a generalized numerical framework of imprecise probability...

44
A generalized numerical framework of imprecise probability to propagate epistemic uncertainty Marco de Angelis, E. Patelli, M. Beer E: [email protected] W: www.liv.ac.uk/risk-and-uncertainty T: +44 01517945481 M. de Angelis, et al. 26 th May 2014 1 / 30

Upload: ngodan

Post on 18-Jan-2019

240 views

Category:

Documents


0 download

TRANSCRIPT

A generalized numerical framework of impreciseprobability to propagate epistemic uncertainty

Marco de Angelis,E. Patelli, M. Beer

E: [email protected]: www.liv.ac.uk/risk-and-uncertaintyT: +44 01517945481

M. de Angelis, et al. 26th May 2014 1 / 30

Outline

1 Introduction

2 Uncertainty propagationImprecise failure probabilityLine sampling estimation

3 ExamplesExplicit functionLarge scale finite element model

4 Conclusions

M. de Angelis, et al. 26th May 2014 2 / 30

Introduction

Problem statement

Computer modelReliability assessmentDecision making

M. de Angelis, et al. 26th May 2014 3 / 30

Introduction

Sources of uncertainty

1 Model inputs (such as distributional models, hyper-parameters etc.)

2 Numerical approximation (discretization, truncation and round-off errors)

3 Model form (mathematical & physical model representing the system )

M. de Angelis, et al. 26th May 2014 4 / 30

Introduction

Uncertainty framework

VerificationNumerical approximation

Discretization errorsRound-off errors

Uncertainty propagationpropagation of input uncertainties through the modelprocessing of output uncertainties

Validationcheck the model against experimental data

Decisionidentify the worst case scenariodecide whether worst case is acceptable

M. de Angelis, et al. 26th May 2014 5 / 30

Introduction

Aspects of propagation

Number of individual evaluations of the model needed depends on:Nonlinearity of the modelDependency structure between the input quantitiesType of uncertainty, aleatory, epistemic, or mixedThe numerical method used to perform the mapping

M. de Angelis, et al. 26th May 2014 6 / 30

Introduction

Parametric approachStandard approach

1

2

j

n

p1

p3

pj

pm-1

pm

p2

p4

f1(.) f2(.) f3(.) RQ

Monte Carlo Simulation

RQ

Simulated CDFGlobal Optimization

i

a1i

a2i

aji

a2i

Search feasible domain B

i

θ

θ

θ

θ

pF = 1N

i=1

N

I (RQ<0)i

EPR=1N

i=1

N

RQi

M. de Angelis, et al. 26th May 2014 7 / 30

Introduction

Non-parametric approachCounter approach

p1

p2

p6

p21

U(0,1)

a1i

a1i

U(0,1)

a6i

a6i

U(0,1)

a2i

U(0,1)

a21i

a2i

a21i

Interval Propagation(min/max optimization)

RQ

i

RQ=[RQL,RQU]i i i

SimulatedD-S structure

f1(.) f2(.) f3(.) RQ

Monte Carlo Simulation

Uniform numbers

1N

i=1

N

I(RQL<0), (RQU<0)]i[pF, pF] = [ I

i

1N

i=1

N

RQL, RQU]i[ERQ, ERQ] = [

i

M. de Angelis, et al. 26th May 2014 8 / 30

Introduction

Back propagation problem (Tracking problem)Is it possible in a non-parametric approach?

p1

p2

p6

p21

p

p

p

p

p

p

p

Monte Carlo Simulation

RQ

Simulated CDFs

Global Optimization

a1i

a2i

a6i

a2i

Search feasible domain B minpF

maxpF

pF = 1N

i=1

N

I (RQ<0)i

EPR=1N

i=1

N

RQi

f1(.) f2(.) f3(.) RQ

M. de Angelis, et al. 26th May 2014 9 / 30

Introduction

Propagation of failure probabilitiesProblem statement

Characterize the problem:What is the targeted failure probability?How many state variables?Is the response quantity (RQ) monotonic?Does the RQ display a single mode?

M. de Angelis, et al. 26th May 2014 10 / 30

Introduction

Propagation of failure probabilitiesProblem statement

Characterize the problem:What is the targeted failure probability?How many state variables?Is the response quantity (RQ) monotonic?Does the RQ display a single mode?

