a 140 ghz mimo transceiver in 45 nm soi cmos · 4/22/2020 bcicts 2018 san diego, ca slide 1 (paper...

28
BCICTS 2018 San Diego, CA 4/22/2020 Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek 1 , Seong-Kyun Kim 2 , and Mark J. W. Rodwell 1 1 University of California, Santa Barbara, USA 2 Teledyne Scientific and Imaging, USA

Upload: others

Post on 26-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA4/22/2020 Slide 1

(Paper 15.3)

A 140 GHz MIMO Transceiver in

45 nm SOI CMOS

Arda Simsek1, Seong-Kyun Kim2, and Mark J. W. Rodwell1

1University of California, Santa Barbara, USA2Teledyne Scientific and Imaging, USA

Page 2: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Acknowledgements

4/22/2020 Slide 2

Contact support: NSF Giganets program.

IC Fabrication: Global Foundries. 45nm SOI

Page 3: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Motivation

4/22/2020 Slide 3

Large available spectrum at mm-waves

Shorter wavelength – small IC, antenna arrays

Massive # of parallel channels – multiple independent beams

Page 4: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Applications and Challenges

4/22/2020 Slide 4

High capacity mobile communications

Problems: Solutions:

High attenuation Phased arrays

High blockage Mesh networks & beam steering

Page 5: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Direct conversion receiver

140 GHz LNA, double balanced passive mixer

LO distribution through two x9 multipliers from common LO port

4-Channel MIMO Receiver

4/22/2020 Slide 5

1.69 mm x 1.76 mm

Page 6: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Direct conversion transmitter

140 GHz PA (same with LNA), I/Q Gilbert Cell Active Mixer

LO distribution thru two x9 multiplier from common LO port

4-Channel MIMO Transmitter

4/22/2020 Slide 6

1.67 mm x 1.76 mm

Page 7: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

45 nm CMOS SOI

Design Details – Transistor Modeling

4/22/2020 Slide 7

Gate

Series Gate Feeding

Gate

Gate

Dra

in (

M2)

So

urc

e (M

2)

Gate

(M2)Dra

in (

M2)

So

urc

e (M

1)

Parallel Gate Feeding

0.0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

6

7

8

PGF

SGF

Current Density (uA/um)

MA

G (

dB

)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Total width = 1um x 30 fingers

No

ise

Fig

ure

(d

B)

Similar performances (MSG, NF)

SGF is hard to extract the gate inductance

PGF - Source can directly connect to ground

BSIM 𝑓𝑚𝑎𝑥 > 400 GHz, measured 𝑓𝑚𝑎𝑥 = 213 GHz

(30x1um single gate contact device) (Inac et al, 2014)

Page 8: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

45 nm CMOS SOI

Design Details – Transistor and Matching Modeling

4/22/2020 Slide 8

Cgd cancellation

: MOM Cap

M1 ground plane

Cgd cancellation – better isolation & gain

PEX

CA, PC, M1 parasitic

(capacitance, resistance)

EM Simulation

M2 – LB interconnection parasitic

(capacitance, resistance, inductance)

BSIM

Transistor core

BSIM + PEX + EM simulation

(BSIM & PEX from the foundry, HFSS for EM)

VDD: M2-M3-C1-C2

Gate bias: M2

UB-LB

M1 ground plane

Page 9: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Design Details – Low Noise Amplifier (LNA)

4/22/2020 Slide 9

3-stage differential CS amplifier

Cgd cancellation

Transformers for matching networks and sing.-to-diff.

315 x 170 um2 without pads

~ 415 x 370 um2 with pads

Page 10: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Design Details – Down-conversion Mixer

4/22/2020 Slide 10

Double balanced passive mixer

Better linearity and low flicker noise

Pseudo-differential TIA

Total width of each transistor (TIA) = 30 µm

RF

LO_Q

LO_I

TIA

16

18

20

22

24

26

28

2

3

4

5

6

7

8

0 5 10 15 20 25

Ga

in (

dB

)

No

ise

Fig

ure

(dB

)

Frequency (GHz)

Page 11: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Design Details – x9 Multiplier

4/22/2020 Slide 11

X3 (140 GHz) X3 (47 GHz)

LO Input stage

Inverter based single-to-differential

conversion & 3rd harmonic generation

47 GHz and 140 GHz triplers use

similar topology with LNA

80 mA @ 1V

Page 12: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Design Details – Up-conversion Mixer / DA

4/22/2020 Slide 12

BB input stage

IQ modulator

Active double balanced Gilbert cell design

Lower conversion loss

Digital baseband inputs - Limited to QPSK

DA is same with LNA

-15

-10

-5

0

5

10

6

8

10

12

14

16

18

20

-30 -25 -20 -15 -10 -5 0

Ou

tpu

t P

ow

er

(dB

m)

