a deterministic bank-stability and toe-erosion model (bstem version 5.4) andrew simon, robert...

33
A Deterministic Bank- Stability and Toe- Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National Sedimentation Laboratory, Oxford, MS [email protected] National Sedimentation Laboratory

Upload: angela-lamb

Post on 14-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

A Deterministic Bank-Stability and Toe-Erosion Model(BSTEM Version 5.4)

Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead

USDA-ARS National Sedimentation Laboratory, Oxford, MS

[email protected]

National Sedimentation Laboratory

Page 2: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

What a Model Needs to Incorporate

If we want to model and control bank erosion we need to quantify and simulate the underlying

processes. These are:

• Bank shear strength (resistance to bank failure: geotechnical processes)

• Bank-toe erodibility (resistance to toe erosion and steepening: hydraulic processes)

• The effects of stabilization measures on these processes (roughness, root reinforcement, transpiration)

National Sedimentation Laboratory

Page 3: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Bank Stability – The Factor of Safety

Resisting Forces Driving Forces

If Fs is greater than 1, bank is stable. If Fs is less than 1, bank will fail. (We usually add a safety margin: Fs >1.3 is stable.)

Resisting Forces Driving Forcessoil strength bank anglevegetation weight of bank reinforcement water in bank

Factor of Safety (Fs) =

Page 4: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Factor of Safety Equation for Planar Failures

Fs = c’iLi + (Si tani

b) + [Wi cos – Ui + Pi cos (-)] tani’

Wi sin – Pi sin (-)

c’ = effective cohesion;L = length of failure plane;S = force produced by matric suction on the unsaturated part of the failure surface;b = rate of increasing shear strength with increasing matric suction;W = weight of failure block;= failure-plane angle;U = hydrostatic-uplift force due to positive pore-water pressures on the saturated part of

the failure plane; P = hydrostatic-confining force provided by the water in the channel; and’ = angle of internal friction (rate of increasing shear strength with increasing normal

force).

Simon et al., 2000

Page 5: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Bank-Failure Modes

• Planar Failures, with and without tension cracks

• Cantilever Failures following Undercutting

Model Selects Failure Model based on minimum Factor of Safety

Page 6: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Root-Strength Can be Incorporated

ROOT DIAMETER, IN MILLIMETERS

0 2 4 6 8 10 12 14 16 18

TE

NSI

LE

ST

RE

NG

TH

, IN

ME

GA

PA

SCA

LS

0

20

40

60

80

River BirchEastern SycamoreSweetgumBlack WillowGamma grassSwitch grassCottonwoodPineOregon AshDouglas SpireaHimalayan Blackberry

Cohesion due to roots is a function of the tensile strength of the roots and their distribution (root-area ratio)

Page 7: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Bank-Stability ModelVersion 5.4

• 2-D wedge- and cantilever-failures

• Tension cracks

• Search routine for failures

• Hydraulic toe erosion

• Increased shear in meanders

• Accounts for grain roughness

• Complex bank geometries

• Positive and negative pore-water pressures

• Confining pressure from flow

• Layers of different strength

• Vegetation effects: RipRoot

• Inputs: s, c’, ’, b , h, uw, k, c

Confining pressure

Tensiometers(pore pressure)

shear surface

12/29/97 01/05/98 01/12/98 01/19/98 01/26/98 02/02/98

FAC

TO

R O

F SA

FETY

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

RIV

ER

STA

GE, I

N M

ETER

S A

BO

VE

SEA

LEV

EL

80

81

82

83

84

85

BFactor of safety

Effect of confining pressure

Bank failures

Stage

WA

TE

R L

EV

EL

, M

Page 8: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Input bank geometry and flow conditions Work through all 4 sections then hit the "Run Bank Geometry Macro" button. 1) Select EITHER Option A or Option B for Bank Profile and enter the data in the relevant box- cells in the

alternative option are ignored in the simulation and may be left blank if desired. 2) Enter bank material layer thicknesses (if bank is all one material it helps to divide it into several layers). 3) If bank is submerged then select the appropriate channel flow elevation to include confining pressure and calculate erosion amount; otherwise set to an elevation below the bank toe. To ensure bank profile is correct you can view it by clicking the View Bank Geometry button.