Traditional reliability assessment:

ΘF = θ ∈ Θ | g(θ) ≤ 0 (1)

pF =

∫ΘF

hD(θ; p) dΘ (2)

M. de Angelis, et al. 26th May 2014 10 / 30

Uncertainty propagation

Outline

1 Introduction

2 Uncertainty propagationImprecise failure probabilityLine sampling estimation

3 ExamplesExplicit functionLarge scale finite element model

4 Conclusions

M. de Angelis, et al. 26th May 2014 11 / 30

Uncertainty propagation Imprecise failure probability

Generalized numerical framework of uncertainties

A bounded set B is defined by a vector of intervals x i , i = 1, ...,nxand a dependence function Φ(x)

B =×nxi=1[Φ(xi), Φ(xi)] (3)

A credal set C is the set of distribution functions

C = hD (ξ; p) | p ∈ Bp , Bp =×npi [pi , pi ] (4)

M. de Angelis, et al. 26th May 2014 12 / 30

Uncertainty propagation Imprecise failure probability

Generalized numerical framework of uncertaintiesA bounded set B is defined by a vector of intervals x i , i = 1, ...,nxand a dependence function Φ(x)

B =×nxi=1[Φ(xi), Φ(xi)] (3)

A credal set C is the set of distribution functions

C = hD (ξ; p) | p ∈ Bp , Bp =×npi [pi , pi ] (4)

Redefinition of failure domain:

ΘF = ΩF × XF (5)

where,ΩF (x) = ξ ∈ Rnξ | g(ξ,x) ≤ 0 , (6)

XF (ξ) = x ∈ Rnx | g(ξ,x) ≤ 0 . (7)

M. de Angelis, et al. 26th May 2014 12 / 30

Uncertainty propagation Imprecise failure probability

Failure probabilityLower and upper bounds

Lower and upper bounds of failure probability are

pF

(C,Bx ) = infx∈Bx p∈Bp

∫ΩF (x)

hD(ξ; p) dΩ; (8)

pF (C,Bx ) = supx∈Bx p∈Bp

∫ΩF (x)

hD(ξ; p) dΩ. (9)

M. de Angelis, et al. 26th May 2014 13 / 30

Uncertainty propagation Imprecise failure probability

Failure probabilityConjugate relationship

When the uncertainty setM is restricted to C only, i.e. M = C, theprobability function h that yields the lower bound p

Fsatisfies∫

ΩF

hD(ξ) dΩ +

∫ΩS

hD(ξ) dΩ = 1, (10)

where, ΩF ∪ ΩS = Ω. Then, Eq. (9) establishes a conjugate (dual)relationship

p(ΩS) = 1− p(ΩF ), (11)

with p(ΩS) =∫

ΩShD(ξ) dΩ and p(ΩF ) =

∫ΩF

hD(ξ) dΩ.

M. de Angelis, et al. 26th May 2014 14 / 30

Uncertainty propagation Line sampling estimation

Global search for lower and upper boundsNested loops

1

2

i

n

f(.) f(.) PR

Monte Carlo Individual model evaluation

0 PR

simulated CDF

Global Optimization

i

a1i

a2i

a6i

a2i

Search bounded set B

if(.)1 2 3

p1

p2p3

p4

pi

pm-1

pm

pF =1N

I (PR <0)ii=1

N

F

Simulated samples in failure domain

M. de Angelis, et al. 26th May 2014 15 / 30

Uncertainty propagation Line sampling estimation

Proposed strategyEpistemic propagation of failure probabilities

Advanced Line SamplingEfficient simulation methodAdaptive algorithm

Driven optimization processExploit an averaged importantdirectionIdentify the conjugate states

de Angelis, Patelli, Beer. "Advanced line sampling for efficient robust reliabilityanalysis." Structural Safety, submitted, 2014

M. de Angelis, et al. 26th May 2014 16 / 30

Uncertainty propagation Line sampling estimation

Line Sampling

Important direction, αGenerate points onthe hyperplaneSamples along linesApproximate point onthe limit state

Limit State Surface

Sta

Important Direction

PF =

∫IF (x) hN (x) dx =

∫n−1

n−1∏j=1

φ(xj)dxj

∫IFφ(xn)dxn

PF =1

NL

NL∑j=1

p(j)F =

1NL

NL∑j=1

Φ(−¯(j))

M. de Angelis, et al. 26th May 2014 17 / 30

Uncertainty propagation Line sampling estimation

Line Sampling

Important direction, αGenerate points onthe hyperplaneSamples along linesApproximate point onthe limit state

