a geological study on upper bhuban formation in …sciencevision.org/current_issue/dl/sv 67 sep 2017...

20
128 A geological study on Upper Bhuban Formation in parts of Surma Basin, Aizawl, Mizoram Bubul Bharali 1* , Pradip Borgohain 2 , Devojit Bezbaruah 1 , V. Vanthangliana 3 , Parakh Protim Phukan 1 , Raghupratim Rakshit 1 1 Department of Applied Geology, Dibrugarh University, Dibrugarh 786004, Assam, India 2 Department of Petroleum Technology, Dibrugarh University, Dibrugarh 786004, Assam, India 3 Department of Geology, Pachhunga University College, Aizawl 796001, Mizoram, India Introduction Article Research Tertiary sediments are thickly deposited in most part of the northeast India attaining a maxi- mum thickness of ±7 km sedimentary succession. Surma basin located in the eastern prox- imity of India is also characterized by a thick sedimentary column which can be considered as the northeastern extension of Greater Bengal basin. This basin was initiated due to the mu- tual collision between Indian and Burmese Plate. Due to this collision, the bed rocks have undergone folding which are oriented N-S trending hill ranges. The basin was also cut by a number of parallel to sub-parallel transverse faults and thrusts. The litho association is con- sisting of sandstone, siltstone, shale and their various proportions. The present study focused on the provenance of the sediments, tectonic settings of the basin and various paleoclimatic conditions prevailing during the time of deposition by using petrography, granulometric and heavy mineral analysis of representative rock samples which were collected from various parts of Aizawl district of Mizoram belonging to the Upper Bhuban Formation. Based on the various proxies it was confirmed that the sediments were primarily derived from surrounding orogens and deposited in a shallow marine basin under the influence of fluvial-deltaic condi- tions which were basically sourced from felsic provenance. The sediments were moderately weathered under semi-humid to humid climatic condition before they deposited into Surma basin. Sandstones samples are litharenite and wacke type which were deposited in an active continental margin to recycled orogen settings. Key words: Mizoram; Sandstone; Surma Basin; Upper Bhuban Formation. Received 18 August 2017 Accepted 04 September 2017 *For correspondence : [email protected] Contact us : [email protected] This is published under a Creative Com- mons Attribution-ShareAlike 4.0 Interna- tional License, which permits unrestricted use and reuse, so long as the original author (s) and source are properly credited. ISSN (print) 0975-6175/(online) 2229-6026. 2017 The Mizo Academy of Sciences. CC BY-SA 4.0 International. OPEN ACCESS Sci Vis 17 (3), 128147 (2017) Available at www.sciencevision.org

Upload: vucong

Post on 02-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

128

A geological study on Upper Bhuban Formation in parts of

Surma Basin, Aizawl, Mizoram

Bubul Bharali1*, Pradip Borgohain2, Devojit Bezbaruah1, V. Vanthangliana3,

Parakh Protim Phukan1, Raghupratim Rakshit1

1Department of Applied Geology, Dibrugarh University, Dibrugarh 786004, Assam, India 2Department of Petroleum Technology, Dibrugarh University, Dibrugarh 786004, Assam, India 3Department of Geology, Pachhunga University College, Aizawl 796001, Mizoram, India

Introduction

Article Research

Tertiary sediments are thickly deposited in most part of the northeast India attaining a maxi-

mum thickness of ±7 km sedimentary succession. Surma basin located in the eastern prox-

imity of India is also characterized by a thick sedimentary column which can be considered as

the northeastern extension of Greater Bengal basin. This basin was initiated due to the mu-

tual collision between Indian and Burmese Plate. Due to this collision, the bed rocks have

undergone folding which are oriented N-S trending hill ranges. The basin was also cut by a

number of parallel to sub-parallel transverse faults and thrusts. The litho association is con-

sisting of sandstone, siltstone, shale and their various proportions. The present study focused

on the provenance of the sediments, tectonic settings of the basin and various paleoclimatic

conditions prevailing during the time of deposition by using petrography, granulometric and

heavy mineral analysis of representative rock samples which were collected from various

parts of Aizawl district of Mizoram belonging to the Upper Bhuban Formation. Based on the

various proxies it was confirmed that the sediments were primarily derived from surrounding

orogens and deposited in a shallow marine basin under the influence of fluvial-deltaic condi-

tions which were basically sourced from felsic provenance. The sediments were moderately

weathered under semi-humid to humid climatic condition before they deposited into Surma

basin. Sandstones samples are litharenite and wacke type which were deposited in an active

continental margin to recycled orogen settings.

Key words: Mizoram; Sandstone; Surma Basin; Upper Bhuban Formation.