Option A - Draw a detailed bank Option B - Enter a bank height and angle, profile using the boxes below the model will generate a bank profile

Station ElevationPoint (m) (m) 5.0 a) Input bank height (m)

A 0.00 5.00 85.0 b) Input bank angle (o)B 5.00 5.00C 5.03 4.69 1.0 c) Input bank toe length (m)D 5.05 4.39

E 5.08 4.08 25.0 d) Input bank toe angle (o)F 5.11 3.78G 5.13 3.47H 5.16 3.17

I 5.19 2.86 Input shear surface angleJ 5.21 2.56K 5.24 2.25L 5.21 1.94 Bank layer thickness (m)M 5.08 1.62N 4.92 1.30O 4.94 1.00

P 5.28 0.72 Layer 1 1.00 4.00Q 5.30 0.37

R 5.51 0.19 Layer 2 1.00 3.00S 5.69 0.10

T 5.87 0.01 Layer 3 1.00 2.00U 5.92 0.00

V 6.15 0.00 Layer 4 1.00 1.00W 7.16 0.00

Layer 5 1.00 0.00 Shear emergence elev

Shear surface angle

Channel and flow parameters

100 Input reach length (m)

0.0035 Input reach slope (m/m)

2.00 Input elevation of flow (m)

12 Input duration of flow (hrs)

Top of toe?

Elevation of layer base (m)

Par

alle

l lay

ers,

sta

rtin

g fr

om p

oint

B

Top Layer

BottomLayer

A - bank top: place beyond start of shear surface B - bank edge C-P - breaks of slope on bank (if no breaks of slope place as intermediary points) Q - top of bank toe R-U - breaks of slope on bank toe (if no breaks of slope then insert as intermediary points) V - base of bank toe W - end point (typically mid point of channel)

Notes: Bank profile may overhang.If the bank profile is fully populated, the shear surface emergence point should be anywhere between points B and Q.The shear surface emergence point must not be on a horizontal section - the elevation of this point must be unique or an error message will display.

W

A

C-P

V

Q

Station (m)

Ele

vatio

n (m

)

B

R-U

shear surface emergence

shear surface angle

Definition of points used in bank profile

b

a

Toe material

d

c

Bed material

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Bank material

Run BankGeometry Macro

Option A Option B

View BankGeometry

Input Geometry Sheet

National Sedimentation Laboratory

Page 9: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

View Geometry and Select Top of Bank Toe Input bank geometry and flow conditions Work through all 4 sections then hit the "Run Bank Geometry Macro" button. 1) Select EITHER Option A or Option B for Bank Profile and enter the data in the relevant box- cells in the

alternative option are ignored in the simulation and may be left blank if desired. 2) Enter bank material layer thicknesses (if bank is all one material it helps to divide it into several layers). 3) If bank is submerged then select the appropriate channel flow elevation to include confining pressure and calculate erosion amount; otherwise set to an elevation below the bank toe. To ensure bank profile is correct you can view it by clicking the View Bank Geometry button.

Option A - Draw a detailed bank Option B - Enter a bank height and angle, profile using the boxes below the model will generate a bank profile

Station ElevationPoint (m) (m) 5.0 a) Input bank height (m)

A 0.00 5.00 70.0 b) Input bank angle (o)B 8.14 5.00C 8.26 4.68 1.0 c) Input bank toe length (m)D 8.37 4.37E 8.49 4.05 15.0 d) Input bank toe angle (o)F 8.60 3.74G 8.72 3.42H 8.83 3.10I 8.95 2.79 50.0 Input shear surface angleJ 9.06 2.47K 9.18 2.16L 9.29 1.84 Bank layer thickness (m)M 9.41 1.52N 9.52 1.21O 9.64 0.89P 9.75 0.57 Layer 1 1.00 4.00Q 9.87 0.26R 10.06 0.21 Layer 2 1.00 3.00S 10.25 0.16T 10.45 0.10 Layer 3 1.00 2.00U 10.64 0.05V 10.83 0.00 Layer 4 1.00 1.00W 11.83 0.00

Layer 5 1.00 0.00 Shear emergence elev

Shear surface angle

Channel parameters

Input reach length (m)

Input reach slope (m/m)

Input concentration (kg/kg)

Input elevation of flow (m)

Input duration of flow (hrs)

Top of

toe?

Elevation of layer base (m)

Par

alle

l lay

ers,

sta

rtin

g f

rom

poi

nt BTop Layer

BottomLayer

A - bank top: place beyond start of shear surface B - bank edge C-P - breaks of slope on bank (if no breaks of slope place as intermediary points) Q - top of bank toe R-U - breaks of slope on bank toe (if no breaks of slope then insert as intermediary points) V - base of bank toe W - end point (typically mid point of channel)

Notes: Bank profile may overhang.If the bank profile is fully populated, the shear surface emergence point should be anywhere between points B and Q.The shear surface emergence point must not be on a horizontal section - the elevation of this point must be unique or an error message will display.