Sta

PF =

∫IF (x) hN (x) dx =

∫n−1

n−1∏j=1

φ(xj)dxj

∫IFφ(xn)dxn

PF =1

NL

NL∑j=1

p(j)F =

1NL

NL∑j=1

Φ(−¯(j))

M. de Angelis, et al. 26th May 2014 17 / 30

Uncertainty propagation Line sampling estimation

Line Sampling

Important direction, αGenerate points onthe hyperplaneSamples along linesApproximate point onthe limit state

Line sample

Line

Xt(j) + l(j) a

Xt(j)

l(j)

Sta

PF =

∫IF (x) hN (x) dx =

∫n−1

n−1∏j=1

φ(xj)dxj

∫IFφ(xn)dxn

PF =1

NL

NL∑j=1

p(j)F =

1NL

NL∑j=1

Φ(−¯(j))

M. de Angelis, et al. 26th May 2014 17 / 30

Uncertainty propagation Line sampling estimation

Line Sampling

Important direction, αGenerate points onthe hyperplaneSamples along linesApproximate point onthe limit state

Intersectionw/ LSF

Xt(j) + l a

Sta

PF =

∫IF (x) hN (x) dx =

∫n−1

n−1∏j=1

φ(xj)dxj

∫IFφ(xn)dxn

PF =1

NL

NL∑j=1

p(j)F =

1NL

NL∑j=1

Φ(−¯(j))

M. de Angelis, et al. 26th May 2014 17 / 30

Uncertainty propagation Line sampling estimation

The search in BpImprecision in the distribution parameters

Aim is identifying the elements of Bpproducing lower and upper boundsThe failure domain ΘF does notchange as the search is performedin Bp

An averaged important direction canbe set for each iterationThe failure domain is invariant to theuncertainty setMThe adaptive algorithm updates theimportant direction to increase theaccuracy of estimations

M. de Angelis, et al. 26th May 2014 18 / 30

Uncertainty propagation Line sampling estimation

The search in BpImprecision in the distribution parameters

Aim is identifying the elements of Bpproducing lower and upper boundsThe failure domain ΘF does notchange as the search is performedin Bp

An averaged important direction canbe set for each iterationThe failure domain is invariant to theuncertainty setMThe adaptive algorithm updates theimportant direction to increase theaccuracy of estimations

1

- 3

- 2

- 1

Physical Space

xi

xj

Standard Normal Spaceuj

ui

M. de Angelis, et al. 26th May 2014 18 / 30

Uncertainty propagation Line sampling estimation

The search in BpImprecision in the distribution parameters

Aim is identifying the elements of Bpproducing lower and upper boundsThe failure domain ΘF does notchange as the search is performedin Bp

An averaged important direction canbe set for each iterationThe failure domain is invariant to theuncertainty setMThe adaptive algorithm updates theimportant direction to increase theaccuracy of estimations

1

- 3

- 2

- 1

Physical Space

xi

xj

Standard Normal Spaceuj

ui

M. de Angelis, et al. 26th May 2014 18 / 30

Uncertainty propagation Line sampling estimation

The search in BpImprecision in the distribution parameters

Aim is identifying the elements of Bpproducing lower and upper boundsThe failure domain ΘF does notchange as the search is performedin Bp

An averaged important direction canbe set for each iterationThe failure domain is invariant to theuncertainty setMThe adaptive algorithm updates theimportant direction to increase theaccuracy of estimations

1 2

- 3

- 2

- 1Standard Normal Spaceuj

ui

xi

xj Physical Space

M. de Angelis, et al. 26th May 2014 18 / 30

Uncertainty propagation Line sampling estimation

The search in BpImprecision in the distribution parameters

Aim is identifying the elements of Bpproducing lower and upper boundsThe failure domain ΘF does notchange as the search is performedin Bp

An averaged important direction canbe set for each iterationThe failure domain is invariant to theuncertainty setMThe adaptive algorithm updates theimportant direction to increase theaccuracy of estimations

1 2

- 3

- 2

- 1

uj

ui

xi

xj Physical Space

Standard Normal Space

M. de Angelis, et al. 26th May 2014 18 / 30

Uncertainty propagation Line sampling estimation

The search in BxImprecision in the structural parameters

Recall the definition of failure domain from Eq. (4):

ΩF (x) = ξ ∈ Rnξ | g(ξ,x) ≤ 0 ,

Intervals make the failure domain no longer invariant to theuncertainty setM,For the sake of searching in Bx , assume the intervals areimprecise Gaussian random variables

x → η ∈ Cx =

hN (η;µx ,σx ) | µx = x , σx ∈ [0,x r ], (12)