Received 18 August 2017 Accepted 04 September 2017 *For correspondence : [email protected] Contact us : [email protected] This is published under a Creative Com-mons Attribution-ShareAlike 4.0 Interna-tional License, which permits unrestricted use and reuse, so long as the original author(s) and source are properly credited.

ISSN (print) 0975-6175/(online) 2229-6026. 2017 The Mizo Academy of Sciences. CC BY-SA 4.0 International.

OPEN ACCESS

Sci Vis 17 (3), 128—147 (2017)

Available at

www.sciencevision.org

129

Geological Settings of Surma Basin

Sci Vis 17 (3), 128—147 (2017)

130

Figure 1 | Geological map of Mizoram showing the study area.21

Sci Vis 17 (3), 128—147 (2017)

131

Field description of the study area

Methodology

Table 1 | Litho-stratigraphic succession of Mizoram.1

Age Group Formation Unit Generalized Lithology

Recent Alluvium Silt, clay and gravel

-----------------------------------------------Unconformity--------------------------------------- Early Pliocene

to Late Miocene

Tipam (+900 m)

Friable sandstone with occasional clay bands

---------------------------------Conformable and transitional contact-------------------------

Miocene to

Upper Oligocene

SU

RM

A

(+5

95

0 m

)

Bokabil (+950 m)

Shale, siltstone and sandstone

-----------Conformable and transitional contact-------------

BH

UB

AN

(5

00

0 m

)

Upper Bhuban (1100 m)

Arenaceous predominating with sandstone, shale and siltstone

-------Conformable and transitional contact--

Upper Bhuban (3000 m)

Argillaceous predominating with shale, siltstone-shale alternations and sandstone

-------Conformable and transitional contact--

Lower Bhuban (900 m)

Arenaceous predominating with sandstone and silty-shale

--------------------------------Unconformity obliterated by faults------------------------------

Oligocene Barail

(+3000 m) Shale, siltstone and sandstone

----------------------------------------Lower contact not seen---------------------------------

Sci Vis 17 (3), 128—147 (2017)

132

Figure 2 | Lithocolumn of the studied sections.

Sci Vis 17 (3), 128—147 (2017)

133

Figure 4 | Photomicrographs of Upper Bhuban sandstone (where, Q: Quartz, P: Plagioclase, KF: K-Feldspar, M: Mica, AF: Altered Feldspar, C: Chert, RF: Rock Fragment, MYR: myrmekite & Q-CC: quartz overgrowth with carbonate ce-ment).

Figure 3 | Field photographs of the study area. A: Massive sandstone bed with alternate bands of sandstone and siltstone along Aizawl-Sairang road section, B: Siltstone intercalations between sandstone beds, C: Chevron folding observed along Aizawl-Sairang road section, D: Bioturbation devel-oped within sandstone, E: jointed steep sandstone beds along Aizawl-Tuirial road section and F: bivalves associated with weathered sandstone beds along Aizawl-Sairang road sec-tion.

Sci Vis 17 (3), 128—147 (2017)

134

Petrography and diagenesis of sandstones

Results

Granulometric analysis and depositional en-

vironment

Ϭ

Sci Vis 17 (3), 128—147 (2017)

135

Tab

le 2

| M

od

al c

ou

nt

of

pet

rogr

aph

ic s

tud

y o

f th

in s

ecti

on

s (w

her

e, Q

Mu: m

on

ocr

ysta

llin

e u

nd

ula

tory

qu

artz

, QM

nu: m

on

ocr

ysta

llin

e n

on

un

du

lato

ry

qu

artz

, QP

2-3

: po

lycr

ysta

llin

e q

uar

tz w

ith

2-3

gra

ins

per

qu

artz

, QP

>3: p

oly

crys

talli

ne

qu

artz

wit

h >

3 g

rain

s p

er q

uar

tz, P

Ca/

Na:

pla

gio

clas

e, F

K: p

ota

sh

feld

spar

, RF I

g: ig

neo

us

rock

fra

gmen

t, R

F Sed

: sed

imen

tary

ro

ck f

ragm

ent,

RF M

et: m

eta

mo

rph

ic r

ock

fra

gmen

t, C

Sil:

silic

eou

s ce

men

t, C

Arg

: arg

illac

eou

s

Sam

ple

N

o.

Qu

artz

Feld

spar

Ro

ck

Frag

me

nts

Ce

me

nt

M

ica

Mat

rix

Ch

ert

O

paq

ue

QM

u

QM

nu

QP

2-3

Q

P>3

P

Ca/

Na

F K

RF I

g.

RF S

ed.

RF M

et.

