a convergent adaptive method for elliptic eigenvalue problems · figotin & goren (2001),...

23
Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary A convergent adaptive method for elliptic eigenvalue problems Stefano Giani and Ivan G. Graham School of Mathematical Sciences University of Nottingham 14th Leslie Fox Prize Warwick, 29th June 2009

Upload: others

Post on 12-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

A convergent adaptive method for ellipticeigenvalue problems

Stefano Giani and Ivan G. Graham

School of Mathematical SciencesUniversity of Nottingham

14th Leslie Fox PrizeWarwick, 29th June 2009

Page 2: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

IntroductionPhotonic Crystal FibersModel Problem

Finite Element Methods (FEMs)Finite Element Methods (FEMs)Adaptivity

Convergence ProofThe Convergent MethodConvergence Proof

NumericsDefect modes

Summary

Page 3: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Photonic Crystal Fibers (PCFs)

Applications: communications, filters, lasers, switchersFigotin & Klein (1998), Cox & Dobson (1999), Dobson (1999), Sakoda (2001), Kuchment (2001),Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004),Joannopoulos, Johnson, Winn & Meade (2008),...

S. G.

Convergence of Adaptive Finite Element Methods for EllipticEigenvalue Problems with Applications to Photonic Crystals.

Ph.D. Thesis , University of Bath (2008)

Page 4: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Model Problem

Let Ω be a bounded polygonal domain in R2 (or a bounded

polyhedral domain in R3)

Problem: seek eigenpairs (λ,u) of the problem

−∇ · (A ∇u) = λ B u in Ω,

u = 0 on ∂Ω.

We assume that A and B are both piecewise constant on Ω andthat:

∀ξ ∈ Rd with |ξ| = 1, ∀x ∈ Ω, 0 < a ≤ ξTA(x)ξ ≤ a ,

and∀x ∈ Ω, 0 < b ≤ B(x) ≤ b .

Page 5: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Variational Formulation

Ω

A u · v dx = λ

Ω

B u v dx .

a(u, v) :=

Ω

A u · v dx ,

‖|v‖|Ω := a(v , v)1/2 ,

b(u, v) :=

Ω

B u v dx .

Variational Problem: seek eigenpairs (λ, u) ∈ R × H10(Ω) such

thata(u, v) = λb(u, v) for all v ∈ H1

0 (Ω) .

Page 6: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

The Ritz-Galerkin MethodLet Vn be a finite dimensional space such that: Vn ⊂ H1

0 (Ω):Seek eigenpairs (λn, un) ∈ R × Vn such that

a(un, vn) = λnb(un, vn) for all vn ∈ Vn .

• Tn conforming and shape regular triangulation of Ω,• Vn space of piecewise linear functions over Tn,• Sn is the set of the edges of the triangles of Tn.

Page 7: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Standard Convergence Results

For Hmaxn small enough:

|λ − λn| ≤ C2spec(H

maxn )2,

and‖|u − un‖|Ω ≤ CspecHmax

n ,

Strang & Fix (1973), Babuška & Osborn (1991)

Page 8: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Adaptivity

ηn(λn, un) :=∑

S∈Sn

ηS,n(λn, un) ,

ηn and ηS,n are explicit andcomputable.

Properties for Hmaxn small enough:

1. ‖|u − un‖|Ω ≤ Crelηn (Reliability)

2. |λ − λn| ≤ C2relηn

2 (Reliability)

3. ηn ≤ Ceff‖|u − un‖|Ω (Efficiency)

Constants Crel and Ceff are independent of Hmaxn .

Page 9: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Adaptivity

ηn(λn, un) :=∑

S∈Sn

ηS,n(λn, un) ,

ηn and ηS,n are explicit andcomputable.

Properties for Hmaxn small enough:

C−1eff ηn ≤ ‖|u − un‖|Ω ≤ Crel ηn .

Constants Crel and Ceff are independent of Hmaxn .

Page 10: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Marking Strategy 1

Set the parameter 0 < θ < 1:mark the edges (faces) in a minimal subset Sn of Sn such that

(

S∈Sn

η2S,n

)1/2

≥ θηn.

Then construct the set Tn marking all the elements sharing atleast an edge (face) in Sn.