The uncertainty set is now the credal setM′ = C ∪ Cx

M. de Angelis, et al. 26th May 2014 19 / 30

Uncertainty propagation Line sampling estimation

The search in BxImprecision in the structural parameters

The search inM′ allows to identify the conjugate states

µ∗ = arg minM′

pF , µ∗ = arg maxM′

pF (13)

To these states it is associated the corresponding argumentminimum and maximum to be held within the intervals

(µx∗, µ∗x )→ (x∗, x∗) (14)

As the argument optima (x∗, x∗) are identified in Bx , just twomore reliability analyses are needed to estimate lower andupper failure probabilities.

M. de Angelis, et al. 26th May 2014 20 / 30

Examples Explicit function

Outline

1 Introduction

2 Uncertainty propagationImprecise failure probabilityLine sampling estimation

3 ExamplesExplicit functionLarge scale finite element model

4 Conclusions

M. de Angelis, et al. 26th May 2014 21 / 30

Examples Explicit function

Linear performance function with noisecase (a): description

g(ξ,x) = −500 + ξ1 + 2ξ2 + 2ξ3 + ξ4 − 5x1 − 5x2 +

+0.0014∑

i=1

sin(100ξi) + 0.0012∑

j=1

sin(100xj);

SV Symbol Uncert. type Mean/Interval Stand. dev.

1 ξ1 LN(µ1, σ1) µ1 = [110, 125] σ1 = [10, 14]

2 ξ2 LN(µ2, σ2) µ2 = [115, 130] σ2 = [10, 14]

3 ξ3 LN(µ3, σ3) µ3 = [115, 130] σ3 = [10, 14]

4 ξ4 LN(µ4, σ4) µ4 = [115, 130] σ4 = [10, 14]

5 x1 Interval x1 x1 = [45, 52] -6 x2 Interval x2 x2 = [35, 43] -

M. de Angelis, et al. 26th May 2014 22 / 30

Examples Explicit function

Linear performance function with noisecase (a): solution

The sign of the averaged important direction

sign(α) = (−1,−1,−1,−1,1,1),

allows us to identify the argument optima

arg minp∈Bξ x∈Bx

pF = (µ1, σ1, µ2, σ2, µ3, σ3, µ4, σ4, x1, x2),

arg maxp∈Bξ x∈Bx

pF = (µ1, σ1, µ2, σ2, µ3, σ3, µ4, σ4, x1, x2).

Here the search domain has 10 dimensions, thus more than 1024 reliabilityanalyses (iterations) would have been required to find an approximation ofthe failure probability bounds with a full approach.

M. de Angelis, et al. 26th May 2014 23 / 30

Examples Explicit function

Linear performance function with noisecase (a): results

state variable #1

sta

te v

ariable

#6

Original state space

60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

state variable #1

sta

te v

ara

ible

#6

Standard normal space

−5 −3 −1 0 1 3 5−5

−3

−1

0

1

3

5

M. de Angelis, et al. 26th May 2014 24 / 30

Examples Explicit function

Linear performance function with noisecase (a): results

Approach A: proposed strategyApproach B: full approach based on Line Sampling and LatinHypercube Sampling (LHS)

Approach A Approach B (LHS)pF Ns pF Ns

[1.4 10−10, 0.43] 252 [3.2 10−6, 8.4 10−2] 2.1× 106

M. de Angelis, et al. 26th May 2014 25 / 30

Examples Large scale finite element model

Six-level buildingimprecision in distribution parameters

244 State Variables, 8200 elements,66300 degrees of freedomColumns’ depth and breadth are theinterval [0.36, 0.44]mPerformance function:g(θ) = |σI(θ)− σIII(θ)| /2− σy ,

Investigate sensitivity of failureprobabilities against imprecisionIdentify the worst case scenario

Robust realibility analysis

M. de Angelis, et al. 26th May 2014 26 / 30

Examples Large scale finite element model

Six-level buildingimprecision in distribution parameters

244 State Variables, 8200 elements,66300 degrees of freedomColumns’ depth and breadth are theinterval [0.36, 0.44]mPerformance function:g(θ) = |σI(θ)− σIII(θ)| /2− σy ,

Investigate sensitivity of failureprobabilities against imprecisionIdentify the worst case scenario