Ga

in (d

B)

Input Power (dBm)

Output P1dB = 4.3 dBm

Output power: 5 dBm

P1dB = 4.3 dBm

Page 13: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

LNA

Measurements – Circuit Blocks

4/22/2020 Slide 13

0

5

10

15

20

25

-30

-20

-10

0

10

20

120 130 140 150 160 170 180

Gain_Sim

NF_Sim

Gain_Meas

S11_Sim

S22_Sim

S11_Meas

S22_Meas

Gain

(d

B)

S11

/S2

2 (d

B)

Frequency (GHz)

-6

-4

-2

0

2

4

6

140 145 150 155 160

Measured #1 (VDD: 1 V)

Measured #2 (VDD: 1 V)

Measured #1 (VDD: 1.1 V)

Measured #2 (VDD: 1.1 V)

SimulatedOu

tpu

t P

ow

er

(dB

m)

Frequency (GHz)

x9 LO Multiplier

41 mA @ 1V

Peak Gain = 19.9 dB @ 145 GHz

3-dB BW = 10GHz

98 mA @ 1V

Peak output power = 1.5 dBm

@ 148 GHz

Page 14: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Measurements – Receiver Channel

4/22/2020 Slide 14

-5

0

5

10

15

20

0 5 10 15 20

IC1-Ch.1IC1-Ch.4IC2-Ch.1IC2-Ch.4

Co

nvers

ion

Ga

in (

dB

)

BB Frequency (GHz)

Fixed LO @ 145.9 GHz0

5

10

15

20

135 140 145 150 155 160 165 170

IC1-Ch.1IC1-Ch.4IC2-Ch.1IC2-Ch.4

Co

nvers

ion

Ga

in (

dB

)

RF Frequency (GHz)

Fixed BB @ 100 MHz

18 dB conversion gain

12 GHz 3-dB BW

Narrow-band notch in RF response - limits the data rate

163 mA + 109 mA + 223 mA = 495 mA @ 1V

Page 15: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Measurements – Transmitter Channel

4/22/2020 Slide 15

3-dB modulation bandwidth ~ 6 - 8 GHz

Total transmitter output power: -2 dBm with 1 V supply,

3 dBm with 1.2 V supply @ 145 GHz

161 mA + 94 mA + 208 mA = 463 mA @ 1V

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12 14 16

IC1-Ch.1IC1-Ch.4IC2-Ch.1IC2-Ch.4

Re

lati

ve S

ide

ban

d

Po

wer

(dB

m)

Modulation Frequency (GHz)

Fixed RF @ 146.01 GHz

-10

-8

-6

-4

-2

0

2

4

140 145 150

VDD = 1 V

VDD = 1.1 V

VDD = 1.2 V

Tx

Ou

tpu

t P

ow

er

(dB

m)

Carrier Frequency (GHz)

LO

LO+BBLO-BB

Page 16: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Measurements – Link Experiment

4/22/2020 Slide 16

Measurement Setup

Wired link: G-band (140-220 GHz) waveguide

probes, ~1 meter waveguide connection and a

waveguide attenuator (20 dB)

common 16.6 GHz LO subharmonic drive signal

mm-wave carrier is at 16.6 x 9 = 149.4 GHz

Page 17: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

State of the Art Transceivers

4/22/2020 Slide 17

UC Berkeley

(2014)

Tel Aviv Uni.

(2016)

UCSD

(2014)

Chalmers Uni.

(2016)

This Work

(UCSB)

Technology65nm

CMOS28nm CMOS

45nm

CMOS

250nm

InP DHBT

45nm

CMOS

Freq. [GHz] 240 102-128 155 110-170 140

Gain [dB] 25 36-39 23 26 18

NF [dB] 15# 8.4-10.4 20* 9.5 5.5*

Pdc [mW]260

(1 TRx)

51

(1 Rx)

345

(1 TRx)

357

(1 TRx)

958

(4 TRx)

Area [mm2]2

(1 TRx)

0.89

(1 Rx)

3.92

(1 TRx)

3.64

(1 TRx)

5.91

(4 TRx)

Integration Full Rx Front End Tx/Rx Tx/Rx Tx/Rx

*: simulated#: calculated from measurerements

Page 18: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Conclusion and Future Work

4/22/2020 Slide 18

A 140 GHz QPSK transceiver front-end

with four channels per IC to support MIMO

One channel transceiver measurements

Initial link experiment results up to 800 Mb/s

Work in Progress

Wireless link measurements

with higher data rate

Antenna and package designs

4-channel MIMO receiver hub experiment.