CSi

l C

Arg

C

Fer

CC

al

SAS#

2 1

4.1

4 2

5.0

0 2

.35

3

.74

3

.88

0

.58

0

.34

4

.60

1

.66

0

.00

1

.26

0

.00

3

.00

1

3.1

5 1

0.9

6 3

.98

1

1.3

8

SAS#

3A

9

.66

3

5.6

4 1

.74

7

.33

2

.97

1

.41

0

.20

1

.70

2

.17

0

.69

1

.59

0

.00

0

.00

1

7.3

1 1

2.6

0 2

.75

2

.24

SAS#

5 1

3.1

0 1

9.4

0 1

.80

5

.34

5

.71

0

.00

0

.00

8

.15

1

.84

0

.00

0

.00

0

.00

1

8.3

2 1

0.4

9 1

.54

4

.76

9

.55

SAS#

6 1

6.1

7 2

6.9

5 1

.59

2

.30

1

.98

1

.70

0

.00

8

.77

0

.40

1

.80

2

.40

0

.00

0

.00

9

.39

3

.75

8

.55

1

4.2

5

SAS#

9A

2

1.6

7 9

.33

2

.41

7

.22

4

.59

0

.41

0

.00

4

.52

1

.40

0

.00

0

.00

0

.44

0

.00

1

9.4

6 1

0.3

7 0

.60

1

7.5

8

SAS#

11

B

10

.49

29

.70

3.5

6

6.0

0

3.0

7

1.3

5

0.1

8

1.9

3

2.0

8

0.6

3

1.4

4

0.0

0

0.0

0

15

.88

11

.16

2.2

2

10

.31

SAT#

1 1

6.8

8 2

6.7

9 2

.10

5

.97

8

.00

0

.00

0

.00

5

.66

0

.00

0

.00

0

.68

0

.00

1

0.2

0 6

.11

5

.10

6

.80

5

.71

SAT#

3A

7

.64

1

5.4

0 4

.75

1

.44

4

.12

0

.00

0

.88

4

.90

3

.66

2

.10

0

.70

3

.20

0

.00

1

8.3

3 1

0.6

9 2

.70

1

9.4

9

SAT#

5 1

9.4

0 1

8.7

1 2

.50

3

.33

4

.39

0

.70

0

.18

5

.27

0

.50

0

.00

0

.47

4

.17

0

.00

1

0.2

2 1

1.8

0 8

.76

9

.60

SAT#

6C

1

1.5

0 1

7.4

8 2

.55

3

.12

2

.23

0

.10

1

.30

6

.98

0

.00

4

.51

0

.00

0

.00

0

.00

1

3.4

6 7

.57

5

.73

2

3.4

7

SAT#

7A

8

.83

1

6.7

7 5

.00

2

.47

3

.91

0

.00

0

.73

5

.21

3

.83

4

.04

0

.12

2

.66

0

.00

1

7.9

5 1

2.3

9 2

.05

1

4.0

4

SAT#

8 1

4.0

0 3

2.8

8 0

.67

2

.57

4

.60

0

.80

0

.77

7

.30

2

.90

1

.30

2

.40

0

.31

0

.00

3

.90

1

9.9

4 4

.60

1

.06

Sam

ple

N

o.

Ф1

Ф5

Ф1

6

Ф2

5

Ф3

0

Ф5

0

Ф7

5

Ф8

4

Ф9

5

Me

an

(MZ)

St

and

ard

D

evi

atio

n

(Ϭ1)

Ske

wn

ess

(S

K)

Gra

ph

ic

Ku

rto

sis

(KG)

