a new parameterization of biogenic soa formation based on smog chamber data: 3d testing in cmaq...

19
A new parameterization of biogenic SOA formation based on smog chamber data: 3D testing in CMAQ Manuel Santiago 1 , Ariel F. Stein 2 , Marta G. Vivanco 1 , Yunsoo Choi 3 and Rick Saylor 4 1 CIEMAT (Research Center for Energy, Environment and Technology). Madrid. SPAIN 2 ERT on assignment of NOAA/ARL, Silver Spring MD 3 NOAA/ARL, Silver Spring, MD 4 NOAA/ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN 2011 CMAS Conference [email protected]

Post on 18-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

A new parameterization of biogenic SOA formation based

on smog chamber data: 3D testing in CMAQ

Manuel Santiago1, Ariel F. Stein2, Marta G. Vivanco1, Yunsoo Choi3 and Rick Saylor4

1 CIEMAT (Research Center for Energy, Environment and Technology). Madrid. SPAIN2 ERT on assignment of NOAA/ARL, Silver Spring MD

3 NOAA/ARL, Silver Spring, MD4 NOAA/ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN

2011 CMAS Conference [email protected]

Motivation

Biogenic SOA, accounts for the largest fraction of the global atmospheric aerosol

EUPHORE smog chamber experiments: CMAQ paramaters that govern SOA originated by terpenes clearly overestimate our experimental data.

Here, a semi-empirical parameterization based on product distribution given by BVOCs oxidation pathways is presented for -pinene + limonene SOA

Terpene SOA in CMAQ v4.7

Based on the partition parameters obtained by Griffin et al. 1999

1 ,1 2 ,2

,1 ,2

. .

1 . 1 .om om

oom o om o

K KY M

K M K M

Two Product Model for different BVOCs

Griffin et al., 1999

Terpene SOA in CMAQ v4.7

Compound wght alpha1 Kom1 alpha2 Kom2 ---------- ---- ------ ------ ------ ------ a-pinene 0.4 .038 .171 .326 .0040b-pinene 0.25 .13 .044 .406 .0049 d3-carene 0.15 .054 .043 .517 .0042 sabinene 0.1 .067 .258 .399 .0038 limonene 0.1 .239 .055 .363 .0053

alpha1 cstar1 alpha2 cstar2 ------ ------ ------ ------ CMAQ TERPENE .1123 7.466 .5013 110.77

• Straighforward implementation

• Lack of known of the product distributions for all the identified SOA precursor pathways

Why two-product model?

Semiempirical Parameterization

Theoretical Kom,i calculation for individual SOA constituents

-pin + limo yield calculation

Two product model fit(Based on theoretical constraints)

Comparison with current CMAQ parameters

Smog Chamber Experiments

Outdoor chamber EUPHORE (CEAM, Valencia, Spain)

Approximated volume of 200 m3

Biogenic VOCs mixture photooxidation experiments:

(isoprene + -pinene + limonene) + HONO

Smog Chamber Experiments

ppbCHAMBER : ppbRURAL ATM. = 102 – 103

Exp. ISO APIN LIMO HONO NO NO2 SO2 ppbC/ppbNOx T RHppb ppb ppb ppb ppb ppb ppb K %

250608 190 100 100 170 23 15.3 299 11

240609 107 66 58 99 34 128 6.8 302 0.5

141009 92 50 50 87 48 10.8 298 30

261009 122 71 40 53 41 18.3 300 19

271009 63 65 101 32 9.6 298 8

291009 99 59 53 307 150 3.5 297 8

111109 87 50 51 40 244 89 513 3.9 294 19

070610 88 79 76 165 198 461 5.5 302 20

-pinene SOA products(Kamens and Jaoui, 2001)

poL,i

(Torr)Kom,i

(m3.g-1)Limonene SOA products(Jaoui et al., 2006)

poL,i

(Torr)Kom,i

(m3.g-1)

Pinic acid 7.6E-07 0.1450 Limonic acid 6E-07 0.1860

10-Hydroxypinonic acid 7.1E-07 0.1560 7-hydroxylimononic acid 5.5E-07 0.2000

Ketolimonic acid 2.4E-07 0.4710

Ketonorlimononic acid 6.2E-07 0.1770

Pinonic acid 1.1E-04 0.0010 5-hydroxyketolimononic acid 2.2E-07 0.5070

Norpinonic acid 2.9E-04 0.0004

4-oxopinonic acid 1.3E-05 0.0088 Limononic acid 8.4E-05 0.0013

10-hydroxypinonaldehyde 1.1E-04 0.0010 Ketolimononic acid 3.3E-05 0.0033

Organic nitrate 1.2E-04 0.0009 Organic nitrate 1E-04 0.0011

0.1 m3/g < Kom,1 < 0.5 m3/g

0.01 m3/g < Kom,2 < 0.001 m3/g

Individual Kom,i calculation

The contribution method SIMPOL.1 (Pankow and Asher, 2008) was used for the calculation of individual po

L,i and Kom,i

0 100 200 3000.0

0.1

0.2

0.3

0.4TRP (-pin + limo) SOA YIELD

YT

RP

MoTRP

(g/m3)

0 100 200 300 4000.0

0.1

0.2

0.3

Y

Mo (g/m3)

GENERAL SOA YIELD

, .o trp o isoprene isopreneM M ROG Y

,

lim( )o trp

TRPonene pinene

MY

ROG ROG

Yisoprene = 0.02

-pin + limo Yield Calculation

1 ,1 2 ,2

,1 ,2

. .