Baseband

ProcessingPackaged 4-channel Rx

Page 19: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Backup Slides

4/22/2020 Slide 19

Page 20: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

0

5

10

15

20

25

-30

-20

-10

0

10

20

120 130 140 150 160 170 180

Gain_SimGain_Meas

S11_SimS22_SimS11_MeasS22_Meas

Gain

(d

B)

S11/S

22 (d

B)

Frequency (GHz)

0

5

10

15

20

25

-30

-20

-10

0

10

20

135 140 145 150 155 160

Gain_High-ResGain_Low-Res

S11_High-ResS22_High-ResS11_Low-ResS22_Low-Res

Gain

(d

B)

S11/S

22 (d

B)

Frequency (GHz)

3-dB bandwidth: 11 GHz (138 – 149 GHz)

Power consumption: Trap-rich 42.4 mW @ 1 VLow-res. 41.7 mW @ 1 V

Substrate: High (trap-rich) vs Low resistivitySimulation vs Measurements (trap-rich)

LNA Measurements

Page 21: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

IIP3: -5.84 dBm, Input P1dB: -13.87 dBm

-40 -30 -20 -10 0-20

-10

0

10

20

30

Gain

Output Power

Gain = 19.07 dB

Ou

tpu

t P

ow

er

(dB

m),

Gain

(d

B)

Input Power (dBm)

Input P1dB = -13.87 dBm

-40 -30 -20 -10 0-80

-60

-40

-20

0

20

Ou

tpu

t P

ow

er

(dB

m)

Input Power (dBm)

IIP3 = -5.84 dBm

140 GHz with 10 MHz spacing

LNA Linearity Simulations

Page 22: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

TIA Breakout measurements

Power consumption- Simulation 12 mA @ 1 V- Measurement 11.9 mA @ 1 V

In/output feeding lines are not de-embedded in the measurementSimulation results doesn’t include the feeding linesNotch due to the bias network (next slide)

5

10

15

20

25

30

0 10 20 30 40 50

SimulatedMeasured

S(2

,1)

(dB

)

Frequency (GHz)

*TIA: total width of each transistor: 30 umSimulation: IdealMeasurement: VDD without50 Ω termination

Simulation: IdealMeasurement: VDD with50 Ω termination

5

10

15

20

25

30

0 10 20 30 40 50

SimulatedMeasured

S(2

,1)

(dB

)

Frequency (GHz)

5

10

15

20

25

30

0 10 20 30 40 50

Single-endedDifferential

S(2

,1)

(dB

)

Frequency (GHz)

Page 23: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Multiplier chain (x9) measurement setup

Harmonic mixer(OML,WR-05)

20 dB attenuation

WR-05 probeLO Input

Harmonic mixer:- Harmonic number: 16, IF @ 404.4 MHz

Ref 0 dBm

1 AP

CLRWR

A

EXTM IX G

EXT

2 kHz/Center 140.13 GHz Span 20 kHz

*

*

3DB

RBW 200 Hz

VBW 200 Hz

SWT 1 s

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

Marker 1 [T1 ]

-19.94 dBm

140.130000000 GHz

Date: 31.MAR.2017 12:46:00

Ref 0 dBm

1 AP

CLRWR

A

EXTM IX G

EXT

2 kHz/Center 153 GHz Span 20 kHz

*

*

3DB

RBW 200 Hz

VBW 200 Hz

SWT 1 s

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

Marker 1 [T1 ]

-16.72 dBm

153.000000000 GHz

Date: 31.MAR.2017 12:54:26

Ref 0 dBm

1 AP

CLRWR

A

EXTM IX G

1 MHz/Center 144 GHz Span 10 MHz

*

*

3DB

RBW 2 kHz

VBW 2 kHz

SWT 2.5 s

EXT

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

Marker 1 [T1 ]

-22.95 dBm

144.000000000 GHz

Date: 31.MAR.2017 13:05:54

Ref 0 dBm

1 AP

CLRWR

A

EXTM IX G

100 MHz/Center 144 GHz Span 1 GHz

EXT

*

3DB

RBW 10 kHz

* VBW 10 kHz

SWT 10 s

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

Marker 1 [T1 ]

-22.41 dBm

144.000000000 GHz

Date: 31.MAR.2017 13:07:09

Page 24: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Receiver Simulations

31

31.5

32

32.5

33

0 2 4 6 8 10 12

Co

nvers

ion

Ga

in (

dB

)

Frequency (GHz)

LO @ 139 GHz

4

6

8

10

12

14

16

18

105

106

107

108

109

NF

ds

b (

dB

)

Frequency (Hz)

Integrated NFdsb (dB, 100kHz - 1 GHz) = 5.53

NFdsb = 5.5 dB

5

10

15

20

25

105

106

107

108

109

Temp. = 27 o

Temp. = 85 o

NF

ds

b (

dB

)Frequency (Hz)

