Aisen  PS,  Andrieu  S,  Sampaio  C,  et  al.  Report  of  the  task  force  on  designing  clinical  trials  in  early  (predementia)  AD.  Neurology.  2011;76(3):280-­‐6.    

Albert  MS,  DeKosky  ST,  Dickson  D,  et  al.  The  diagnosis  of  mild  cognitive  impairment  due  to  Alzheimer’s  disease:  recommendations  from  the  National  Institute  on  Aging-­‐Alzheimer’s  Association  workgroups  on  diagnostic  guidelines  for  Alzheimer’s  disease.  Alzheimers  Dement.  2011;7(3):270-­‐9.    

Albert  MS,  et  al.  The  Diagnosis  of  Mild  Cognitive  Impairment  due  to  Alzheimer’s  disease:  Recommendations  from  the  National  Institute  on  Aging  and  Alzheimer’s  Association  Workgroup.  Alzheimers  Dement.  2011;7(3):270–279.  

Alladi  S,  Xuereb  J,  Bak  T,  Nestor  P,  Knibb  J,  Patterson  K,  et  al.  Focal  cortical  presentations  of  Alzheimer’s  disease  .  Brain.  2007;  130:  2636–2645.  

American  Psychiatric  Association.  Diagnostic  and  Statistical  Manual  of  Mental  Disorders:  DSM-­‐III-­‐R.  Arlington  (VA):  American  Psychiatric  Association;  1987.    

Betram  L,  Tanzi  R.  The  Genetics  of  Alzheimer’s  disease.  Prog  Mol  Biol  Transl  Sci.  2012;107:79-­‐100.  

Bezprozvanny  I,  Mattson  MP.  Neuronal  calcium  mishandling  and  the  pathogenesis  of  Alzheimer’s  disease.  Trends  Neurosci.  2008  Sep;31(9):454-­‐63.  

De  Meyer  G,  Shapiro  F,  Vanderstichele  H,  et  al.  Diagnosis-­‐independent  Alzheimer  disease  biomarker  signature  in  cognitively  normal  elderly  people.  Arch  Neurol.  2010;67(8):949-­‐56.    

Dickerson  B.  Dementia:  Comprehensive  Principles  and  Practices.  New  York  (NY):  Oxford  University  Press;  2014.  

Ghezzi  L,  Scarpini  E,  Galimberti  D.  Disease-­‐modifying  drugs  in  Alzheimer’s  disease.  Drug  Des  Devel  Ther.  2013  Dec  6;7:1471-­‐8.  

Gorelick  PB,  Scuteri  A,  Black  SE,  et  al.  Vascular  contributions  to  cognitive  impairment  and  dementia:  a  statement  for  healthcare  professionals  from  the  American  Heart  Association/American  Stroke  Association.  Stroke.  2011;42(9):2672-­‐713.    

Jack  CR,  Albert  MS,  Knopman  DS,  et  al.  Introduction  to  the  recommendations  from  the  National  Institute  on  Aging-­‐Alzheimer’s  Association  workgroups  on  diagnostic  guidelines  for  Alzheimer’s  disease.  Alzheimer’s  Dement.  2011;7(3):257-­‐62.    

Jack  CR,  Knopman  DS,  Jagust  WJ,  et  al.  Hypothetical  model  of  dynamic  biomarkers  of  the  Alzheimer’s  pathological  cascade.  Lancet  Neurol.  2010;9(1):119-­‐28.    

Jack  CR,  et  al.  Introduction  to  Revised  Criteria  for  the  Diagnosis  of  Alzheimer’s  disease:  National  Institute  on  Aging  and  the  Alzheimer’s  Association  Workgroups.  Alzheimers  Dement.  2011;7(3):257–262.  

Page 37: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

Jia  Q,  Deng  Y,  Qing  H.  Potential  therapeutic  strategies  for  Alzheimer’s  disease  targeting  or  beyond  β-­‐amyloid:  insights  from  clinical  trials.  Biomed  Res  Int.  2014;2014:837157.  

Knopman  DS,  DeKosky  ST,  Cummings  JL,  et  al.  Practice  parameter:  diagnosis  of  dementia  (an  evidence-­‐based  review).  Report  of  the  Quality  Standards  Subcommittee  of  the  American  Academy  of  Neurology.  Neurology.  2001;56(9):1143-­‐53.    

Kokman  E,  Beard  CM,  O’Brien  PC,  Kurland  LT.  Epidemiology  of  dementia  in  Rochester,  Minnesota.  Mayo  Clin  Proc.  1996;71(3):275-­‐82.    

Lannfelt  L,  Relkin  NR,  Siemers  ER.  Amyloid-­‐ß-­‐directed  immunotherapy  for  Alzheimer’s  disease.  J  Intern  Med.  2014  Mar;275(3):284-­‐95.  