W

A

C-P

V

Q

Station (m)

Ele

vatio

n (

m)

B

R-U

shear surface emergence

shear surface angle

Definition of points used in bank profile

b

a

Toe material

d

c

Bed material

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Bank material

Option A Option B

View BankGeometry

Run Bank Geometry Macro

79

80

81

82

83

84

85

-2 0 2 4 6 8

STATION (M)E

LEV

AT

ION

(M

)

National Sedimentation Laboratory

Page 10: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Input bank geometry and flow conditions Work through all 4 sections then hit the "Run Bank Geometry Macro" button. 1) Select EITHER Option A or Option B for Bank Profile and enter the data in the relevant box- cells in the

alternative option are ignored in the simulation and may be left blank if desired. 2) Enter bank material layer thicknesses (if bank is all one material it helps to divide it into several layers). 3) If bank is submerged then select the appropriate channel flow elevation to include confining pressure and calculate erosion amount; otherwise set to an elevation below the bank toe. To ensure bank profile is correct you can view it by clicking the View Bank Geometry button.

Option A - Draw a detailed bank Option B - Enter a bank height and angle, profile using the boxes below the model will generate a bank profile

Station ElevationPoint (m) (m) 5.0 a) Input bank height (m)

A 0.00 5.00 85.0 b) Input bank angle (o)B 5.00 5.00C 5.03 4.69 1.0 c) Input bank toe length (m)D 5.05 4.39

E 5.08 4.08 25.0 d) Input bank toe angle (o)F 5.11 3.78G 5.13 3.47H 5.16 3.17

I 5.19 2.86 Input shear surface angleJ 5.21 2.56K 5.24 2.25L 5.21 1.94 Bank layer thickness (m)M 5.08 1.62N 4.92 1.30O 4.94 1.00

P 5.28 0.72 Layer 1 1.00 4.00Q 5.30 0.37

R 5.51 0.19 Layer 2 1.00 3.00S 5.69 0.10

T 5.87 0.01 Layer 3 1.00 2.00U 5.92 0.00

V 6.15 0.00 Layer 4 1.00 1.00W 7.16 0.00

Layer 5 1.00 0.00 Shear emergence elev

Shear surface angle

Channel and flow parameters

100 Input reach length (m)

0.0035 Input reach slope (m/m)

2.00 Input elevation of flow (m)

12 Input duration of flow (hrs)

Top of toe?

Elevation of layer base (m)

Par

alle

l lay

ers,

sta

rtin

g fr

om p

oint

B

Top Layer

BottomLayer

A - bank top: place beyond start of shear surface B - bank edge C-P - breaks of slope on bank (if no breaks of slope place as intermediary points) Q - top of bank toe R-U - breaks of slope on bank toe (if no breaks of slope then insert as intermediary points) V - base of bank toe W - end point (typically mid point of channel)

Notes: Bank profile may overhang.If the bank profile is fully populated, the shear surface emergence point should be anywhere between points B and Q.The shear surface emergence point must not be on a horizontal section - the elevation of this point must be unique or an error message will display.

W

A

C-P

V

Q

Station (m)

Ele

vatio

n (m

)

B

R-U

shear surface emergence

shear surface angle

Definition of points used in bank profile

b

a

Toe material

d

c

Bed material

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Bank material

Run BankGeometry Macro

Option A Option B

View BankGeometry

Enter Bank-Layer Thickness

National Sedimentation Laboratory

Page 11: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Input bank geometry and flow conditions Work through all 4 sections then hit the "Run Bank Geometry Macro" button. 1) Select EITHER Option A or Option B for Bank Profile and enter the data in the relevant box- cells in the

alternative option are ignored in the simulation and may be left blank if desired. 2) Enter bank material layer thicknesses (if bank is all one material it helps to divide it into several layers). 3) If bank is submerged then select the appropriate channel flow elevation to include confining pressure and calculate erosion amount; otherwise set to an elevation below the bank toe. To ensure bank profile is correct you can view it by clicking the View Bank Geometry button.