SAS#

2 0

.04

0

.81

1

.61

1

.73

1

.69

2

.06

2

.54

2

.66

3

.22

1

.99

0

.63

-0

.03

0.8

0

SAS#

3A

-0

.46

0.3

5

1.1

4

1.4

9

1.5

7

2.1

1

2.3

2

2.5

8

3.3

1

1.7

6

0.8

1

-1.1

9 1

.01

SAS#

5 0

.05

0

.78

1

.39

1

.79

1

.89

2

.24

2

.71

3

.11

3

.71

2

.13

0

.87

0

.03

1

.10

SAS#

6 0

.49

1

.39

1

.93

2

.21

2

.19

2

.33

3

.41

3

.35

3

.75

2

.49

0

.71

1

.01

1

.16

SAS#

9A

0

.43

1

.3

1.9

1

2.1

5

2.0

9

2.4

1

3.2

3

.46

3

.87

2

.49

0

.78

0

.88

1

.11

SAS#

11

B

0.9

7

1.7

1

.95

2

.09

2

.31

2

.36

3

.19

3

.43

3

.66

2

.56

0

.67

1

.12

0

.88

SAT#

1 -0

.24

1.1

1

.89

2

.1

2.4

2

.4

2.8

1

3.1

8

3.7

4

2.4

9

0.7

2

0.2

3

0.7

7

SAT#

3A

-0

.99

0.1

7

1.3

1

.68

2

2

.29

2

.76

2

.77

3

.18

2

.02

0

.82

-2

.23

1.3

3

SAT#

5 -0

.05

0.7

8

1.5

8

1.8

1

.8

2.1

7

2.5

7

2.9

3

.32

2

.09

0

.71

-0

.21

0.8

0

SAT#

6C

-0

.51

0.3

1

.2

1.4

7

1.7

1

2.3

2

.44

2

.58

3

.83

1

.83

0

.88

-1

.40

1.4

0

SAT#

7A

-0

.24

0.5

8

1.4

1

.74

1

.69

2

3

.37

3

.41

3

.76

2

.17

0

.98

1

.35

2

.12

SAT#

8 -0

.4

0.4

9

1.3

1

1.5

3

1.6

1

2.1

1

2.4

1

2.7

3

3.7

8

1.8

8

0.8

5

-0.0

5 1

.19

Tab

le 3

| V

ario

us

grai

n s

ize

par

amet

ers

of

the

Up

per

Bh

ub

an s

and

sto

nes

.

Sci Vis 17 (3), 128—147 (2017)

136

Tab

le 4

| V

ario

us

grai

n s

ize

dis

crim

inan

t fu

nct

ion

s w

ith

dep

osi

tio

nal

co

nd

itio

ns1

9 (w

her

e, Y

1=-

3.5

68

8M

z+3

.70

16σ₁2

-2.0

76

6S k

i+3

.11

35

Kg;

Y 2

=15

.65

34

Mz+

65

.70

91σ₁2

+18

.10

71

S ki+

18

.50

43

Kg;

Y3=0

.28

52

Mz-

8.7

60

4σ₁2

-4.8

93

2S k

i+0

.04

82

Kg

& Y

4=0

.72

15

Mz-

0.4

03

0σ₁2

+6.7

32

2S k

i+5

.29

27

Kg)

Tab

le 5

| P

etro

grap

hic

dat

a o

f h

eavy

min

eral

an

alys

is (

wh

ere,

Zr:

zir

con

, Tr:

to

urm

alin

e, R

t: r

uti

le, K

y: k

yan

ite,

Si:

silli

man

ite,

Ep

: ep

ido

te, C

l: ch

lori

te,

Hb

: ho

rnb

len

de,

Bt:

bio

tite

, Gr:

gar

net

, Op

: op

aqu

e m

iner

als

& Z

TR: z

irco

n, t

ou

rmal

ine

and

ru

tile

)

Sam

ple

N

o.