Integrated NFdsb (dB, 100kHz - 1 GHz) = 5.53

NFdsb @ 1 GHz = 5.5 dB

Integrated NFdsb (dB, 100kHz - 1 GHz) = 6.2

NFdsb @ 1 GHz = 6.1 dB

30

30.5

31

31.5

32

32.5

33

0 2 4 6 8 10 12

Temp. = 27 o

Temp. = 85 o

Co

nv

ers

ion

Ga

in (

dB

)

Frequency (GHz)

LO @ 139 GHz

Page 25: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Receiver measurements

-5

0

5

10

15

20

0 5 10 15 20

#1-Ch.1#1-Ch.4#2-Ch.1#2-Ch.2

Co

nvers

ion

Ga

in (

dB

)

IF Frequency (GHz)

Fixed LO @ 136.9 GHz-5

0

5

10

15

20

0 5 10 15 20

#1-Ch.1#1-Ch.4#2-Ch.1#2-Ch.4

Co

nvers

ion

Ga

in (

dB

)

IF Frequency (GHz)

Fixed LO @ 145.9 GHz

0

5

10

15

20

135 140 145 150 155 160 165 170

#1-Ch.1#1-Ch.4#2-Ch.1#2-Ch.4

Co

nvers

ion

Ga

in (

dB

)

RF Frequency (GHz)

Fixed IF @ 100 MHz

1 AP

CLRWR

A

Ref 0 dBm Att 25 dB

Center 100 MHz Span 100 MHz10 MHz/

EXT

*

3DB

RBW 10 kHz

* VBW 10 kHz

SWT 1 s

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

Marker 1 [T1 ]

-9.48 dBm

100.000000000 MHz

Date: 6.APR.2017 18:35:15

1 AP

CLRWR

A

Ref 0 dBm Att 25 dB

EXT

Center 16.21111111 GHz Span 10 kHz1 kHz/

*

3DB

RBW 100 Hz

* VBW 100 Hz

SWT 2 s

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

Marker 1 [T1 ]

-60.93 dBm

16.211111095 GHz

Date: 6.APR.2017 18:37:29LO feedthroughIF spectrum: span 100 MHz

Page 26: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

-30

-25

-20

-15

-10

-5

0

5

130 135 140 145 150

Ou

tpu

t P

ow

er

(dB

m)

Frequency (GHz)

RF-L: -0.9 dBm,RF-U: -0.7 dBm,

LO: -1.3 dBm

RF @ 1 GHz

-30

-25

-20

-15

-10

-5

0

5

10

130 135 140 145 150

Ou

tpu

t P

ow

er

(dB

m)

Frequency (GHz)

5 dBm

-15 dBm

RF @ 1 GHz

Transmitter Simulations

0 V quadrature inputLO feedthrough: Q-mixer is unbalancedLower output power ~ 6 dB

Page 27: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Transmitter measurements

BB @ 0.1 GHz, LO @ 160 GHz BB @ 0.2 GHz, LO @ 160 GHz

Measurement setup: BB-I input is open, all channels are in the on state

BIAS VDD (V)Current (mA)

Chip1 Chip2

Driver amp. 1 160 161

Mixer 1 89 94

Multiplier chain 1 204 208

Page 28: A 140 GHz MIMO Transceiver in 45 nm SOI CMOS · 4/22/2020 BCICTS 2018 San Diego, CA Slide 1 (Paper 15.3) A 140 GHz MIMO Transceiver in 45 nm SOI CMOS Arda Simsek1, Seong-Kyun Kim2,

BCICTS 2018 San Diego, CA

Transmitter measurements

-25

-20

-15

-10

-5

0

0 2 4 6 8 10 12 14 16

Chip1-Ch.1Chip1-Ch.4Chip2-Ch.1Chip2-Ch.4

Ou

tpu

t P

ow

er

(dB

m)

BB Frequency (GHz)

Fixed RF @ 146.01 GHz-20

-15

-10

-5

0

0 2 4 6 8 10 12 14 16

Chip1-Ch.1Chip1-Ch.4Chip2-Ch.1Chip2-Ch.4

Ou

tpu

t P

ow

er

(dB

m)

BB Frequency (GHz)

Fixed RF @ 150.01 GHz

-14

-12

-10

-8

-6

-4

0 1 2 3 4 5 6 7 8

Chip1-Ch.1Chip1-Ch.4Chip2-Ch.1Chip2-Ch.4

Ou

tpu

t P

ow

er

(dB

m)

BB Frequency (GHz)

Fixed LO @ 146 GHz-14

-12

-10

-8

-6

-4

-2

0

2

140 142 144 146 148 150 152 154 156

Chip1-Ch.1Chip1-Ch.4Chip2-Ch.1Chip2-Ch.4

Ou

tpu

t P

ow

er

(dB

m)

RF Frequency (GHz)

Fixed BB @ 0.01 GHz