Option A - Draw a detailed bank Option B - Enter a bank height and angle, profile using the boxes below the model will generate a bank profile

Station ElevationPoint (m) (m) 5.0 a) Input bank height (m)

A 0.00 5.00 85.0 b) Input bank angle (o)B 5.00 5.00C 5.03 4.69 1.0 c) Input bank toe length (m)D 5.05 4.39

E 5.08 4.08 25.0 d) Input bank toe angle (o)F 5.11 3.78G 5.13 3.47H 5.16 3.17

I 5.19 2.86 Input shear surface angleJ 5.21 2.56K 5.24 2.25L 5.21 1.94 Bank layer thickness (m)M 5.08 1.62N 4.92 1.30O 4.94 1.00

P 5.28 0.72 Layer 1 1.00 4.00Q 5.30 0.37

R 5.51 0.19 Layer 2 1.00 3.00S 5.69 0.10

T 5.87 0.01 Layer 3 1.00 2.00U 5.92 0.00

V 6.15 0.00 Layer 4 1.00 1.00W 7.16 0.00

Layer 5 1.00 0.00 Shear emergence elev

Shear surface angle

Channel and flow parameters

100 Input reach length (m)

0.0035 Input reach slope (m/m)

2.00 Input elevation of flow (m)

12 Input duration of flow (hrs)

Top of toe?

Elevation of layer base (m)

Par

alle

l lay

ers,

sta

rtin

g fr

om p

oint

B

Top Layer

BottomLayer

A - bank top: place beyond start of shear surface B - bank edge C-P - breaks of slope on bank (if no breaks of slope place as intermediary points) Q - top of bank toe R-U - breaks of slope on bank toe (if no breaks of slope then insert as intermediary points) V - base of bank toe W - end point (typically mid point of channel)

Notes: Bank profile may overhang.If the bank profile is fully populated, the shear surface emergence point should be anywhere between points B and Q.The shear surface emergence point must not be on a horizontal section - the elevation of this point must be unique or an error message will display.

W

A

C-P

V

Q

Station (m)

Ele

vatio

n (m

)

B

R-U

shear surface emergence

shear surface angle

Definition of points used in bank profile

b

a

Toe material

d

c

Bed material

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Bank material

Run BankGeometry Macro

Option A Option B

View BankGeometry

National Sedimentation Laboratory

Channel and Flow Parameters(for Toe- and Total Erosion Calculations)

Page 12: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Input bank geometry and flow conditions Work through all 4 sections then hit the "Run Bank Geometry Macro" button. 1) Select EITHER Option A or Option B for Bank Profile and enter the data in the relevant box- cells in the

alternative option are ignored in the simulation and may be left blank if desired. 2) Enter bank material layer thicknesses (if bank is all one material it helps to divide it into several layers). 3) If bank is submerged then select the appropriate channel flow elevation to include confining pressure and calculate erosion amount; otherwise set to an elevation below the bank toe. To ensure bank profile is correct you can view it by clicking the View Bank Geometry button.

Option A - Draw a detailed bank Option B - Enter a bank height and angle, profile using the boxes below the model will generate a bank profile

Station ElevationPoint (m) (m) 5.0 a) Input bank height (m)

A 0.00 5.00 85.0 b) Input bank angle (o)B 5.00 5.00C 5.03 4.69 1.0 c) Input bank toe length (m)D 5.05 4.39

E 5.08 4.08 25.0 d) Input bank toe angle (o)F 5.11 3.78G 5.13 3.47H 5.16 3.17

I 5.19 2.86 Input shear surface angleJ 5.21 2.56K 5.24 2.25L 5.21 1.94 Bank layer thickness (m)M 5.08 1.62N 4.92 1.30O 4.94 1.00

P 5.28 0.72 Layer 1 1.00 4.00Q 5.30 0.37

R 5.51 0.19 Layer 2 1.00 3.00S 5.69 0.10

T 5.87 0.01 Layer 3 1.00 2.00U 5.92 0.00

V 6.15 0.00 Layer 4 1.00 1.00W 7.16 0.00

Layer 5 1.00 0.00 Shear emergence elev

Shear surface angle

Channel and flow parameters

100 Input reach length (m)

0.0035 Input reach slope (m/m)

2.00 Input elevation of flow (m)

12 Input duration of flow (hrs)

Top of toe?

Elevation of layer base (m)

Par

alle

l lay

ers,

sta

rtin

g fr

om p

oint

B

Top Layer

BottomLayer

A - bank top: place beyond start of shear surface B - bank edge C-P - breaks of slope on bank (if no breaks of slope place as intermediary points) Q - top of bank toe R-U - breaks of slope on bank toe (if no breaks of slope then insert as intermediary points) V - base of bank toe W - end point (typically mid point of channel)

Notes: Bank profile may overhang.If the bank profile is fully populated, the shear surface emergence point should be anywhere between points B and Q.The shear surface emergence point must not be on a horizontal section - the elevation of this point must be unique or an error message will display.