Dis

crim

inan

t Fu

nct

ion

s

Y 1

Dep

osi

tio

nal

C

on

dit

ion

s Y 2

D

epo

siti

on

al

Co

nd

itio

ns

Y 3

Dep

osi

tio

nal

C

on

dit

ion

s Y 4

D

epo

siti

on

al

Co

nd

itio

ns

SAS#

2 -3

.08

Eolia

n D

epo

siti

on

7

1.2

5 Sh

allo

w A

gita

ted

Mar

ine

-2

.70

Shal

low

Agi

tate

d M

arin

e

5.3

1

Turb

idit

y C

urr

ent

SAS#

3A

1

.73

B

each

Dep

osi

tio

n

67

.66

Shal

low

Agi

tate

d M

arin

e

0.6

4

Shal

low

Agi

tate

d M

arin

e

-1.6

7 Tu

rbid

ity

Cu

rren

t

SAS#

5 -1

.40

Bea

ch D

epo

siti

on

1

04

.55

Shal

low

Agi

tate

d M

arin

e

-6.1

9 Sh

allo

w A

gita

ted

Mar

ine

7

.29

Tu

rbid

ity

Cu

rren

t

SAS#

6 -5

.48

Eolia

n D

epo

siti

on

1

12

.05

Shal

low

Agi

tate

d M

arin

e

-8.6

1 Fl

uvi

al D

epo

siti

on

1

4.5

1 Fl

uvi

al D

elta

ic D

epo

siti

on

SAS#

9A

-5

.02

Eolia

n D

epo

siti

on

1

14

.91

Bea

ch D

epo

siti

on

-8

.81

Flu

vial

Dep

osi

tio

n

13

.30

Flu

vial

Del

taic

Dep

osi

tio

n

SAS#

11

B

-7.0

7 Eo

lian

Dep

osi

tio

n

10

5.9

1 Sh

allo

w A

gita

ted

Mar

ine

-8

.58

Flu

vial

Dep

osi

tio

n

13

.86

Flu

vial

Del

taic

Dep

osi

tio

n

SAT#

1 -5

.03

Eolia

n D

epo

siti

on

9

1.6

0 Sh

allo

w A

gita

ted

Mar

ine

-4

.94

Shal

low

Agi

tate

d M

arin

e

7.1

8

Turb

idit

y C

urr

ent

SAT#

3A

4

.06

B

each

Dep

osi

tio

n

60

.59

Bea

ch D

epo

siti

on

5

.59

Sh

allo

w A

gita

ted

Mar

ine

-6

.75

Turb

idit

y C

urr

ent

SAT#

5 -2

.64

Bea

ch D

epo

siti

on

7

7.3

3 Sh

allo

w A

gita

ted

Mar

ine

-2

.80

Shal

low

Agi

tate

d M

arin

e

4.1

2

Turb

idit

y C

urr

ent

SAT#

6C

3

.60

B

each

Dep

osi

tio

n

80

.22

Shal

low

Agi

tate

d M

arin

e

0.6

4

Shal

low

Agi

tate

d M

arin

e

-0.9

6 Tu

rbid

ity

Cu

rren

t

SAT#

7A

-0

.34

Bea

ch D

epo

siti

on

1

61

.42

Shal

low

Agi

tate

d M

arin

e

-14

.40

Flu

vial

Dep

osi

tio

n

21

.54

Flu

vial

Del

taic

Dep

osi

tio

n

SAT#

8 -0

.24

Bea

ch D

epo

siti

on

9

8.4

8 Sh

allo

w A

gita

ted

Mar

ine

-5

.56

Shal

low

Agi

tate

d M

arin

e

7.0

4

Turb

idit

y C

urr

ent

Sam

ple

N

o.

Zr

Tr

Rt

Ky

Si

Ep

Cl

Hb

B

t G

r O

p

ZT

R

Ind

ex

Z T

R

SAS#

2 3

4.9

3 1

6.0

5 8

.11

3

.71

3

.68

1

.24

4

.19

3

.79

5

.98

1

.89

1

6.4

3 5

9.1

1 2

7.1

6 1

3.7

2

SAS#

3A

3

1.3

9 1

6.0

6 9

.45

4

.97

3

.72

1

.88

2

.41

1

.79

5

.25

3

.63

1

9.4

5 5

5.1

7 2

8.2

2 1

6.6

1

SAS#

5 2

9.6

9 1

5.4

3 1

0.2

5 5

.07

3

.83

2

.55

3

.06

1

.75

5

.44

3

.82

1

9.1

1 5

3.6

2 2

7.8

7 1

8.5

1

SAS#

6 3

0.4

9 1

5.7

9 1

0.3

7 5

.42

3

.47

2

.71

2

.89

1

.22

6

.06

4

.05

1

7.5

3 5

3.8

2 2

7.8

7 1

8.3

1

SAS#

9A

2

7.8

4 1

7.5

9 9

.52

5

.03

3

.68

2

.19

2

.63

1

.48

5

.00

4

.05

2

0.9

9 5

0.6

6 3

2.0

1 1

7.3

2

SAS#

11

B

28

.14

14

.77

10

.38

6.0

0

3.0

1

1.5

5

1.5

1

0.0

0

4.5

6

5.0

9

24

.99

52

.81

27

.72

19

.48

SAT#

1

31

.59

16

.06

9.3

0

4.8

8

3.7

0

1.8

6

2.6

0

1.8

3

5.4

3

3.5

6

19

.20

55

.47

28

.20

16

.33

SAT#

3A

2

8.6

7 1

7.0

3 1

2.8

8 4

.44

5

.61

3

.06

1

.74

1

.77

5

.79

2

.85

1

6.1

6 4

8.9

4 2

9.0

7 2

1.9

9

SAT#

5

33

.03

15

.96

8.2

9

3.1

1

3.5

9

2.8

1

3.0

9

0.0

0

6.1

6

2.6

4

21

.32

57

.66

27

.86

14

.47

SAT#

6C

3

0.4

8 1

6.0

4 7

.39

5

.66

3

.07

1

.03

2

.66

4

.06

6

.11

4

.73

1

8.7

7 5

6.5

4 2

9.7

5 1

3.7

1

SAT#

7A

3

0.7

0 1

6.0

8 9

.59

4

.86

3

.73

2

.07

2

.65

1

.75

5

.53

3

.64

1

9.5

1 5

4.4

6 2

8.5

3 1

7.0

1

SAT#

8

31

.45

16

.11

9.3

2

4.8

1

3.6

8

1.9

3

2.8

7

1.9

9

5.5

3

3.4

5

18

.86

55

.29

28

.32

16

.39

Sci Vis 17 (3), 128—147 (2017)

137

Ϭ

Ϭ

Ϭ

Heavy mineral analysis

Sci Vis 17 (3), 128—147 (2017)

138

Figure 5 | A. Cumulative grain size curves, B. Binary plot of Graphic Mean (Mz) vs Standard Deviation (Ϭ1)15 repre-senting the depositional conditions, C. Binary plot of Mean Size (Mz) vs Standard Deviation (Ϭ1)16 suggesting the sedi-ments were deposited by wave processes, D. Skewness (Ski) vs Kurtosis (KG) plot17 representing the depositional con-dition of sediments, E. Binary plot of Skewness (Ski) vs Kurtosis (KG)18 to depict the energy conditions, F. Log-Log plot19 showing the depositional environment.

