a helicon source requires a dc magnetic field.. u. wisconsin

34

Upload: madeline-price

Post on 20-Jan-2018

221 views

Category:

Documents


0 download

DESCRIPTION

...and is based on launching a circularly polarized wave in the plasma UCLA

TRANSCRIPT

Page 1: A helicon source requires a DC magnetic field.. U. Wisconsin
Page 2: A helicon source requires a DC magnetic field.. U. Wisconsin

A helicon source requires a DC magnetic field..

U. Wisconsin

Page 3: A helicon source requires a DC magnetic field.. U. Wisconsin

...and is based on launching a circularly polarized wave in the plasma

UCLA

+

_+

_ _

+

+ +

_ _

_

B

k

(a)

(b)

(c)

+

Page 4: A helicon source requires a DC magnetic field.. U. Wisconsin

The antenna can be twisted to match the helicon's helical waveform

UCLA

B, k

Right Helical Antenna

B

Nagoya III Antenna

(a) (b)

Page 5: A helicon source requires a DC magnetic field.. U. Wisconsin

The R-wave propagates to the right, andthe L-wave to the left (for this antenna helicity)

UCLA

--

+ --

+

--

+ --

+

(a)

(b)

(c)

B

But the L-wave is very weak, and this antenna is unidirectional

Page 6: A helicon source requires a DC magnetic field.. U. Wisconsin

Why do helicons ionize so well?

UCLA

Trivelpiece-Gould mode

Helicon mode

Landau damping (1985)F.F. Chen, Plasma Phys. Control. Fusion 33, 339 (1991).

This was disproved (1999)F.F. Chen and D.D. Blackwell, Phys. Rev. Lett. 82, 2677 (1999).

Mode-coupling to TG modes(1996)K.P. Shamrai and V.B. Taranov, Plasma Sources Sci. Technol. 5, 474 (1996).

Parametric excitation of ion acoustic waves (2005).B. Lorenz, M. Krämer, V.L. Selenin, and Yu.M. Aliev, Plasma Sources Sci.Technol. 14, 623 (2005).

Page 7: A helicon source requires a DC magnetic field.. U. Wisconsin

Two commercial helicon reactors

UCLAThe Boswell source

The PMT (Trikon) MØRI source

Page 8: A helicon source requires a DC magnetic field.. U. Wisconsin

Distributed source: first attempt

UCLA

QUARTZ TUBE

PVC PIPE

ANTENNA

MAGNET WINDING

7 cm

5 cm

13 cm

BNC connector

5 mm

17 mm

1 cm

1 cm

10 cm

ELECTROSTATIC CHUCK

WAFER

MULTI-TUBE HELICON PLASMA SOURCE

PE

RM

AN

EN

T M

AG

NE

T A

RR

AY

Conceptual RF plasma source for etching and depostion of semiconductor wafers and flat-panel display substrates.

Each tube with a solenoidal coil and helical m = +1 antenna

A 7-tube circular array.This failed to produce high density.

Page 9: A helicon source requires a DC magnetic field.. U. Wisconsin

Reason: Diverging field lines

UCLA

-10

0

10

20

30

z (cm)

Page 10: A helicon source requires a DC magnetic field.. U. Wisconsin

Distributed source: Second attempt

UCLA

ELECTROSTATIC CHUCK

WAFER

PE

RM

AN

EN

T M

AG

NE

T A

RR

AY

SOURCE WITH LARGE MAGNETS

This was better

Page 11: A helicon source requires a DC magnetic field.. U. Wisconsin

Distributed source: Third attempt

UCLA

ROTATING PROBE ARRAY

PERMANENT MAGNETS

3"

DC MAGNET COIL

18"

54 mm2.4 mm

6.4 mm10 cm

2.5

cm

The “stubby” tube

This worked beautifully! But…

Page 12: A helicon source requires a DC magnetic field.. U. Wisconsin

Plasmas merged; density is uniform

UCLA

Power scan at z = 7 cm, 5 mT A, 20 G, 13.56 MHz,

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30R (cm)

N (

1012

cm

-3) 3.0

2.52.01.51.0

P(kW)

7-tube m=0 array

ARGON

…but the size is limited by the single large electromagnet.

