a note on the generalised laguerre polynomial

3
A NOTE ON THE GENERALISED LAGUERRE POLYNOMIAL BY HAm DAs BAGCm (Calcutta Uniwer, ity) AND BHOLA NATH MUKHERIEIE (S. C. College, Calcutta) Received November 19, 1951 (Conununicated by Prof. B. S. Madhava Rao, Iv.A.-~--) 1. The gencraliscd Laguerre polynomial e ~ z--" (e-:.z~), L,,'~ (z) = -~i!- where a > -- I and n is an integer ~> 0, is a solution of the following differen- tial and functional equations: _,t-f ,,(z) a~:z) ,,l..(z) o., - -dii Vff,-l--)---- + = (1) ,f,, (z) -- (2n -- a -- 1 -- z)f,~x (z) + (n + a -- 1)]'._,(2:) = 0 (2) f',, (:) ----- f',,--1 (z) --f,,--1 (z) O) (,t e. -- z)f',, (z) = (n ÷ a)f',,-I (z) -- .f., (z) (4) zf', (z) -= nf ,~(z) -- (n + a)f ,~_ 1 (z). (5) It is easy to ~erify that these are equivalent to t~o independent equations only. Consider now the series v=sh 1,, (_), (6) 0 ~er¢ f,, (z) is an analytic solution el" (2). When [ h [ < R. the radius of convergence of the power series (6), bV "= - = z,O:-lf,,(z). (7) ~h .=. Multiplying (2) by h ~1 and summing up for n = 2, 3, 4 ...... we get O0 00 X nh"-xf,,(z)= 2 Xnit'L-lf,,..x(Z)+ (a -- 1 -- z)Z'h"~lfr~(z) ~s= ~ _ l# "P 00 -- X(n -- 1) h'~-l f ,,_.. (z) -- a,V,h"-l f ,r_~ (z). s ~' tt n, 53

Upload: hari-das-bagchi

Post on 25-Aug-2016

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: A note on the generalised laguerre polynomial

A N O T E ON T H E G E N E R A L I S E D L A G U E R R E P O L Y N O M I A L

BY HAm DAs BAGCm (Calcutta Uniwer, ity)

AND BHOLA NATH MUKHERIEIE

(S. C. College, Calcutta)

Received November 19, 1951 (Conununicated by Prof. B. S. Madhava Rao, Iv.A.-~--)

1. The gencraliscd Laguerre polynomial

e ~ z--" ( e - : . z ~ ) , L,, '~ (z) = -~i!-

where a > -- I and n is an integer ~> 0, is a solution o f the fo l lowing differen- tial and functional equat ions :

_,t-f ,,(z) a ~ : z ) , , l . . (z) o., - -d i i V f f , - l - - ) - - - - + =

(1)

, f , , (z) - - (2n - - a - - 1 - - z ) f , ~ x ( z ) + (n + a - - 1)]' ._,(2:) = 0 (2)

f ' , , ( : ) ----- f',,--1 (z) --f,,--1 (z) O ) (,t e. - - z ) f ' , , ( z ) = (n ÷ a ) f ' , , - I ( z ) - - . f . , ( z ) (4) z f ' , ( z ) -= n f ,~(z) - - (n + a ) f ,~_ 1 (z) . (5)

It is easy to ~erify that these are equivalent to t ~ o independent equat ions only.

Consider now the series

v = s h 1,, (_), (6) 0

~ e r ¢ f , , (z) is an analytic solution el" (2). When [ h [ < R. the radius o f convergence o f the power series (6),

bV "= - = z , O : - l f , , ( z ) . (7) ~h .= .

Multiplying (2) by h ~1 and summing up for n = 2, 3, 4 . . . . . . we get O 0 0 0

X n h " - x f , , ( z ) = 2 X n i t ' L - l f , , . . x ( Z ) + (a - - 1 - - z ) Z ' h " ~ l f r ~ ( z ) ~ s = ~ _ l # "P • •

0 0

- - X(n - - 1) h'~-l f ,,_.. (z) - - a ,V ,h" - l f , r_~ ( z ) . s ~ ' t t n ,

53

Page 2: A note on the generalised laguerre polynomial

54 ItARI DAS BAGCItl AND BilOLA NAIl! MUKltEILIEE

which can bc written, by using(6) and (TL as

~ V , ( a - i - l ) h - - A 3h ' (! " -h ) ~ V =

where A ~ a + I -- c and B = f x ( : ) - - A fu (z )-

Solving (8),. we get

V ~ . . . . . . . it . . . .

(1 - - hi"-' e i=¥

B ( I - ~ h)"' (8)

- ( I h l < R ) . ( 9 )

To determine d, (z), take the particular x~!ue h ----- 0. Then (9) gives

(z) = g f o (z).

The value of the radius o f ~xmxergencc R is obtained by applying Van Vleck's theorem ~ on Linear Cri~eEa for the dci,:rminatmn of the radius of com'crgence of a power series. From !2).

f ,,+.,_(z) = & f .._, (_-~ + q , L (:) 2 ~ | I ~ - a + 3 - - z n-r- ! + ~ t

where p , = and q,, - - n + 2 n + 2

Since p=--+2, q, , - - - - - - I (when n - - , . ~ ) . R is equal to the Coincident root o f the quadratk k - ° - 2 k - I = 0. i.e.. R = 1. V¢c thus have:

I f f , , (z) be aJo" anal)'tic sohaion , , f the d(~lbre,:ce eqttati~,n

(n + 1Lr,,_~ ( z ) - ( ~ , - ,~ - I - : ) f ~ , ~2 ) - ' ( , - ~ ) f , , . . . , ( z ) = 0

attd the pobtt " h" is hlside the unit cir~h" :~-#h centre at the origbt, then

{A (z) -- (a -T i -- :).1;(:)1 i -- t) ":~ o - , ,It + e:fo (z) ~ h " f , ,(z) =

.=0 ( I - - h ) *+t e ~ - i (10)

the lbw-bltegra! beblg taken along any Jordan cu~'e coanecling 0 and" h "

3. I f we set f o ( z ) = Lo~*~(z)= i . . A ( z ) = L l ~ = ~ ( z ) - - a + ! - - z , the formula (10) leads to the result s

~ ' : . c , ," ( . .O = (l - h V ' - " , ' - , - ~ \ , ( l h l < l). Jt ,~-.@

(10

Page 3: A note on the generalised laguerre polynomial

A Note cm the Gcncralised Lagtwrrc Polynomial

If F (:) :.dmils of ~: uniformly convcrocnt expansion of the typc o o

F ( 0 = ZA,, L.'"~ (z ) , P l = ( )

it is kno~vn that -~

Taking

o o

I t ! ¢" .

A,, I '(a + ,~ + !) .,I . F (x) L,, '"~ (x) dx. II

- - J i b

F(z) ::- , ' , -~ , we obtain 4 from (l l), o o

f ,,-1"-, x" L,,t')(x)d:r = o

[ ' (n . ._~ ' o . ~ I I . __'_ -h" d _ _ h)~t n !

55

REFERENCES

1. Van Vleck Trans. Amcr. ,~fath. Sac., Vo]. I , 1900. 2. Th!~ result was obtained by V. R. Thiru~enkatachar b', a different method, Proe.

Ind. Acad. Sei. , A, 1940, 229-34. 3. Copson . . Tb.eorv ¢~f Ftmctio~rs o f a Complex Variable, p. 269, Ex. 22. a. This ,,,,-as obtained by V. R. Thiruvenkatachar (loc. cir.), by a different method.