Sci Vis 17 (3), 128—147 (2017)

139

Discussion

Sci Vis 17 (3), 128—147 (2017)

140

Figure 6 | Heavy minerals observed under microscope (where, Z: zircon, T: tourmaline, ST: staurolite, H: hyper-sthenes, R: rutile, S: sillimanite, K: kyanite & G: garnet).

Figure 7 | A. ZTR index29 of Upper Bhuban sandstones. B. QmPK ternary plot44 representing continental derivation of sediments with increasing maturity index.

Sci Vis 17 (3), 128—147 (2017)

141

Figure 8 | Petrographic classification of sandstones. A. QFL.30 B. QFR.31

Figure 9 | Monocrystalline and polycrystalline quartz are plotted in - A. Diamond Diagram7 representing the deriva-tion of sediments from upper to middle rank metamorphic rocks; B. Diamond Plot8 representing derivation of sedi-ments from granite and gneisses.

Sci Vis 17 (3), 128—147 (2017)

142

Figure 11 | Petrographic tectonic setting discriminant plot – A. QFL ternary plot.9 B. QmFLt ternary plot10 represent-ing recycled orogen and quartzose recycled orogen.

Figure 10 | Paleo-climatic conditions of Upper Bhuban Formation – A. Ternary QFR plot45 representing humid cli-matic condition. B. Semi Quantitative Weathering Index11 and binary plot of ln(Q/R) vs ln(Q/F)46 representing moder-ate nature of weathering. C. Bivariate plot12 of modal data representing humid to semi humid climatic conditions.

Sci Vis 17 (3), 128—147 (2017)

143

Sci Vis 17 (3), 128—147 (2017)

144

Conclusion

References

1. Ganju, J. L. (1975). Geology of Mizoram. Geology Min-eral & Metallurgical Society of India 48, 17-26.

2. Nandy, D.R., Dasgupta, S., Sarkar, K. & Ganguly, A. (1983). Tectonic evolution of Tripura-Mizoram Fold Belt, Surma Basin, northeast India. Quarterly Journal, Geology Mineral & Metallurgical Society of India 55-4, 186-194.

3. Dasgupta, S. (1984). Tectonic trends in Surma Basin and possible genesis of the folded belt. Records Geological Survey of India 113-IV, 58-61.

4. Alam, M., Alam, M. M., Curray, J. R., Chowdhury, M. L. R. and Gani, M. R. (2003). An overview of the sedi-mentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sedi-mentary Geology 155, 179-208.

Sci Vis 17 (3), 128—147 (2017)

145

5. Uddin, A. & Lundberg, N. (1999). A paleo-Brahmaputra? Subsurface lithofacies analysis of Mio-cene deltaic sediments in the Himalayan-Bengal system, Bangladesh. Sedimentary Geology 123, 239-254.

6. Tiwari, R.P. & Kachhara, R.P. (2003). Molluscan bio-stratigraphy of the tertiary sediments of Mizoram, India. Journal of Paleontological Society of India 48, 59-82.

7. Basu, A., Young, S., Suttner, L., James, W. & Mack, G. (1975). Re-evaluation of the use of undulatory extinc-tion and crystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology 45, 873-882.

8. Tortosa, A., Palomares, M. & Arribas, J. (1991). Quartz grain types in Holocene deposits from the Spanish Cen-tral System: some problems in provenance analysis. Geo-logical Society, London, Special Publication 57, 47-54.

9. Dickinson, W.R. & Suczek, C.A. (1979). Plate tectonics and sandstone compositions. American Association of Petroleum Geologist Bulletin 63, 2164-2182.

10. Dickinson, W.R., Beard, L., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.E.X.A., Lindberg, F. & Ryberg, P.T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Bulletin, Geological Society of America 94, 222-235.

11. Grantham, J. H. & Velbel, M. A. (1988). The influence of climate and topography on rock-fragment abundance in modern fluvial sands of the southern Blue Ridges mountains, North Carolina. Journal of Sedimentary Petrology 58, 219-227.

12. Suttner, L. J. & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate, i, framework mineral-ogy. Journal of Sedimentary Petrology 56, 329-345.

13. Folk, R.L. & Ward, W. C. (1975). Brazos River Bar: A study in the significance of grain size parameters. Jour-nal of Sedimentary Petrology 27-1, 3-26.