Page 13: A helicon source requires a DC magnetic field.. U. Wisconsin

Characteristics of permanent magnet rings

UCLA

Internal field

External field

Page 14: A helicon source requires a DC magnetic field.. U. Wisconsin

Experiments with 7-cm diam tube

UCLA

Gate Valve

To Turbo Pump

34 cm

36 cm

D

Z1

Z2

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40z (cm)

Bz

(G)

B (0)2319283338

D (cm)

-300

-250

-200

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30z (cm)

Bz

(G)

CalculatedMeasured

External field

Internal field

Page 15: A helicon source requires a DC magnetic field.. U. Wisconsin

Radial density profiles at Z1 and Z2

UCLA

0

2

4

6

8

10

-5 0 5 10 15 20r (cm)

n (1

010cm

-3)

Z1, 40Z1, 35Z1, 30Z1, 21Z1, 1

D (cm)500W, 1mTorr

0

1

2

3

4

5

6

7

-5 0 5 10 15 20r (cm)

n (1

010cm

-3)

Z2, 40Z2, 35Z2, 30Z2, 21Z2, 1

D (cm)

500W, 1 mTorr

Upper probe Lower probex 1010 cm-3

Proof of principle: discharge in the external field gives much more plasma downstream.

Page 16: A helicon source requires a DC magnetic field.. U. Wisconsin

Optimization of magnet geometry

UCLA

Result: Field strength magnet volumeSpacing improves uniformity slightly

actual

actual

Page 17: A helicon source requires a DC magnetic field.. U. Wisconsin

Optimization of discharge tube: HELIC code

UCLA

a

b

c

Distant conducting shell

antenna

plasma

LLc

dEndplates have arbitrary reflectivity

D. Arnush, Phys. Plasmas 7, 3042 (2000).

Radial profiles are arbitrary, but B and n must be uniform axially.

HELIC gives not only the wave fields but also R, the loading resistance.

Page 18: A helicon source requires a DC magnetic field.. U. Wisconsin

The low-field peak

UCLA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1E+11 1E+12 1E+13n (cm-3)

R (

ohm

s)

100 G

63 G

40 G

25 G

16 G10 G Typical HELIC result

Page 19: A helicon source requires a DC magnetic field.. U. Wisconsin

Relation of R to plasma density

UCLA

pin rf

p c

RP P

R R

7 1/ ½ 1.0 10 secsdN dt Snc n

c i eW E W W 101.1 10 WattsoutP n

Rp << Rc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1E+11 1E+12 1E+13n (cm-3)

R (

ohm

s)

100 G

63 G

40 G

25 G

16 G10 G

Page 20: A helicon source requires a DC magnetic field.. U. Wisconsin

Relation of R to plasma density

UCLA

pin rf

p c

RP P

R R

7 1/ ½ 1.0 10 secsdN dt Snc n

c i eW E W W 101.1 10 WattsoutP n

10

100

1000

1E+11 1E+12 1E+13n (cm-3)

Pin (

W)

1000500200100Loss

P rf (W)

Rp > Rc

Page 21: A helicon source requires a DC magnetic field.. U. Wisconsin

HELIC and expt. matrices varied a, L, f, p, endplate

UCLA

Matrix A: tube dimensions Matrix B: frequency-diameter

2" long 2.0 MHz

4" long 13.56 MHz

6" long 27.12 MHz

Matrix C: pressure-frequency Matrix D: Boundary condition

2.0 MHz ei = -1

13.56 MHz ei = +1

Use MatrixD.csv input file Goes to higher density.27.12 MHz Diam = 4", freq. = 27.12

DL2ins DL4ins DL6ins

ZA = 0.975 ZA = 0.949 ZA = 0.924

ZA = 0.975 ZA = 0.949 ZA = 0.924

DL2cond DL4cond DL6cond

2" long 4" long 6" long

ZA = 0.949

Cp1f27_

ZA = 0.949

Cp3f27_

Cp1f13_

a = .038

Cp3f13_

a = .038

ZA = 0.949

ZA = 0.949 ZA = 0.949Standard

ZA = 0.949

a = .038ZA = 0.949

AD2L6_ AD3L6_ AD4L6_ BD3f27_ BD4f27_

2" diam 3" diam 4" diam

ZA = 0.949 ZA = 0.949 ZA = 0.949a = .025 a = .038 a = .051

ZA = 0.949 ZA = 0.949

ZA = 0.949 ZA = 0.949Standard

a = .038 a = .051

BD2f13_ BD3f13_ BD4f13_

BD3f2_ BD4f2_

a = .025 a = .038 a = .051

BD2f2_

ZA = 0.949

a = .025

BD2f27_

ZA = 0.924

ZA = 0.949 ZA = 0.949

ZA = 0.924 ZA = 0.924

StandardAD2L4_ AD3L4_ AD4L4_

a = .051

a = .051

AD3L2_ AD4L2_

4" diam

ZA = 0.975

a = .025

a = .025

ZA = 0.975

AD2L2_

ZA = 0.975

ZA = 0.949a = .038

a = .038

1 mTorr 3 mTorr 10 mTorr

a = .038a = .025 a = .0512" diam 3" diam

a = .038ZA = 0.949

Cp10f2_

a = .038 a = .038 a = .038

Cp1f2_ Cp3f2_

a = .038ZA = 0.949

Cp10f13_

a = .038ZA = 0.949

Cp10f27_

Page 22: A helicon source requires a DC magnetic field.. U. Wisconsin

Examples: Tube diameter, frequency

UCLA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1E+11 1E+12 1E+13n (cm-3)

R (

ohm

s)

d = 10.2 cmd = 7.6 cmd = 5.1 cm

Tube diameter

0.0

0.5

1.0

1.5

2.0

1E+11 1E+12 1E+13n (cm-3)

R (o

hms)

100795020805020

13 MHz: solid points2 MHz: open points

B(G)

Larger diameter gives higher plasma resistance, but this is

not practical.

