a. klumper- spectral properties of quantum spin chains and chalker-coddington-networks of...

Upload: po48hsd

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    1/32

    Spectral properties of quantum spin chains and

    Chalker-Coddington-networks of Temperley-Liebtype

    A. Klumper

    University of Wuppertal - Department of Physics

    with: Aufgebauer, Brockmann, Nuding, Sedrakyan

    18.06.10

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    2/32

    Contents

    1 Spin models of Temperley-Lieb-TypeBiquadratic Spin-1 Quantum Chain + generalizations

    Chalker-Coddington network

    TL-reference model: s= 1/2 Heisenberg chain

    2 Open boundary conditionsConstruction of sectors

    Multiplicities ( thermodynamics for h= 0)3 Periodic boundary conditions

    Construction of sectors ( twist, exponents, thermodynamics)Multiplicities

    4 Summary

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 2 / 32

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    3/32

    Spin models of Temperley-Lieb-Type Biquadratic Spin-1 Quantum Chain + generalizations

    Biquadratic Spin-1 Quantum Chain

    Most general su(2) isotropic quantum s= 1 spin chain withnearest-neighbour interaction:

    H=L

    j=1 cos SjSj+1 + sin

    SjSj+12

    Special/integrable points: cot = 3,

    1, 0

    Here of particular interest:1

    0

    cos

    sin

    E = E , E : 8 + 1

    su(3): 3 x 3

    E = E , E : 6 + 3

    E , E , E : 1 + 3 + 5

    0 2 1

    1 2

    2 0

    su(3): 3 x 3

    purely biquadratic case, representation of Temperley-Lieb algebra

    Parkinson 87/88; AK 89, 93; Barber, Batchelor 89; Albertini 00; Alcaraz, Malvezzi 92; Koberle, Lima-Santos 94, 96; Kulish 2003; ...

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 3 / 32

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    4/32

    Spin models of Temperley-Lieb-Type Biquadratic Spin-1 Quantum Chain + generalizations

    Spin models of Temperley-Lieb type

    Hamiltonian H= i=1 bi Hilbert space HN = (V)N

    local interactions proportional to projectors onto su(2)-singletsbi = | |i,i+1. For V = C3

    | = ,=1,0,1

    , |, , = 0 0 1

    0 1 01 0 0

    , + = idaccidentally higher su(3) symmetry of type [3] [3]:

    bi commutes with g g g g... where g := (g1

    )T

    for any invertible 3 3 matrix g, (if g is unitary: g= g).Generalization to dim(V) = 2s+ 1 =: n for arbitrary spin

    (s= 1/2, 1, 3/2, 2...) and su(n) symmetry.A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 4 / 32

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    5/32

    Spin models of Temperley-Lieb-Type Biquadratic Spin-1 Quantum Chain + generalizations

    Temperley-Lieb relations

    TLN(): (open boundary)Generators bi for i= 1,...,N 1 with relations:

    b2i = bi for i= 1, 2,..., N 1

    bi bi1 bi = bi

    bi bj = bj bi for |ij| > 1PTLN(): (closed boundary) additional generator bN:

    b2N = bN

    bjbNbj = bj; bNbjbN = bN for j= 1,N 1bjbN = bNbj for j= 1,N 1

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 5 / 32

    S i d l f T l Li b T Bi d i S i Q Ch i li i

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    6/32

    Spin models of Temperley-Lieb-Type Biquadratic Spin-1 Quantum Chain + generalizations

    graphical notation for bi = id(i1) | |i,i+1 id(Ni1)

    bi = id(i1)

    id(Ni1)

    Temperley-Lieb condition : bibi+1bi = bi

    = = id

    Temperley-Lieb condition : b2i = bi

    =

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 6 / 32

    S i d l f T l Li b T Ch lk C ddi t t k

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    7/32

    Spin models of Temperley-Lieb-Type Chalker-Coddington network

    Chalker-Coddington network

    3-state model with staggered su(2

    |1) symmetry for spin quantum Hall

    effect

    2 2= (1t ) + t

    2 2= (1t ) + t

    A A

    B B

    = 1 1 +1 = 1

    = diag(+1,1,+1)