W

A

C-P

V

Q

Station (m)

Ele

vatio

n (m

)

B

R-U

shear surface emergence

shear surface angle

Definition of points used in bank profile

b

a

Toe material

d

c

Bed material

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Bank material

Run BankGeometry Macro

Option A Option B

View BankGeometry

National Sedimentation Laboratory

Run Bank Geometry Macro

Page 13: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

On Bank-Model Output Page(if you want to check layering)

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

STATION (M)

ELEV

ATIO

N (M

)

bank profile

base of layer 1

base of layer 2

base of layer 3

base of layer 4

base of layer 5

failure plane

water surface

water table

Bank model outputVerify the bank material and bank and bank-toe protection information entered in the "Bank Material" and "Bank Vegetation and Protection"worksheets. Once you are satisfied that you have completed all necessary inputs, hit the "Run Bank Stability Model" button (Center of thispage).

Water table depth (m) below bank top3.00

Own Pore Pressures kPa

Pore Pressure From Water Table

Layer 1 -24.52

Layer 2 -14.71

Layer 3 -4.90

Layer 4 4.90

Layer 5 14.71

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

STATION (M)

ELEV

ATIO

N (M

)

Use water table

Input own pore pressures (kPa)

Page 14: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Select material types (or select "own data" and add values below) Bank Material Bank Toe Material

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Bank and bank-toe material data tables.These are the default parameters used in the model. Changing the values or descriptions will change thevalues used when selecting soil types from the list boxes above. Add your own data using the white boxes.

Bank material type

DescriptionMean grain

size, D 50 (m) Friction angle ' (degrees)

Saturated unit weight

(kN/m 3 )

b (degrees)Chemical

concentration (kg/kg)

Hydraulic Conductivity

k sat (m/s)

Bulk Modulus (Pa)

Porosity Residual

water content

van Genuchten

(1/m )

van Genuchten n

c (Pa)

k

(cm3/Ns)

1 Boulders 0.512 42.0 0.0 20.0 15.0 - 1.745E-03 6.556E+08 0.280 0.090 3.5237 2.3286 498 0.0042 Cobbles 0.128 42.0 0.0 20.0 15.0 - 1.745E-03 6.556E+08 0.280 0.090 3.5237 2.3286 124 0.0093 Gravel 0.0113 36.0 0.0 20.0 15.0 - 3.160E-03 1.354E+08 0.320 0.070 3.5237 2.3286 11.0 0.030

4a and 4b Angular sand 0.00035 36.0 0.0 18.0 15.0 - 7.439E-05 1.354E+07 0.375 0.053 3.5237 3.17695a and 5b Rounded sand 0.00035 27.0 0.0 18.0 15.0 - 1.130E-06 6.056E+07 0.380 0.033 4.0563 2.3286

6a, 6b and 6c Silt - 30.0 3.0 18.0 15.0 - 5.064E-06 1.049E+07 0.489 0.050 0.6577 1.67887a, 7b and 7c Soft clay - 25.0 10.0 18.0 15.0 - 9.473E-07 1.354E+06 0.442 0.079 1.5812 1.41588a, 8b and 8c Stiff clay - 20.0 15.0 18.0 15.0 - 1.708E-06 5.417E+06 0.459 0.098 1.4962 1.2531

Need to know the critical shear stress (c) ? Need to know the erodibility coefficient (k ) ?

Input critical shear stress c (Pa)

Erodibility Coefficient (cm3/Ns)

Cohesion c' (kPa)

Groundwater Model Input Data

Resistant (50.0 Pa)

Coarse (0.71 mm) or Fine (0.18 mm)

Erodible (0.100 Pa), Moderate (5.00 Pa), or

Toe Model Input DataBank Model Input Data

Input non-cohesive particle diameter (mm)

Critical Shear Stress c (Pa)

9

Own data layer 5

Own data layer 3

Own data Bank Toe

Material Descriptors

Own data layer 1

Own data layer 4

Own data layer 2

COMINGSOON!

Moderate soft clay Moderate soft clay Moderate silt Erodible silt Moderate silt Own data

Select and Input Bank MaterialsSelect material types (or select "own data" and add values below)

Bank Material Bank Toe Material

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5Own data Own data Own data Own data Own data Own data

Geotechnical resistance

Hydraulic resistance

Page 15: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Bank Material Sheet: Geotechnical Data

Select material types (or select "own data" and add values below) Bank Material Bank Toe Material

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Bank and bank-toe material data tables.These are the default parameters used in the model. Changing the values or descriptions will change thevalues used when selecting soil types from the list boxes above. Add your own data using the white boxes.