Page 11: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Bisection5

@@

@@

@@

@@

@@

@@

@@

@@

1. Split all edges

2. Split one of the new edges

PROS:

1. A new node on each edge

2. A new node in the interior of the element

Page 12: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Adaptivity Algorithm

1. Require 0 < θ < 1, tol > 0 and T0

2. Loop

3. Compute (λn, un) on Tn

4. Marking strategy

5. Refine the mesh

6. Continue until ηn > tol.

Page 13: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Convergence for Adaptive FEMs

Convergence for Adaptive Finite Element Methods for LinearBoundary Value Problems:Dörfler (1996), Morin, Nochetto & Siebert (2000,2002), Karakashian & Pascal (2003), Mekchay & Nochetto (2005),Mommer & Stevenson (2006), Morin, Siebert & Veeser (2007), Cascon, Kreuzer Nochetto & Siebert (2008), ...

Convergence for Adaptive Finite Element Methods forEigenvalue Problems:G.& Graham (2009), Dai, Xu & Zhou (2008), Carstensen & Gedicke (2009?),Garau, Morin & Zuppa (2009)

Page 14: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Oscillations

Oscillations:

osc(vn,Tn) :=

(

τ∈Tn

‖hτ (vn − Pnvn)‖2τ

)1/2

,

where (Pnvn)|τ := 1|τ |

τ vn.

P. Morin, R. H. Nochetto, and K. G. Siebert (2000)Data oscillation and convergence of adaptive FEM.SIAM J. Numer. Anal. 38, 466-488.

Page 15: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Marking Strategy 2

Set the parameter 0 < θ < 1:mark the sides in a minimal subset Tn of Tn such that

osc(un, Tn) ≥ θ osc(un,Tn).

Then we take the union of Tn ∪ Tn and we refine all theelements in the union.

Page 16: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Adaptivity Algorithm

1. Require 0 < θ < 1, 0 < θ < 1 and T0

2. Loop

3. Compute (λn, un) on Tn

4. Marking strategy 1

5. Marking strategy 2

6. Refine the mesh

7. End Loop

Page 17: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Convergence

Theorem (Convergence Result)Provided that λ is a simple eigenvalue and that on the initialmesh Hmax

0 is small enough, there exists a constant p ∈ (0, 1)and constants C0, C1 such that the recursive application of thealgorithm yields a convergent sequence of approximateeigenvalues and eigenvectors, with the property:

‖|u − un ‖|Ω ≤ C0pn ,

|λ − λn| ≤ C20p2n ,

andosc(λnun,Tn) ≤ C1pn.

Page 18: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Error Reduction

Theorem (Error Reduction)For each θ ∈ (0, 1), exists a sufficiently fine mesh thresholdHmax

n and constants µ > 0 and α ∈ (0, 1) such that:For any ǫ > 0 then inequality

osc(un,Tn) ≤ µǫ ,

implies either‖|u − un ‖|Ω ≤ ǫ ,

or‖|u − un+1 ‖|Ω ≤ α ‖|u − un ‖|Ω .

Page 19: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Oscillations Reduction

Theorem (Oscillations Reduction)There exists a constant α ∈ (0, 1) such that:

osc(un+1,Tn+1) ≤ αosc(un,Tn) + C(Hmaxn )2 ‖|u − un ‖|Ω .

Page 20: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Defect modes (I)

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure: The structure of the supercell and the trapped mode.

Page 21: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Defect modes (II)

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure: An adapted mesh for the periodic structure with θ = θ = 0.8.

Refinement in the interior and at the corners of the inclusions.

Page 22: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Defect modes (III)

Uniform Adaptive|λ − λn| N β |λ − λn| N β

0.5858 10000 - 0.5858 10000 -0.1966 40000 0.7876 0.1225 20506 2.17910.0653 160000 0.7951 0.0579 44548 0.96590.0188 640000 0.8982 0.0078 220308 1.2541

Table: Comparison between uniform and adaptive refinement (withθ = θ = 0.8) for a trapped mode in the supercell for TE mode problem.

|λ − λn| = O(N−β), N = #DOF .

Page 23: A convergent adaptive method for elliptic eigenvalue problems · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Summary

• We prove the convergence of an adaptive finite elementmethod for elliptic eigenvalue problems,

• The proof exploits reduction results for error andoscillations,

• Consequences:• The computed approximated eigenpairs are approximation

of true eigenpairs,• For any tolerance tol > 0 the adaptive algorithm will end

after a finite number of iterations.