    = = = diag(+1,+1,+1)

    boundary conditions/super-trace: closed loops evaluate to 1

    Gruzberg, Ludwig, Read 1999

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 7 / 32

    Spin models of Temperley Lieb Type TL reference model: s 1/2 Heisenberg chain

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    8/32

    Spin models of Temperley-Lieb-Type TL-reference model: s= 1/2 Heisenberg chain

    Temperley-Lieb Models: Summary of Examples

    i) Biquadratic chains and generalizations

    V V =2sJ=0

    VJ, | su(2) singlet, = dim(V)singlet of two spin-s reps quarkanti-quark singlet of su(n),n= 2s+ 1

    ii) generalizing model (arbitrary anisotropy and spin)

    | Uq(su(2)) singlet ; =s

    l=s

    (q2)l for q Rhere most important: q= 1, i su(n), su(s+ 1, s) = n, 1.

    iii) reference system: XXZ-model s= 1/2 Bethe-Ansatz| | =

    q1/2 |+ q1/2 |+

    q1/2 +| q1/2 +|

    hermitian for q

    R, TL-parameter = q+ q1, interaction = 2

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 8 / 32

    Spin models of Temperley Lieb Type TL reference model: s = 1/2 Heisenberg chain

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    9/32

    Spin models of Temperley-Lieb-Type TL-reference model: s= 1/2 Heisenberg chain

    Temperley-Lieb Equivalence at T> 0?

    Two different models being representations of the same TL-algebra

    (same !) have same spectrum, but multiplicities may differ!

    TL equivalent are:

    3-state biquadratic chain and 2-state XXZ chain with = 3/2

    Thermodynamics differ! Aufgebauer, AK 2010

    0 1 2 3 4 5T

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    specif

    ic

    heat

    antiferromagnetic case: S=1 and XXZ

    0 1 2 3 4 5T

    0

    0,1

    0,2

    0,3

    0,4

    specif

    ic

    heat

    ferromagnetic case: S=1 and XXZ

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 9 / 32

    Spin models of Temperley-Lieb-Type TL-reference model: s = 1/2 Heisenberg chain

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    10/32

    Spin models of Temperley-Lieb-Type TL-reference model: s= 1/2 Heisenberg chain

    Temperley-Lieb Equivalence and CFT?

    Two different models being representations of the same TL-algebra

    (same !) have same spectrum for open boundary conditions, butcentral charge and scaling dimensions may differ!

    TL equivalent are:

    3-state su(2

    |1) invariant chain and 2-state XXZ chain with = 1/2

    Scaling dimensions for = cos Heisenberg chain

    x =1 /

    2S2 +

    1

    2(1 /)m2

    1

    3S2 +3

    4m2

    with central charge c= 1.

    su(2|1) quantum chain has different characteristics, in particular c= 0.

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 10 / 32

    Open boundary conditions Construction of sectors

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    11/32

    Open boundary conditions Construction of sectors

    Open boundary conditions

    Decomposition of Hilbert space into irreducibles of TLN() (generic )

    Equiclasses of irred. indexed

    by Nand k ; 0 k N2 O(N, k)decomposition rule:

    O(N, k) TLN1()

    (P. Martin: Potts models and related problems in statistical mechanics)

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 11 / 32

    Open boundary conditions Construction of sectors

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    12/32

    Open boundary conditions Construction of sectors

    Reference States alias 1d-TL-reps

    Bethe-ansatz reference states (by definition) are annihilated by all bis

    N := { | bi = 0 : 1 i N 1} O(N, 0)

    General representation isomorphic to O(N, k)

    constructed from reference state on chain with N 2k sites and kmany local TL-singlets

    v1 := k with N2kspans TLN-invariant subspace

    multiplicity of O(N, k) in HN is equal to dim(N2k)

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 12 / 32

    Open boundary conditions Construction of sectors

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    13/32

    p y

    example k= 1 N= 4

    b2

    b1

    b2( )b3

    b2

    b3 b2( )

    b2b1

    b3b2

    orthogonal-basis:

    v1 = , v2 = 2 1

    b2( ) 1

    ( )

    v3 = 2

    13 2

    b3 v

    2 2 1v

    2polynomials : P0() = 1, P1() = , Pk() = Pk1 Pk2

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 13 / 32

    Open boundary conditions Multiplicities ( thermodynamics for h= 0)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    14/32

    p y p ( y )

    Dimension of N (sits in N1) is kernel of

    map bN1 : N1 h N2

    which is surjectiv!Proof: For given N2 consider the k= 1 TLN-sector

    vN1()bN1 P1PN2

    Dimension formula for kernel and image yields recursion relation

    dim(N) = ndim(N1) dim(N2) n= dim(h)

    dim(N) = PN(n) =n+n2 4N+1 nn2 4N+1

    2N+1n2 4

    Multiplicities for open boundaries derived earlier by double centralizer

    property Kulish, Manojlovic and Nagy 2008.