Bank material type

DescriptionMean grain

size, D 50 (m) Friction angle ' (degrees)

Saturated unit weight

(kN/m 3 )

b (degrees) Porosity c (Pa) k (cm3/Ns)

1 Boulders 0.512 42.0 0.0 20.0 5.0 1.745E-03 6.556E+08 0.280 0.090 3.5237 2.3286 498 0.0042 Cobbles 0.128 42.0 0.0 20.0 5.0 1.745E-03 6.556E+08 0.280 0.090 3.5237 2.3286 124 0.0093 Gravel 0.0113 36.0 0.0 20.0 5.0 3.160E-03 1.354E+08 0.320 0.070 3.5237 2.3286 11.0 0.030

4a and 4b Angular sand 0.00035 36.0 0.0 18.0 15.0 7.439E-05 1.354E+07 0.375 0.053 3.5237 3.17695a and 5b Rounded sand 0.00035 27.0 0.0 18.0 15.0 1.130E-06 6.056E+07 0.380 0.033 4.0563 2.3286

6a, 6b and 6c Silt - 25.0 5.0 18.0 15.0 5.064E-06 1.049E+07 0.489 0.050 0.6577 1.67887a, 7b and 7c Soft clay - 30.0 10.0 16.0 15.0 9.473E-07 1.354E+06 0.442 0.079 1.5812 1.41588a, 8b and 8c Stiff clay - 10.0 15.0 18.0 15.0 1.708E-06 5.417E+06 0.459 0.098 1.4962 1.2531

Own data Bank Toe

Material Descriptors

Own data layer 1

Own data layer 4

Own data layer 2

9

Own data layer 5

Own data layer 3

Bank Model Input Data

Cohesion c' (kPa)

Moderate silt Moderate silt Moderate silt Moderate silt Moderate silt

Page 16: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Bank Material Sheet: Hydraulic Data

c (Pa) k (cm3/Ns)

498 0.004124 0.00911.0 0.030

Resistant (50.0 Pa)

Coarse (0.71 mm) or Fine (0.18 mm)

Erodible (0.100 Pa), Moderate (5.00 Pa), or

Toe Model Input Data

Need to know the critical shear stress (c) ? Need to know the erodibility coefficient (k ) ?

20.000 Input critical shear stress c (Pa) 5.000

19.44 Erodibility Coefficient (cm3/Ns) 0.045

Input non-cohesive particle diameter (mm)

Critical Shear Stress c (Pa)

Own data layer 5

Own data layer 3

Own data Bank Toe

Own data layer 1

Own data layer 4

Own data layer 2

Page 17: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Toe Model OutputVerify the bank material and bank and bank-toe protection information entered in the "Bank Material" and "Bank Vegetation and Protection"worksheets. Once you are satisfied that you have completed all necessary inputs, hit the "Run Toe-Erosion Model" button (Center Rightof this page).

Bank Material Bank Toe Material

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5Erodible cohesive Erodible cohesive Erodible cohesive Erodible cohesive Erodible cohesive Erodible cohesive Material

0.10 0.10 0.10 0.10 0.10 0.10 Critical shear stress(Pa)

0.316 0.316 0.316 0.316 0.316 0.316 Erodibility Coefficient

(cm3/Ns)

Account for:

Stream Curvature

Effective stressacting on each grain

Average applied boundary shear stress Pa

Maximum Lateral Retreat 0.000 cm

Eroded Area - Bank 0.000 m2

Eroded Area - Bank Toe 0.000 m2

Eroded Area - Bed 0.000 m2

Eroded Area - Total 0.000 m2

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

-1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00STATION (M)

ELE

VA

TIO

N (

M)

Base of layer 1

Base of layer 2

Base of layer 3

Base of layer 4

Base of layer 5

Eroded Profile

Initial Profile

Water Surface

Run Toe-Erosion Model

Export New (Eroded) Profile into Model

Toe ErosionSelect material types (or select "own data" and add values below)

Bank Material Bank Toe Material

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5Erodible silt Erodible silt Erodible silt Erodible silt Erodible silt Erodible silt

For the case: slope = 0.003, flow depth = 2 m; duration = 6 hrs.

Page 18: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Account for:

Stream Curvature

Effective stressacting on each grain

Average applied boundary shear stress 33.650 Pa

Maximum Lateral Retreat 42.481 cm

Eroded Area - Bank 0.228 m2

Eroded Area - Bank Toe 0.519 m2

Eroded Area - Bed 0.000 m2

Eroded Area - Total 0.747 m2

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

-1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00STATION (M)

ELE

VA

TIO

N (

M)

Base of layer 1

Base of layer 2

Base of layer 3

Base of layer 4

Base of layer 5

Eroded Profile

Initial Profile

Water Surface

Run Toe-Erosion Model

Export New (Eroded) Profile into Model

Toe Erosion

Select material types (or select "own data" and add values below) Bank Material Bank Toe Material

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5Erodible silt Erodible silt Erodible silt Erodible silt Erodible silt Erodible silt

 

For the case: slope = 0.003, flow depth = 2 m; duration = 6 hrs.