1 . 1 .om om

oom o om o

K KY M

K M K M

0MYROG

1 = 0.1939 Kom,1 = 0.1106 m3.g-1

2 = 0.2 Kom,2 = 0.0056 m3.g-1

0 100 200 3000.0

0.1

0.2

0.3

0.4TRP (-pin + limo) SOA YIELD

YTR

P

MoTRP

(g/m3)

Model Description

CMAQ v4.7 simplified version: only gas phase chemistry and aerosol formation

Domain: 4 x 4 cell grid located in Valencia, Spain (LAT: 39, LON: 0)

Meteorology: Hourly T, P and QV values measured in the chamber

CCTM Conditions:

Gas/Aerosol mechanism: CB05-AERO5

Solver: SMVGEAR

Temporal Resolution: 000100 (hhmmss)

1 Kom,1,298K

(m3.g-1)cstar

(m3.g-1)2 Kom,2,298K

(m3.g-1)cstar (m3.g-1)

TRP_original APIN 0.0494 0.3529 0.4238 0.0083

LIMO 0.3107 0.1135 0.4719 0.0109

TRP 0.1801 0.1302 7.68 0.4479 0.0097 103.596

TRP_revised APIN 0.0269 0.5618 0.3089 0.0131

LIMO 0.5819 0.0431

TRP 0.3044 0.0483 20.7 0.1544 0.0131 76.182

TRP_fit TRP 0.1939 0.1106 9.04 0.2 0.0056 180.08

Parameterizations to test

TRP_original : Current parameters in CMAQ v4.7 (scale up of i to consider 1.3 g/cc density)

TRP_revised: re-derived parameters for 1.3 g/cc density (Carlton et al.2010)

TRP_fit: parameters obtained in this work (Santiago et al., 2011, submitted to ES&T)

data alpha / 0.0718, ! SV_ALK & 0.0386, 0.1119, ! SV_XYL1, SV_XYL2 & 0.0758, 0.1477, ! SV_TOL1, SV_TOL2 & 0.0942, 1.162, ! SV_BNZ1, SV_BNZ2 & 0.1123, 0.5013, ! SV_TRP1, SV_TRP2 & 0.232, 0.0288, ! SV_ISO1, SV_ISO2 & 1.3 / ! SV_SQT

data cstar / 0.020, ! SV_ALK & 1.314, 34.483, ! SV_XYL1, SV_XYL2 & 2.326, 21.277, ! SV_TOL1, SV_TOL2 & 0.302, 111.11, ! SV_BNZ1, SV_BNZ2 & 7.466, 110.77, ! SV_TRP1, SV_TRP2 & 116.01, 0.617, ! SV_ISO1, SV_ISO2 & 12.193 / ! SV_SQT

Model Description

orgaer5.f

Chamber Experiments Simulations

0 30 60 900

200

400

600

800

1000

0 60 120 180 240 3000

100

200

300

400

500

0 60 120 180 240 3000

100

200

300

400

500

0 60 120 180 240 3000

100

200

300

400

500

SMPS (d=1.3g/cc) TRP_original TRP_revised TRP_fit

250608

SOA

(

g/m

3 )

time (min)

240609

SOA

(

g/m

3 )

time (min)

141009

SOA

(

g/m

3 )

time (min)

261009

SOA

(

g/m

3 )

time (min)

0 60 120 180 240 3000

100

200

300

400

500

0 60 120 180 240 3000

100

200

300

400

500

0 60 120 180 240 3000

100

200

300

400

0 60 1200

100

200

300

400

500

600

SOA

(

g/m

3 )

time (min)

271009 291009

SOA

(

g/m

3 )

SMPS (d=1.3g/cc) TRP_original TRP_revised TRP_fit

time (min)

111109

SOA

(

g/m

3 )

time (min)

070610

SOA

(

g/m

3 )

time (min)

TRP_original TRP_revised TRP_fit250608 147.3 93.8 48.2240609 70.2 36.7 8.0141009 72.0 38.0 3.0261009 96.3 57.2 18.0271009 101.0 55.8 11.4291009 101.5 60.3 23.7111109 81.9 40.6 4.8070610 82.0 43.4 7.9

Normalized Mean Bias (%)

CMAQ v4.7 3D Settings

Study Period: August 2009

Emissions: based on NEI 2005

Meteorology: NAM

Horizontal/Vertical Resolution: 12 km/22 layers

Boundary Conditions: GEOSCHEM monthly average

Chemical/Aerosol Mechanism: CB05-AE5

TRP_original SOA Monthly Average

Effect of different parameters

-1

TRP_original – TRP_revised

TRP_original – TRP_fit-1

A 2 product parameterization for SOA from -pinene and limonene has been calculated with a mixed theoretical-experimental approach

Mechanistic considerations considered in TRP_fit represent an improvement of the treatment of SOA from -pinene and limonene

Parameters re-derived by Carlton et al. 2010 (TRP_revised) reduce original parameters bias by 50%. Still an overprediction is observed (NOx dependent SOA?)

Summary

Differences in the chamber experiment simulations do not drive to substantial changes on the model response on SOA monthly average concentration

TRP_revised and TRP_fit show a similar reduction of the original CMAQ values (TRP_original).

Only -pinene and limonene parameters have been calculated in this work. The same procedure should be done for the rest of terpenes

SMOG CHAMBER EXPERIMENTS

3-D AUGUST 2009 SIMULATION