a les-langevin model

24
A LES-LANGEVIN MODEL B. Dubrulle Groupe Instabilite et Turbulence CEA Saclay Colls: R. Dolganov and J-P Laval N. Kevlahan E.-J. Kim F. Hersant J. Mc Williams S. Nazarenko P. Sullivan J. Werne

Upload: verna

Post on 31-Jan-2016

54 views

Category:

Documents


0 download

DESCRIPTION

A LES-LANGEVIN MODEL. Colls: R. Dolganov and J-P Laval N. Kevlahan E.-J. Kim F. Hersant J. Mc Williams S. Nazarenko P. Sullivan J. Werne. B. Dubrulle Groupe Instabilite et Turbulence CEA Saclay. IS IT SUFFICIENT TO KNOW BASIC EQUATIONS?. Giant convection cell. Dissipation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: A LES-LANGEVIN MODEL

A LES-LANGEVIN MODEL

B. Dubrulle

Groupe Instabilite et Turbulence

CEA Saclay

Colls: R. Dolganov and J-P LavalN. KevlahanE.-J. KimF. HersantJ. Mc WilliamsS. NazarenkoP. SullivanJ. Werne

Page 2: A LES-LANGEVIN MODEL

IS IT SUFFICIENT TO KNOW BASIC EQUATIONS?

E(k)kGrandes EchellesPetites EchellesFlux d’Energie(Viscosité Turbulente)(Paramétrisées)Explosion90 % des ressources informatiques

Waste of computational resourcesTime-scale problem

Necessity of small scale parametrization

Giant convectioncell

Solarspot

GranuleDissipation scale

0.1 km 103km 3⋅104 km 2⋅105 km

Page 3: A LES-LANGEVIN MODEL

Influence of decimated scales

Typical time at scale l: δt≈lu

∝ l2

3

Decimated scales (small scales) vary very rapidlyWe may replace them by a noise with short time scale

u=u +u'

Dtu' i =Aiju' j +ξj

ξi x,t( )ξj x',t'( ) =κ ij x,x'( )δ t−t'( )

Generalized Langevin equation

Page 4: A LES-LANGEVIN MODEL

Obukhov ModelSimplest case

u =0

Aij =−γδij, γ >>δt

κ ij x,x'( ) ∝γδij

No mean flow

Large isotropic frictionNo spatial correlations

P(

r x ,

r u ,t) =

32πεt2

⎝ ⎜ ⎜

⎠ ⎟ ⎟ exp−

3x2

εt3 −3r x •

r u

εt2 −u2

εt

⎝ ⎜ ⎜

⎠ ⎟ ⎟

u∝ εt

x∝ ε2/3t3/ 2

u∝ x1/ 3

Gaussian velocities

Richardson’s law

Kolmogorov’s spectraLES: Langevin

Page 5: A LES-LANGEVIN MODEL

Influence of decimated scales: transport

r x •

=r u +

r u '

r Ω =

r ∇ ×

r u

r Ω •

=(r Ω •

r ∇ )

r u +(

r Ω •

r ∇ )

r u '

∂tΩi +u k∇kΩi =Ωk∇kui +∇ k βkl∇l Ωi[ ]+2αkil∇kΩ l

βkl = uk' ul

'

αijk = ui'∂kuj

'Stochastic computation

Turbulent viscosity AKA effect

Page 6: A LES-LANGEVIN MODEL

Refined comparison

True turbulenceAdditive noise

GaussianityWeak intermittency

Non-GaussianitéForte intermittence

˙ u =−γu+η

PDF of increments

SpectrumIso-vorticity

LES: Langevin

Page 7: A LES-LANGEVIN MODEL

LOCAL VS NON-LOCAL INTERACTIONS

• Navier-Stokes equations : two types of triades∂tu +u•∇ u=−∇ p+ν Δu+ f

Nl

L

L

l

LOCAL NON-LOCAL

Page 8: A LES-LANGEVIN MODEL

LOCAL VS NON-LOCAL TURBULENCE

Page 9: A LES-LANGEVIN MODEL

NON-LOCAL TURBULENCE

∂tU + (U • ∇)U = −∇p + u ×ω + νΔU

∂tω =∇ × U ×ω( ) + ηΔω

E = U 2 + u2( )∫ dx

Hm = u • ω dx∫Hc = U • ω dx∫

Analogy with MHD equations: small scale grow via « dynamo » effect

Conservation lawsIn inviscid case

E

k

U

Page 10: A LES-LANGEVIN MODEL

A PRIORI TESTS IN NUMERICAL SIMULATIONS

2D TURBULENCE

3D TURBULENCE

U ∇ u

u∇ u

U ∇ U

u∇ U

Local large/ large scales

Local small/small scales

Non-local

<<

Page 11: A LES-LANGEVIN MODEL

DYNAMICAL TESTS IN NUMERICAL SIMULATIONS

2DDNS

3DDNS

2DRDT

3DRDT

Page 12: A LES-LANGEVIN MODEL

THE RDT MODEL

∂t Ui +U j ∇ j Ui =−∇iP +ν ΔUi −∇ j uiU j +ujUi +uiuj( )