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 14 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    15/32

    Temperley-Lieb Equivalence of Partition Functions

    The spectra of two Hamiltonian in equivalent representations O(N, k)

    are identical. Asymptotically, there are zN2k

    many of suchrepresentations/sectors, with fugacity

    z=

    n+

    n2 42

    We sum over all sectors and in each one over all energies

    Z(T,h= 0) =N

    k=0 allEkeEk zN2k.

    which gives the grand-canonical partition function of the XXZ

    reference model with magnetic field

    N2k = M Z(T, h= 0) = Tre(HXXZ(T ln z)M) = ZXXZ(T,T ln z)A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 15 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    16/32

    Antiferromagnetic Biquadratic Spin-1 Quantum Chain:

    Specific Heat and Entropy

    0 1 2 3 4 5T

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    specific

    heat

    antiferromagnetic case: S=1 and XXZ

    0 1 2 3 4 5T

    0

    0,5

    1

    entropy

    antiferromagnetic case: S=1 and XXZ

    (Note the thermodynamically activated behaviour with very small gap)

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 16 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    17/32

    Ferromagnetic Biquadratic Spin-1 Quantum Chain:

    Specific Heat and Entropy

    0 1 2 3 4 5T

    0

    0,1

    0,2

    0,3

    0,4

    spe

    cific

    heat

    ferromagnetic case: S=1 and XXZ

    0 1 2 3 4 5T

    0

    0,5

    1

    entropy

    ferromagnetic case: S=1 and XXZ

    There is residual entropy!

    S(T = 0) = ln z= ln

    n+

    n2 42

    n=3 0.9624...

    and activated behaviour with noticeable gap.A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 17 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    18/32

    Partition Function with external magnetic field

    lattice path integral approach classical model based on TL

    N

    L

    with periodic boundary conditions of column-to-column transfer matrix

    magnetic field leads to twisted boundary conditions

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 18 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    19/32

    Periodic and twisted boundary conditions

    Consider models like biquadratic chain with

    = id

    on periodically closed chain.

    For k= 1 :

    N2 =bNbN1 b2 N2 =

    b1

    (bNbN1

    b2

    N2

    ) =

    = T2(N2) Take pN2 and eigenstate of T = eiPMomentum eigenvalue of translationally invariant reference state

    enters!A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 19 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    20/32

    Periodic and twisted boundary conditions

    Consequence:

    TL-equivalence of periodic biquadratic chain to twisted XXZ

    Goal: Decompose the Hilbert space into PTL-representations (see

    Martin, Saleur 93) isomorphic to twisted XXZ-PTLN-representations.

    HN =

    N1i=1

    12S+i Si+1 + Si S+i+1 + (q+ q1)Szi Szi+1

    +1

    2

    e2i S+NS

    1 + e

    2i SNS+1 + (q+ q

    1)SzNSz1

    .

    bN acts as projector | | in hN h1| = ei q1/2 |+ ei q1/2 |+

    PTLN()-relations fulfilled for all

    C

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 20 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    21/32

    Bethe-Ansatz for twisted XXZ in Sz =constant:

    eigenstates in PTLN-subrepresentation

    | |+(N2) b2 |+ | |+(N3)

    graphical notation:

    N2 =

    b2

    b1 bNbN1 b2 | |+(N2) = (1)N ei2 | |+(N2)

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 21 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    22/32

    Construction for arbitrary k

    p

    N2k T = ei

    (b1bN b2k+2)(b3b2) (b2k+1b2k)k = ()N(e2i) k graphically:

    b2b3 b2k

    b2k+1 b1b2k+2

    sector P(N, k, ):k construct PTLN-invariant subspace.dim(P(N, k, )) Nk

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 22 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    23/32

    Special extremal case P(N,N/2, )

    Even N

    Sector k= N2 : appended reference state trivial imaginary twist-angle, i.e. magnetic field

    = i ln1

    2

    n+

    n2 4

    n= dim(h)

    yields thermodynamics of biquadratic quantum spin chain for arbitrary

    T and h.

    Sectors with k< N2 : not needed.