14. Cadigan, R. A. (1961). Geologic Interpretation of grain-size distribution measurement of Colorado Plateau sedi-mentary rocks. Journal of Geology 69, 121-142.

15. Friedman, G. M. (1967). Dynamic processes and statisti-cal parameters compared for size frequency distribution of beach and river sands. Journal of Sedimentary Petrol-ogy 37-2, 327-354.

16. Goldberry, R. (1980). Use of grain size frequency data to interpret the depositional environment of the Pliocene

Pleshet Formation, Beer Sheva, Israel. Journal of Sedi-mentary Petrology 50-3, 843-856.

17. Friedman, G. M. (1961). Distinction between dune, beach, and river sands from their textural characteristics. Journal of Sedimentary Petrology 31-4, 514-529.

18. Thompson, A. W. (1972). Calculation of true volume grain diameter. Metallography 5, 366-369.

19. Sahu, B. K. (1964). Depositional mechanism from the size analysis of clastic sediments. Journal of Sedimentary Petrology 34-1, 73-83.

20. Banerjee, S. P., Sarkar, K. & Dasgupta, S. (1979). Geo-logical mapping in parts of Serchip-Thenzuwal area and Mineral Survey, Aizwal dist., Mizoram. Unpublished Progress Report, Geological Survey of India: 1976-77.

21. Bhaduri, A. (2011). State Geological and Mineral Maps-Geological Survey of India Miscellaneous Publication Series. www.indiawaterportal.org/articles/state-geology-and-mineral-maps-geological-survey-india-miscellaneous-publication-series (24th Sept. 2011)

22. Tiwari, R. P., Rajkonwar, C., Lalchawimawii, Lalnunt-luanga, P., Malsawma, J., Ralte, V. Z. & Patel, S. J. (2011). Trace fossil from Bhuban Formation, Surma Group (Lower to Middle Miocene) of Mizoram India and their palaeoenvironmental significance. Journal of Earth System Science 120-6, 1127-1143.

23. Rajkonwar, C., Tiwari, R. P. & Patel, S. J. (2013). Areni-colites helixus isp. nov. and associated ichnofossils from the Bhuban Formation, Surma Group (Lower-Middle Miocene) of Aizawl, Mizoram, India. Himalayan Geol-ogy 34-1, 18-37.

24. Tiwari, R. P., Malsawma, J., Sangode, S. J. & Arora, B. R. (2007). Magnetostratigraphy of a part of Upper Bhu-ban sequence (Surma Group), Aizawl, Mizoram. Jour-nal Geological Society of India 70-4, 667-674.

25. Malsawma, J., Lalnuntluanga, P., Badekar, A., Sangode, S. J. & Tiwari, R. P. (2010). Magnetic polarity stratigra-phy of the Bhuban Succession, Surma Group, Tripura-Mizoram accretionary belt. Journal Geological Society of India 76, 119-133.

26. Gazzi, P. (1966). Le arenarie del flysch sopracretaceo dell’ Appennino modenese; correlazioni con il flysch di Monghidoro. Mineralogica e Petrografica Acta 12, 69-97.

27. Dickinson, W.R. (1970). Interpreting detrital modes of greywackes and arkose. Journal of Sedimentary Petrology

Sci Vis 17 (3), 128—147 (2017)

146

40, 695-707.

28. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D. & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi-Dickinsom point counting method. Journal of Sedimentary Petrol-ogy 54-1, 103-116.

29. Hubert, J. F. (1962). A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Pe-trology 33-3, 440-450.

30. Pettijohn, F.J., Potter, P.E. & Siever, R. (1972). Sand and Sandstones. New York, Springer-Verlag.

31. Folk, R.L. (1974). Petrology of Sedimentary Rocks. Hemphill Publishing Company.

32. Critelli, S. & Garzanti, E. (1994). Provenance of the lower Tertiary Murree redbeds (Hazara-Kashmir syn-taxis, Pakistan) and initial rising of the Himalayas. Sedi-mentary Geology 89, 265-284.

33. Rowley, D. B. (1996). Age of initiation of collision be-tween India and Asia: a review of stratigraphic data. Earth and Planetary Science Letters 145, 1-13.

34. Pivnik, D. A. & Wells, N. A. (1996). The transition from Tethys to the Himalaya as recorded in northwest Pakistan. Geological Society of America Bulletin 108, 1295-1313.

35. Guillot, S., Garzanti, E., Baratoux, D., Marquer, D., Mahe´o, G. & Sigoyer, J. De. (2003). Reconstructing the total shortening history of the NW Himalaya. Geochem-i s t ry Geophysi c s Geosystems 4 , D OI: 10.1029/2002GC000484.