Click this button to export eroded profile to Option A in Input Geometry worksheet

Page 19: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Profile Exported into Option A

Model redirects you back to the “Input Geometry” sheet. You can run another flow event or run the Bank-Stability model.

To run Bank-Stability Model you can select a shear-surface emergence elevation and shear-surface angle or leave blank and search routine will solve.

Option A - Draw a detailed bank profile using the boxes below

Station ElevationPoint (m) (m)

A 0.00 5.00B 10.08 5.00C 10.16 4.72D 10.23 4.45E 10.30 4.17F 10.38 3.89G 10.45 3.62H 10.53 3.34I 10.60 3.06J 10.68 2.78K 10.75 2.51L 10.82 2.23M 10.89 1.95N 10.92 1.66O 10.91 1.36P 10.90 1.06Q 10.97 0.62R 11.45 0.44S 11.80 0.25T 12.15 0.06U 12.26 0.00V 12.72 0.00W 13.76 0.00

Shear emergence elev

Shear surface angle

Top of

toe?

Option A

Page 20: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Select material types, vegetation cover and water table depth below bank top(or select "own data" and add values in 'Bank Model Data' worksheet)

Bank top Reach LengthLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 vegetation cover (age) (m)

100Constituent

Vegetation safety margin concentration (kg/kg)

50 0.001

Water table depth (m) below bank top4.00

Own Pore Pressures kPa

Pore Pressure From Water Table

Layer 1 -34.34

Layer 2 -24.53

Layer 3 -14.72

Layer 4 -4.91

Layer 5 4.91

Factor of Safety

1.09Conditionally

stable

57.5 Shear surface angle used Failure width 2.35 m

Failure volume 487 m3

Sediment loading 814176 kgConstituent load 814 kg

Gravel Angular sand Rounded sand Silt Stiff clay

Gravel Angular sand Rounded sand Silt Stiff clay

Gravel Angular sand Rounded sand Silt Stiff clay

Gravel Angular sand Rounded sand Silt Stiff clay

Gravel Angular sand Rounded sand Silt Stiff clay

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

STATION (M)

ELE

VA

TIO

N (

M)

bank profile

base of layer 1

base of layer 2

base of layer 3

base of layer 4

failure plane

water surface

water table

Use water table

Input own pore pressures (kPa)

None

Export Coordinates back into model

Results: Factor of SafetyFactor of Safety

1.09Conditionally

stable

Failure width 2.35 m

Failure volume 487 m3

Sediment loading 814176 kgConstituent load 814 kg

Partly controlled by failure plane angle

Based on reach length

Based on constituent concentration

Page 21: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Bank Model OutputBank model outputVerify the bank material and bank and bank-toe protection information entered in the "Bank Material" and "Bank Vegetation and Protection"worksheets. Once you are satisfied that you have completed all necessary inputs, hit the "Run Bank-Stability Model" button.

Bank Material PropertiesLayer 1 Layer 2 Layer 3 Layer 4 Layer 5

Soft Clay Soft Clay Silt Silt Silt

Water table depth (m) below bank top3.00

Own Pore Pressures kPa

Pore Pressure From Water Table

Layer 1 -24.52

Layer 2 -14.71

Layer 3 -4.90

Layer 4 4.90

Layer 5 14.71

Factor of Safety

0.87 Unstable-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

-10.00 -5.00 0.00 5.00 10.00 15.00

STATION (M)

ELE

VA

TIO

N (

M)

bank profile

base of layer 1

base of layer 2

base of layer 3

base of layer 4

base of layer 5

failure plane

water surface

water table

Use water table

Input own pore pressures (kPa)

Run Bank-Stability Model

Water-table depth at 3.0 m

Click “Run Bank-Stability Model”

Bank is Unstable

Fs < 1.0

0.81

Page 22: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Bank Model Output: Specific Results

1.3 Shear emergence elevation Failure width 1.77 mFailure volume 422 m3

68.1 Shear surface angle used Sediment loading 674210 kgConstituent load 0 kg

Export New (Failed) Profile into Model

Failure plane from search routine

Failure dimensions (loading)

Page 23: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

How can you make this bank more stable or more unstable?