13.56 MHz is much better than 2 MHz.

Page 23: A helicon source requires a DC magnetic field.. U. Wisconsin

Final design

UCLA

5.1 cm

10 cm

5 cmANTENNA

GAS INLET

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

-10 -8 -6 -4 -2 0 2 4 6 8 10Very similar to “stubby” tube, designed by intuition! Only improvement is the metal top. A single NdFeB magnet

Page 24: A helicon source requires a DC magnetic field.. U. Wisconsin

The magnets are dangerous!

UCLA

12.7 cm

7.6 cm

PLASMA

Material: NdFeB

Bmax = 12 kG

Attractive force between two magnets 2 cm apart:

516 Newtons = 53 kG

Page 25: A helicon source requires a DC magnetic field.. U. Wisconsin

Wooden frame for safe storage

UCLA

Page 26: A helicon source requires a DC magnetic field.. U. Wisconsin

Single tube, final configuration

UCLA0

50

100

150

200

250

300

350

-4 -2 0 2 4r (cm)

Bz

(G)

56789101214

z (cm from midplane of magnet)

0

2

4

6

8

10

-5 0 5 10 15 20r (cm)

n (1

011

cm-3

)

Z1, single magnetZ1, with neighborsZ2, single magnetZ2, with neighbors

Radial density profilesat Z1 = 7.4 cm and Z2 = 17.6 cm below discharge.

Radial Bz profiles at various distances below the magnet.

Discharge tube

Page 27: A helicon source requires a DC magnetic field.. U. Wisconsin

Design of array

UCLA

0

2

4

6

8

10

12

15 20 25 30L (cm)

Rip

ple

(+/-

%)

L = 17.5 cm gives < 2% ripple at 17 cm below source

The density at Z2 is summed over nearest tubes.

For a single row, a distance L = 17.5 cm between two tubes gives less than 2% ripple in density.

Page 28: A helicon source requires a DC magnetic field.. U. Wisconsin

Computed uniformity n(x) for various y

0

1

2

3

4

5

6

7

8

-30 -20 -10 0 10 20 30x (cm)

n (1

011

cm

-3)

SumRow1Row2Avg: all y

y = 0

(a)

0

1

2

3

4

5

6

7

8

-30 -20 -10 0 10 20 30x (cm)

n (1

011

cm

-3)

SumRow1Row2Avg: all y

y = 7.5

(b)

0

1

2

3

4

5

6

7

8

-30 -20 -10 0 10 20 30x (cm)

n (1

011

cm

-3)

SumRow1Row2Avg: all y

y = 15

(c)

0

1

2

3

4

5

6

-30 -20 -10 0 10 20 30x (cm)

n (1

011

cm

-3)

SumRow1Row2Avg: all y

y = 22.5

(d)

Half-way between rows 1/4-way between rows

Directly under a row Beyond both rows

Page 29: A helicon source requires a DC magnetic field.. U. Wisconsin

An 8-tube linear test array

UCLA

165 cm

53.3 cm

17.8

17.8

17.8

17.8 cm73.7 cm

8.9 cm

x

y

Page 30: A helicon source requires a DC magnetic field.. U. Wisconsin

The array source is vertically compact

UCLA

165 cm

30.5

17.8 cm

The magnets are to be stuck onto an iron plate, which holds them and also concentrates the flux.

Once placed, the magnets cannot easily be moved, so for testing we use a wooden support.

Page 31: A helicon source requires a DC magnetic field.. U. Wisconsin

The wooden magnet frame is used in testing

UCLA

64"

21"

3.5"

12"

Wooden magnet support

2.00

5.00

3.75

2.5

24 ea. 2.5 x 5.5 x 1/2"4 ea. 2.5 x 64 x ¾”

1 ea. 21 x 64 x 1/2”16 ea. 1/4” diam dowels

Page 32: A helicon source requires a DC magnetic field.. U. Wisconsin

An 8-tube staggered array in operation

UCLA

Page 33: A helicon source requires a DC magnetic field.. U. Wisconsin

Possible applications

UCLA

• Web coaters• Flat panel displays• Solar cells• Optical coatings

A web coater

Page 34: A helicon source requires a DC magnetic field.. U. Wisconsin