36. DeCelles, P.G., Gehrels, G. E., Najman, Y., Martina, A. J., Carter, A. & Garzanti, E. (2004). Detrital geochronol-ogy and geochemistry of Cretaceous–Early Miocene strata of Nepal: implications for timing and dia-chroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters 227, 313-330.

37. Hodges, K.V. (2000). Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America, Bulletin 112, 324-350.

38. Liang, Y-H. (2008). Detrital zircon evidence from Burma for reorganization of the Eastern Himalayan river system. American Journal of Science 308, 618-638.

39. Chiu, H-Y. (2009). Zircon U–Pb and Hf isotopic con-

straints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in south-ern Tibet. Tectonophysics 477, 3-19.

40. Najmana, Y., Braccialia, L., Parrish, R. R., Chistyc, E. & Copley, A. (2016). Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau. Earth and Planetary Science Letters 433, 1-9.

41. Summerfield, M. A. & Hulton, N. J. (1994). Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research 99, 13871-13883.

42. Stewart, R. J., Hallet, B., Zeitler, P. K., Malloy, M. A., Allen, C. M. & Trippett, D. (2008). Brahmaputra sedi-ment flux dominated by highly localized rapid erosion from the easternmost Himalaya. The Geological Society of America 36-9, 711-714.

43. Clark, M. K. & Bilham, R. (2008). Miocene rise of the Shillong Plateau and the beginning of the end for the Eastern Himalaya. Earth and Planetary Science Letters 269, 337-351.

44. Dickinson, W.R. (1985). Interpreting provenance rela-tions from detrital modes of sandstones. In: G. G. Zuffa (ed.), Provenance of Arenites, pp. 333-361.

45. Suttner, L. J. & Basu, A. (1981). Climate and the origin of quartz arenites. Journal of Sedimentary Petrology 51-4, 1235-1246.

46. Weltje, G. J. (1994). Provenance and Dispersal of Sand-sized Sediments: Reconstruction of Dispersal Patters and Sources of Sand-sized Sediments by Means of Inverse Modelling Techniques. PhD dissertation, Utrecht Uni-versity, Geologica Ultraiectina.

47. Baily, S. W., Bell, R. A. & Peng, C. J. (1958). Plastic de-formation of quartz in nature. Geological Society of America, Bulletin 69, 1443-1466.

48. Blatt, H., Middleton, G. & Murray, R. (1980). Origin of Sedimentary Rocks. Prentice-Hall, New Jersey.

49. Conolly, J. R. (1965). The occurrence of polycrystallinity and undulatory extinction in quartz in sandstones. Jour-nal of Sedimentary Petrology 35, 116-135.

50. Curray, J. R. (1991). Geological history of the Bengal geosyncline. Journal of Association Exploration Geophys-ics XII, 209–219.

51. Ingersoll, R. N., Graham, S. A. & Dickinson, W. R. (1995). Remnant ocean basin. In: Busby, C. J. & Inger-

Sci Vis 17 (3), 128—147 (2017)

147

soll, R. V. (Eds.), Tectonics of Sedimentary Basin. Black-well, Oxford, 363-391.

52. Johnson, S.Y. & Alam, A. M. N. (1991). Sedimentation and tectonics of the Sylhet trough, Bangladesh. Geologi-cal Society of America, Bulletin 103, 1513-1527.

53. Mitchell, A. H. G. & Reading, H. G. (1986). Sedimenta-tion and tectonics. In: Sedimentary Environments and Facies (Reading, H. G., ed.), Blackwell Scientific Publi-cations, 471-519.

54. Najman, Y. & Garzanti, E. (2000). Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geological Society of America, Bulletin 112, 435-449.

55. Nandy, D.R., Mukherjee, R.N. & Majumdar, T. (1972). Geological mapping and mineral survey in parts of Mizoram. Geological Survey of India, Progress Report for F.S. 1971-72 (unpublished).

56. Nandy, D.R. & Sarkar, K. (1973). Geological mapping and mineral survey in parts of Aizawl District, Mizoram. Geological Survey of India. Progress Report for F.S.1971-72 (unpublished).

57. Pettijohn, F. J. (1975). Sedimentary Rocks, 3rd Ed. Harper and Row, New York.

58. Phukan, P.P. & Bogohain, P. (2014). Depositional envi-ronment and provenance of the Surma Group of rock exposed along Bawngkawn-Durtlang road section, Ai-zawl, Mizoram. In: Unpublished M.Sc. Dissertation.

59. Reineck, H. E. & Singh, I. R. (1973). Depositional Sedi-mentary Environments. Springer Verlag, Berlin Heildel-berg. New York.

60. Uddin, A. & Lundberg, N. (1998). Cenozoic history of the Himalayan–Bengal system: sand composition in the Bengal basin, Bangladesh. Geological Society of America Bulletin 110, 497-511.

Sci Vis 17 (3), 128—147 (2017)