Experimenting with the following parameters provides an understanding of controlling variables and

requirements for stability

• Water surface elevation (Input Geometry sheet)• Shear angle (Input Geometry sheet)• Water-table height (Bank Model Output sheet)• Bank material types (Bank Material sheet)• Vegetation component (Vegetation and Protection sheet)

National Sedimentation Laboratory

Page 24: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Example With Undercut Toe

Under these conditions the bank is stable

Page 25: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

• Bank stability is reduced, but bank is still stable.

National Sedimentation Laboratory

Page 26: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Bank is now unstable (Fs = 0.93) with loss of confining pressure

National Sedimentation Laboratory

Page 27: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Factor of Safety without tension crack

• In this case bank Fs without a tension crack is 1.21

Page 28: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Factor of Safety with a tension crack

• Bank Fs was 1.21 without a tension crack but is 0.99 with a tension crack

Page 29: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Root Reinforcement using RipRoot

Page 30: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Root Reinforcement using RipRoot

Simple Case: 1 species

1. Select “Meadow, Wet”

2. Enter age and percent contribution to stand

3. Click when finished

Page 31: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

RipRoot: Results

Page 32: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Toe Model OutputVerify the bank material and bank and bank-toe protection information entered in the "Bank Material" and "Bank Vegetation and Protection"worksheets. Once you are satisfied that you have completed all necessary inputs, hit the "Run Toe-Erosion Model" button (Center Rightof this page).

Bank Material Bank Toe Material

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5Moderate cohesive Moderate cohesive Moderate cohesive Moderate cohesive Moderate cohesive Moderate cohesive Material

5.00 5.00 5.00 5.00 5.00 5.00 Critical shear stress(Pa)

0.045 0.045 0.045 0.045 0.045 0.045 Erodibility Coefficient

(cm3/Ns)

Account for:

Stream Curvature

Effective stressacting on each grain

Average applied boundary shear stress 51.060 Pa

Maximum Lateral Retreat 24.966 cm

Eroded Area - Bank 0.232 m2

Eroded Area - Bank Toe 0.423 m2

Eroded Area - Bed 0.000 m2

Eroded Area - Total 0.655 m2

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

-1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00STATION (M)

ELE

VA

TIO

N (

M)

Base of layer 1

Base of layer 2

Base of layer 3

Base of layer 4

Base of layer 5

Eroded Profile

Initial Profile

Water Surface

Run Toe-Erosion Model

Export New (Eroded) Profile into Model

Evaluating the Role of Toe Protection

Slope = 0.0035 m/m

Depth = 2.5 m

Toe material: silt

Eroded: 0.66 m2

Slope = 0.0035 m/m

Depth = 2.5 m

Toe material: rip rap

Eroded: 0.28 m2

Toe Model OutputVerify the bank material and bank and bank-toe protection information entered in the "Bank Material" and "Bank Vegetation and Protection"worksheets. Once you are satisfied that you have completed all necessary inputs, hit the "Run Toe-Erosion Model" button (Center Rightof this page).

Bank Material Bank Toe Material

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5Moderate cohesive Moderate cohesive Moderate cohesive Moderate cohesive Moderate cohesive Rip Rap (D50 0.256 m) Material

5.00 5.00 5.00 5.00 5.00 204.00 Critical shear stress(Pa)

0.045 0.045 0.045 0.045 0.045 0.007 Erodibility Coefficient

(cm3/Ns)

Account for:

Stream Curvature

Effective stressacting on each grain

Average applied boundary shear stress 51.060 Pa

Maximum Lateral Retreat 24.159 cm

Eroded Area - Bank 0.232 m2

Eroded Area - Bank Toe 0.044 m2

Eroded Area - Bed 0.000 m2

Eroded Area - Total 0.276 m2

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

-1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00STATION (M)

ELE

VA

TIO

N (

M)

Base of layer 1

Base of layer 2

Base of layer 3

Base of layer 4

Base of layer 5

Eroded Profile

Initial Profile

Water Surface

Run Toe-Erosion Model

Export New (Eroded) Profile into Model

Page 33: A Deterministic Bank-Stability and Toe-Erosion Model (BSTEM Version 5.4) Andrew Simon, Robert Thomas, Andrea Curini and Natasha Bankhead USDA-ARS National

Summary• The Bank-Stability and Toe-Erosion Model is a simple spreadsheet tool that can be populated with field or default values

• It can be used to test the effects of hydraulic scour, water-table height, vegetation, and stage on stability

• Used iteratively with a knowledge of the flow regime, it can be used to predict widening rates.

• It can be used to test various mitigation strategies (rock, vegetation, etc.) to control undercutting and mass failure.

• It also contains sound effects for bank collapse!