Robust realibility analysis

M. de Angelis, et al. 26th May 2014 26 / 30

Examples Large scale finite element model

Six-level buildingimprecision in distribution parameters

244 State Variables, 8200 elements,66300 degrees of freedomColumns’ depth and breadth are theinterval [0.36, 0.44]mPerformance function:g(θ) = |σI(θ)− σIII(θ)| /2− σy ,

Investigate sensitivity of failureprobabilities against imprecisionIdentify the worst case scenario

Robust realibility analysis

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

−1.5

−1

−0.5

0

0.5

1

x 107

distance fromhyperplane

performance

values

M. de Angelis, et al. 26th May 2014 26 / 30

Examples Large scale finite element model

Six-level buildingimprecision in distribution parameters

244 State Variables, 8200 elements,66300 degrees of freedomColumns’ depth and breadth are theinterval [0.36, 0.44]mPerformance function:g(θ) = |σI(θ)− σIII(θ)| /2− σy ,

Objectives:Investigate sensitivity of failureprobabilities against imprecisionIdentify the worst case scenario

Robust realibility analysis

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

−1.5

−1

−0.5

0

0.5

1

x 107

distance fromhyperplane

performance

values

M. de Angelis, et al. 26th May 2014 26 / 30

Examples Large scale finite element model

Large scale finite element model

Uncertainty setMII = C ∪ Bx

C

hD (ζ; p) | p ∈ R104, p ∈ Bξ, Bx =×192

i x i .

SV Probability dist. Distribution Description Units

1 N(0.1, 10−4) Normal Column’s strength GPa2 − 193 Unif(0.36, 0.44) Uniform Sections size m194 − 212 LN(35.0, 12.25) Lognormal Young’s modulus GPa213 − 231 LN(2.5, 6.25 10−2) Lognormal Material’s density kg/dm3

232 − 244 LN(0.25, 6.25 10−4) Lognormal Poisson’s ratio -

M. de Angelis, et al. 26th May 2014 27 / 30

Examples Large scale finite element model

Large scale finite element model

Uncertainty setMII = C ∪ Bx

C

hD (ζ; p) | p ∈ R104, p ∈ Bξ, Bx =×192

i x i .

SV Uncertainties type p = pc [1 − ε, 1 + ε], x = [x , x ]

1 distribution N(µ, σ2) µc = 0.1 σc = 0.012 − 193 interval x x = 0.36 x = 0.44194 − 212 distribution LN(m, v) mc = 35 vc = 12.25213 − 231 distribution LN(m, v) mc = 2.5 vc = 6.25 10−2

232 − 244 distribution LN(m, v) mc = 0.25 vc = 6.25 10−4

M. de Angelis, et al. 26th May 2014 27 / 30

Examples Large scale finite element model

Large scale finite element modelResults

Lower Bound Upper Boundε p

FCoV pF CoV Ns

0.000 4.70 10−7 10.2 10−2 6.73 10−3 11.5 10−2 2590.010 2.28 10−7 13.4 10−2 9.71 10−3 12.2 10−2 2470.015 1.10 10−7 10.3 10−2 1.11 10−2 7.6 10−2 2550.020 5.19 10−8 13.1 10−2 2.08 10−2 14.6 10−2 2550.025 2.51 10−8 9.97 10−2 2.72 10−2 15.3 10−2 2490.030 1.40 10−8 9.94 10−2 3.21 10−2 6.5 10−2 254

M. de Angelis, et al. 26th May 2014 28 / 30

Examples Large scale finite element model

Large scale finite element modelResults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mem

bers

hip

pc(1- ) pc(1+ )3 3pc

3=0.03

3=0.075

3=0.05

3=0.025

3=0.01

3=0

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mem

bers

hip

pF

(a) (b)

M. de Angelis, et al. 26th May 2014 28 / 30

Conclusions

Outline

1 Introduction

2 Uncertainty propagationImprecise failure probabilityLine sampling estimation

3 ExamplesExplicit functionLarge scale finite element model

4 Conclusions

M. de Angelis, et al. 26th May 2014 29 / 30

Conclusions

Final remarksA strategy to propagate epistemic uncertainty with the failureprobability was proposedBounded and Credal sets are formulated as a sound way toaccount for epistemic uncertainty in a parametric senseWith the proposed numerical strategy, uncertainty propagation’sefficiency can be significantly increasedWhen the underlying model displays monotonic, time of theanalysis is comparable to a single Monte CarloThe strategy is generally applicable so far as the model displaysa single failure modeThe solution strategy is integrated in the general purposesoftware Open Cossan

M. de Angelis, et al. 26th May 2014 30 / 30