∂t ui + U j ∇ j ui = −u j∇ jU i −∇ i p + ν t Δ ui + f i

Equation for large-scale velocity

Equation for small scale velocity

Reynolds stresses

Turbulent viscosity Forcing (energy cascade)

Computed (numerics) or prescribed (analytics)

Linear stochastic inhomogeneous equation(RDT)

Page 13: A LES-LANGEVIN MODEL

THE FORCING

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2

< F( t )F( t

0 ) >

t-t0

1

10

100

1000

10 4

10 5

10 6

10 7

-100 -50 0 50 100

P(x)

x

CorrelationsPDF of increments

Iso-force Iso-vorticity

Page 14: A LES-LANGEVIN MODEL

TURBULENT VISCOSITY

DNS RDTSES

νt =Cv

25

q−2E(q)dqk

Page 15: A LES-LANGEVIN MODEL

LANGEVIN EQUATION AND LAGRANGIAN SCHEME

∂t ui +U j ∇ j ui =−∇i p+νt Δui + fi

GT u( ) x,k[ ]= dx'∫ f x−x'( )eik(x−x')u x'( )

x

k

Décomposition into wave packets

Dtu=−νTk2u+u•∇ 2

kk2

U •k−U⎛

⎝ ⎜

⎠ ⎟ +f

Dt x=U

Dtk=−∇ U •k( ) The wave packet moves with the fluidIts wave number is changed by shear

Its amplitude depends on forces

friction “additive noise”

coupling (cascade)“multiplicative noise”

Page 16: A LES-LANGEVIN MODEL

COMPARISON DNS/SES

Fast numerical 2D simulation

Computational time10 days 2 hours

DNS Lagrangian model

(Laval, Dubrulle, Nazarenko, 2000)

QuickTime™ and aGIF decompressor

are needed to see this picture.

Shear flow

QuickTime™ and aBMP decompressor

are needed to see this picture.

Hersant, Dubrulle, 2002

Page 17: A LES-LANGEVIN MODEL

SES SIMULATIONS

Experiment

DNS

SES

Hersant, 2003

Page 18: A LES-LANGEVIN MODEL

LANGEVIN MODEL: derivation

∂t ui + U j ∇ j ui = −u j∇ jU i −∇ i p + ν t Δ ui + f i

Equation for small scale velocity

Turbulent viscosity

Forcing

∇ u u −u u ( )

1

10

100

1000

10 4

10 5

10 6

10 7

-100 -50 0 50 100

P(x)

x

Isoforce

PDF

LES: Langevin

Page 19: A LES-LANGEVIN MODEL

Equation for Reynolds stress

τij =u iu j −u iu j +u iu' j +u' i u j +u'i u' j

=u iu j −u iu j + Lij −2νT Sij

∇ jLij =l i

∂t

r l =−

r ω ×

r l +

r ∇ ×

r l [ ]×

r u ( )

⊥+νtΔ

r l +

r ξ

r ξ =−

r ω ×

r f +

r ∇ ×

r f [ ]×

r u ( )

with

Generalized Langevin equation

Forcing dueTo cascade

AdvectionDistorsionBy non-local interactions

LES: Langevin

Page 20: A LES-LANGEVIN MODEL

Performances

LES: Langevin

Spectrum Intermittency

Comparaison DNS: 384*384*384 et LES: 21*21*21

Page 21: A LES-LANGEVIN MODEL

Performances (2)

LES: Langevin

Q vs R

s probability

Q =1

2SijS ji

R =1

3SijS jkSki

s = −3 6αβγ

α 2β 2γ 2( )

Page 22: A LES-LANGEVIN MODEL

THE MODEL IN SHEARED GEOMETRY

Basic equations

∂tUθ =−1r2

∂rr2 uruθ +νΔUθ

Dtur =2krkθ

k2Ω +S( )ur +2Ωuθ 1−

kr2

k2

⎝ ⎜

⎠ ⎟ −νTk

2uθ +Fr

Dtuθ =2kθ

2

k2Ω +S( )ur −

krkθ

k22Ωuθ − 2Ω +S( )ur −νTk

2uθ +Fθ

Dtuz =2kθkz

k2Ω+S( )ur −

krkz

k22Ωuθ −νTk

2uz +Fz

Equation for mean profile

RDT equations for fluctuationswith stochasticforcing

Page 23: A LES-LANGEVIN MODEL

ANALYTICAL PREDICTIONS

Mean flow dominates Fluctuations dominates

Low Re

G =1.46η2

1−η( )7/ 4 Re3/2

G =0.5η2

1−η( )3/2

Re2

ln(Re2)3/ 2

Page 24: A LES-LANGEVIN MODEL

TORQUE IN TAYLOR-COUETTE

10 5

10 6

10 7

10 8

10 9

10 10

10 11

100 1000 10 4 10 5 10 6

G

Re

10 4

10 5

10 6

10 7

10 8

10 9

10 10

100 1000 10 4 10 5

G

R

η = 0.68

η = 0.935

η = 0.85No adjustable parameter

Dubrulle and Hersant, 2002