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 23 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    24/32

    Temperley-Lieb Equivalence at finite T and h

    The partition functions for the biquadratic chain and the XXZ chain are

    identical Z(T,h) = ZXXZ(T,h) provided

    1 + 2 cosh

    h

    T

    = 2 cosh

    h

    T

    0 1 2 3 4 5T

    0

    0,1

    0,2

    0,3

    0,4

    suscept

    ibility

    antiferromagnetic case: S=1 and XXZ

    0 1 2 3 4 5T

    0

    1

    2

    3

    4

    5

    6

    suscep

    tibility

    ferromagnetic case: S=1 and XXZ

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 24 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    25/32

    Chalker-Coddington network at critical point

    Isotropic case tA = tB corresponds to integrable, critical vertex model.

    transfer matrices

    T and T1 2

    Two commuting families of diagonal-to-diagonal transfer matrices, T1

    and T2. Logarithmic derivative yields TL-Hamiltonian.A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 25 / 32

    Periodic boundary conditions Construction of sectors ( twist, exponents, thermodynamics)

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    26/32

    Chalker-Coddington network: conformal properties

    Sector k= L2 :

    appended reference state trivial, real twist-angle = /3.Central charge: c() = 1 6(/)

    2

    1 / 0

    Sectors with k< L2

    = l L 2k, l= 0, 1,..., L 2k 1,

    (If magnetization of state is odd: l= 1/2, 3/2,..., L 2k 1/2.)

    Scaling dimension: x= 4S2 + 9(m /)2 112

    , s= Sm

    Log-corrections: Ex,s ECFTx,s = 2v

    (1/12 x)2 s2) logL

    L3,

    Aufgebauer, Brockmann, Nuding, AK, Sedrakyan (2010)A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 26 / 32

    Periodic boundary conditions Multiplicities

    p

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    27/32

    Dimension of pN

    Multiplicities of scaling dimension identical to dimension of space of

    reference states.

    pN is kernel of the map

    bN : N N2 VN V1 VN1.

    Again surjectivity can be proven, dimension formula:

    dim(pN) = dim(N) dim(N2).

    dim(pN)(n) =

    n+

    n2 42

    N+

    nn2 4

    2

    N.

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 27 / 32

    Periodic boundary conditions Multiplicities

    p

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    28/32

    Spectrum of T in pN

    T = eiP diagonalisable in p

    NEigenvalues of momentum operator P:

    2

    Nl, l {0, 1,...,N 1}

    (1) Spectrum of T in HN(2) Spectrum of T in pN, multiplicities of k-sectors

    ad (i):If N is prime: multiplicities M(l= 0) = (2

    N2)N + 2, M(l= 0) = (2

    N2)N .

    N= 6: M(0) = 14, M(1) = 9, M(2) = 11, M(3) = 10.

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 28 / 32

    Periodic boundary conditions Multiplicities

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    29/32

    (1) X = {xi} basis of V XN =xi1 xi2 xiN

    T acts on XN partition of T-orbits(p): dimension of p-periodic subspace

    p|N

    (p) = (N) (N) := dim(HN) = nN

    (N) = n|N

    (n) Nn

    : Mobius function

    Multiplicity of momentum eigenvalues

    M2Nl;HN =

    n| (l,N)

    (Nn)Nn

    =

    n| (l,N)

    nN

    n| N

    n

    (n) Nnn

    .

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 29 / 32

    Periodic boundary conditions Multiplicities

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    30/32

    (2) Formula for multiplicities of momentum eigenvalues in pN similar

    to above

    M2N l; p

    N = n| (l,N)(Nn)

    Nn

    = n| (l,N)

    n

    Nn| Nn

    (n) Nnn .where now (N) = dim(pN).

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 30 / 32

    Summary

    S

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    31/32

    Summary

    direct-sum decomposition of Hilbert space(1) open boundaries :

    irreducible TLN-representations

    (2) periodic boundaries :

    PTLN-representations depend on additional parameter

    XXZ-sectors with twist, spectrum via Bethe-Ansatz(3) applications:

    thermodynamics (arbitrary T, h), conformal properties

    (i) multiplicities known thermodynamics(ii) nongeneric Temperley-Lieb parameter?

    (iii) correlation functions?

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 31 / 32

    Summary

    D iti f P i t O

    http://find/http://goback/
  • 8/3/2019 A. Klumper- Spectral properties of quantum spin chains and Chalker-Coddington-networks of Temperley-Lieb type

    32/32

    Decomposition of P into Os

    decomposition rule for P(N, k, ) into irreducible TLN-representations:( > 2 and 2k< N)

    P(N, k, ) TLN= kl=0O(N, k l)

    dim(P(N, k, )) = Nkproof by construction of orthogonal basis

    polynomials:

    D,k () = Pk() Pk2() ()k (e2i + e2i)

    2 cos(2)

    for k 2.

    A. Klumper (University of Wuppertal) TL-equivalence for finite T, h 28.07.09 32 / 32

    http://find/http://goback/