a comparative study of depth map coding schemes for 3d video

28
A Comparative Study of Depth Map Coding Schemes for 3D Video Harsh Nayyar, Nirabh Regmi, Audrey Wei March 10 th , 2011 EE 398A: Image and Video Compression Professor Girod

Upload: kirti

Post on 02-Feb-2016

39 views

Category:

Documents


0 download

DESCRIPTION

A Comparative Study of Depth Map Coding Schemes for 3D Video. Harsh Nayyar, Nirabh Regmi, Audrey Wei March 10 th , 2011 EE 398A: Image and Video Compression Professor Girod. Overview. Background & Motivation Research Methodology Results & Performance Comparisons - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes

for 3D Video

Harsh Nayyar, Nirabh Regmi, Audrey Wei

March 10th, 2011EE 398A: Image and Video Compression

Professor Girod

Page 2: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Overview

• Background & Motivation• Research Methodology• Results & Performance Comparisons

– Block Transforms (DCT, KLT)– Block Truncation Coding (BTC)

• Conclusion• Questions

2

Page 3: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Background & Motivation

• 3D Compression– Issue: Bit rate scales linearly with number of views– Proposed solution: Code 2-3 views along with

depth maps to synthesize intermediate views [Wiegand et al.]

• Requires good depth maps

• Depth Maps– Desirable to preserve edges– Not typical images

3

Page 4: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Research Methodology

• Block Transform Coding– DCT and KLT

• Block Truncation Coding – Constant and adaptive block sizes

• Distortion calculated based on synthesized view from uncompressed depth maps

4

Page 5: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

System Overview

Left Image

Right Image

(Compressed) Left Depth Map

ViewSynthesis

Intermediate Image

(Compressed) Right Depth Map

5

Page 6: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Evaluation Methodology

• Test Sequences: Balloons & Kendo• Depth Maps: Cameras 1 & 3• Synthesized Views: Camera 2

6

Acknowledgement: Tanimoto Lab, Nagoya University

Page 7: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Discrete Cosine Transform (DCT)

• Block Matrix Sizes: M = 8, 16• Uniform Quantizer

– Step Sizes: 21 - 28

• Entropy Coding• Type used: DCT-II

7

Page 8: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Discrete Cosine Transform (cont.)

Quantizer step size = 28

Quantizer step size = 21

8

Page 9: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Discrete Cosine Transform (cont.)

9

balloons error, M = 8, Q = 128

Page 10: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Karhunen-Loeve Transform (KLT)• Block Matrix Sizes: M = 8, 16• Uniform Quantizer

– Step Sizes = 21 - 28

• Entropy Coding• Training Set: composed from both views

M x Mm x n x p

M

2mnp

M

10

Page 11: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Karhunen-Loeve Transform (cont.)

Quantizer step size = 21

Quantizer step size = 28

11

Page 12: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Karhunen-Loeve Transform (cont.)

12

balloons error, M = 8, Q = 128

Page 13: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Block Truncation Coding (BTC)

• Good at preserving edges• Quantized values per block: a & b

• Block Matrix Sizes: M = 2, 4, 8, 16, 32, 64• Entropy Coding

if , output = a

if , output = b

a X q

m q

b X m qq

X i X th

X i X th

X th Xwhere q = # of Xi’s >

for i = 1, 2, … , M2

13

Page 14: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Block Truncation Coding (cont.)

M = 8

M = 4

14

~1.1dB

Page 15: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Block Truncation Coding (cont.)

balloons error, M = 64

15

Page 16: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Block Truncation Coding (cont.)

16

balloons error, M = 16

Page 17: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Block Truncation Coding (cont.)

17

balloons error, M = 2

Page 18: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Adaptive BTC

• Spend bits where necessary– Large blocks handle background (low rate) – Small blocks handle edges (high rate)

• Make block size selection based on Lagrangian cost function

18

Page 19: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

• Lagrangian cost function,– Joint cost of both depth maps– Distortion (D) processed from synthesized view– , = 20 – 28

• Bit rate (R) calculation– 6 Block sizes (M=2-64): 3 bits– Quantized values, a & b: Entropy coding– Positions of a & b in the block: Run Length Coding

& Entropy coding

Adaptive BTC (cont.)

J DR

0.2Q2

Q

19

a b b

b b a

b a b

1 0 0

0 0 1

0 1 0

Page 20: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Adaptive BTC (cont.)

as Mmax increases

20

Page 21: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Final Results

21

Page 22: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Final Results (cont.)

22

Balloons error (frame 1)Scheme: DCT (M = 8, Q = 64)PSNR = 37.65 dBRate = 0.07465 bpp

Page 23: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Final Results (cont.)

23

Balloons error (frame 1)Scheme: Fixed BTC (M=32) PSNR = 38.6070 dBRate = 0.0703 bpp

Page 24: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Final Results (cont.)

24

Balloons error (frame 1)Scheme: A-BTC (Mmax=64,Q=32) PSNR = 41.4849 dBRate = 0.0622 bpp

Page 25: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Final Results (cont.)

25

Page 26: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Conclusion

• Depth Maps– Not ordinary images– Important to preserve edges

• Adaptive BTC technique can optimally trade off rate and synthesized distortion

• Fixed BTC outperforms DCT, KLT without side information about synthesized distortion

• Adaptive BTC outperforms DCT, KLT, Fixed BTC

26

Page 27: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

Future Work

• Adaptive BTC– Joint Lagrangian cost based on all possible ways of

breaking down blocks in pair of views• Our implementation is sub-optimal

– Investigate heuristics to perform block sub-division top-down rather than bottom-up

– Preserve higher moments in BTC• Only preserved 2nd moment

– Larger block sizes• Only used up to Mmax = 64

27

Page 28: A Comparative Study of  Depth Map Coding Schemes  for 3D Video

A Comparative Study of Depth Map Coding Schemes for 3D VideoH. Nayyar, N. Regmi, A. Wei

References

• N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans. Compiti., vol. C-23, pp. 90-93, 1974.

• Balloons & Kendo Sequences, Nagoya University Tanimoto Laboratory , http://www.tanimoto.nuee.nagoya-u.ac.jp/.

• E. Delp and O. Mitchell, “Image Compression Using Block Truncation Coding,” Communications, IEEE Transactions on., vol. 27, no. 9, pp. 1335-1342, Sep. 1979.

• Z. Li and M. Drew, ”Karhunen-Loeve Transform,” in Fundamentals of Multimedia. Upper Saddle River. Pearson Education, 2004, ch. 8, sec. 5.2. pp. 220-222.

• P. Merkle, Y. Morvan, A. Smolic, D. Farin, K. Muller, P. H. N. de With, and T. Wiegand, “The effects of multiview depth video compression on multiview rendering,” Signal Process., Image Commun., vol. 24, no. 1+2, pp. 7388, Jan. 2009.

• K. Mller, P. Merkle, and T. Wiegand, “3-D video representation using depth maps,” Proceedings of the IEEE, vol. PP, no. 99, pp. 1-14, 2010.

28