Lazton  AW,  Tang-­‐Wai  DF,  McAndrews  MP,  et  al.  A  phase  I  trial  of  deep  brain  stimulation  of  memory  circuits  in  Alzheimer’s  disease.  Ann  Neurol.  2010;68(4):521-­‐534.  

Litvan  I,  et  al.  Diagnostic  criteria  for  Mild  Cognitive  Impairment  in  Parkinson’s  Disease  (PD-­‐MCI):  Movement  Disorder  Society  Task  Force  Guidelines.  Mov  Disord.  2012;27(3):349-­‐56.  

Mecocci  P,  Tinarelli  C,  Schulz  RJ,  Polidori  MC.  Nutraceuticals  in  cognitive  impairment  and  Alzheimer's  disease.  Front  Pharmacol.  2014;5:147.  

McKeith  IG,  Dickson  DW,  Lowe  J,  et  al.  Diagnosis  and  management  of  dementia  with  Lewy  bodies:  third  report  of  the  DLB  Consortium.  Neurology.  2005;65(12):1863-­‐72.    

McKhann  G,  Drachman  D,  Folstein  M,  Katzman  R,  Price  D,  Stadlan  EM.  Clinical  diagnosis  of  Alzheimer’s  disease:  report  of  the  NINCDS-­‐ADRDA  Work  Group  under  the  auspices  of  Department  of  Health  and  Human  Services  Task  Force  on  Alzheimer’s  disease.  Neurology.  1984;34(7):939-­‐44.    

McKhann  GM,  Knopman  DS,  Chertkow  H,  et  al.  The  diagnosis  of  dementia  due  to  Alzheimer’s  disease:  recommendations  from  the  National  Institute  on  Aging-­‐Alzheimer’s  Association  workgroups  on  diagnostic  guidelines  for  Alzheimer’s  disease.  Alzheimers  Dement.  2011;7(3):263-­‐9.    

Potkin  SG,  Guffanti  G,  Lakatos  A,  et  al.  Hippocampal  atrophy  as  a  quantitative  trait  in  a  genome-­‐wide  association  study  identifying  novel  susceptibility  genes  for  Alzheimer’s  disease  .  PLoS  One.  2009  Aug  7;4(8):e6501.  

Rabinovici  GD,  Jagust  WJ,  Furst  AJ,  Ogar  JM,  Racine  CA,  Mormino  E,  et  al.  Abeta  amyloid  and  glucose  metabolism  in  three  variants  of  primary  progressive  aphasia.  Ann  Neurol.  2008;  64:  388–401.  

Rascovsky  K,  Hodges  JR,  Knopman  D,  et  al.  Sensitivity  of  revised  diagnostic  criteria  for  the  behavioural  variant  of  frontotemporal  dementia.  Brain.  2011;134(Pt  9):2456-­‐77.    

Shaw  LM,  Vanderstichele  H,  Knapik-­‐Czajka  M,  et  al.  Cerebrospinal  fluid  biomarker  signature  in  Alzheimer’s  disease  neuroimaging  initiative  subjects.  Ann  Neurol.  2009;65(4):403-­‐13.    

Sperling  RA,  Aisen  PS,  Beckett  LA,  et  al.  Toward  defining  the  preclinical  stages  of  Alzheimer’s  disease:  recommendations  from  the  National  Institute  on  Aging-­‐Alzheimer’s  Association  workgroups  on  diagnostic  guidelines  for  Alzheimer’s  disease  .  Alzheimers  Dement.  2011;7(3):280-­‐92.    

Page 38: 9,1* 60$57(5 *8,'( 72 $&&(/(5$7( '(9(/230(17 2) 1(: 7+(5$3,(6€¦ · CONTENTS! Executive)Summary).....)5"

!"    

 

Tang-­‐Wai  DF,  Graff-­‐Radford  NR,  Boeve  BF,  et  al.  Clinical,  genetic,  and  neuropathologic  characteristics  of  posterior  cortical  atrophy.  Neurology.  2004;63(7):1168-­‐74.    

Tell  V,  Hilgeroth  A.  Recent  developments  of  protein  kinase  inhibitors  as  potential  AD  therapeutics.  Front  Cell  Neurosci.  2013;7:189.  

U.S.  Burden  of  Disease  Collaborators.  The  state  of  U.S.  health,  1990–2010:  Burden  of  diseases,  injuries,  and  risk  factors.  JAMA.  2013;310(6):591–608.  

Yang  J,  Ji  Y,  Mehta  P,  Bates  KA,  Sun  Y,  Wisniewski  T.  Blocking  the  apolipoprotein  E/amyloid-­‐β  interaction  reduces  fibrillar  vascular  amyloid  deposition  and  cerebral  microhemorrhages  in  TgSwDI  mice.  J  Alzheimers  Dis.  2011;24(2):269-­‐85.