a plan for a sustainable future - stanford...

28
A Plan For a Sustainable Future Mark Z. Jacobson Atmosphere/Energy Program Dept. of Civil & Environmental Engineering Stanford University Using Economics to Confront Climate Change, SIEPR Policy Forum Stanford University, October 30, 2009

Upload: vuongnhi

Post on 15-May-2018

218 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

A Plan For a Sustainable Future

Mark Z. Jacobson Atmosphere/Energy Program

Dept. of Civil & Environmental Engineering Stanford University

Using Economics to Confront Climate Change, SIEPR Policy Forum Stanford University, October 30, 2009

Page 2: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Steps in Analysis 1. Rank climate, pollution, energy solutions in terms of Resource abundance Carbon-dioxide equivalent emissions Air pollution mortality Water consumption Footprint on the ground and total spacing required Ability to match peak demand Effects on wildlife, thermal pollution, water pollution

2. Evaluate replacing 100% of energy with best options in terms of resources, materials, matching supply, costs, politics

Page 3: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Electricity/Vehicle Options Studied Electricity options

Wind turbines Solar photovoltaics (PV) Geothermal power plants Tidal turbines Wave devices Concentrated solar power (CSP) Hydroelectric power plants Nuclear power plants Coal with carbon capture and sequestration (CCS)

Vehicle Options Battery-Electric Vehicles (BEVs) Hydrogen Fuel Cell Vehicles (HFCVs) Corn ethanol (E85) Cellulosic ethanol (E85)

Page 4: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Archer and Jacobson (2005) www.stanford.edu/group/efmh/winds/ 80-m Wind Speeds From Data

Page 5: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Modeled World Wind Speeds at 100 m

All wind worldwide: 1700 TW; All wind over land in high-wind areas outside Antarctica ~ 70-170 TW World power demand 2030: 16.9 TW

Annual wind speed 100 m above topo (m/s) (global: 7.2; land: 6.4; sea: 7.5)

2

4

6

8

10

12

-180 -90 0 90 180-90

0

90

Page 6: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Modeled World Surface Solar

All solar worldwide: 6500 TW; All solar over land in high-solar locations~ 340 TW World power demand 2030: 16.9 TW

Annual surface downward solar radiation (W/m2) (global avg: 193; land: 185)

100

150

200

250

-180 -90 0 90 180-90

0

90

Page 7: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Lifecycle CO2e of Electricity Sources

0

100

200

300

400

500

600L

ifec

ycl

e g-C

O2e/

kW

h

Win

d

CS

P Geo

ther

mal

Sola

r-P

V

Tid

al

Wav

e

Hydro Nucl

ear

Coal

-CC

S

Page 8: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Opportunity-Cost CO2e�Emissions from current electricity mix due to time between planning & operation of power source minus that from least-emitting power source

0

100

200

300

400

500

600O

pport

unit

y-C

ost

g-C

O2e/

kW

h

Win

d

CS

P

Geo

ther

mal

Sola

r-P

V

Tid

al

Wav

e

Hydro N

ucl

ear

Coal

-CC

S

Page 9: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

War/Leakage CO2e of Nuclear, Coal

0

100

200

300

400

500

600E

xplo

sion o

r L

eak g

-CO

2e/

kW

h

Nuclear:One exchange of

50 15-kt weapons over 30 ydue to expansion of uranium

enrichment/plutonium separationin nuclear-energy facilities

worldwide

Coal-CCS:1-18% leakage of sequesteredcarbon dioxide in 1000 years

Page 10: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Loss of Carbon Stored in Land

0

0.5

1

1.5

2L

oss

of

carb

on s

tore

d i

n l

and g-C

O2e/

kW

h

Win

d

CS

P

Geo

ther

mal

Sola

r-P

V

Tid

al

Wav

e

Hydro

Nucl

ear

Coal

-CC

S

Page 11: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Total CO2e of Electricity Sources

0

100

200

300

400

500

600T

ota

l g-C

O2e/

kW

h

Win

d

CS

P Geo

ther

mal

Sola

r-P

V

Tid

al

Wav

e

Hydro

Nucl

ear

Coal

-CC

S

Nuclear:wind = 9-17:1 Coal-CCS:wind=41-53:1

Page 12: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Percent Change in U.S. CO2 From Converting to BEVs, HFCVs, or E85

-30

-20

-10

0

10

20

30

40

50P

erce

nt

chan

ge

in a

ll U

.S. C

O2 e

mis

sions

Win

d-B

EV

-32.4

to -

32.6

Win

d-H

FC

V -

31.7

to -

32.2

PV

-BE

V -

31.0

to -

32.3

CS

P-B

EV

-32.4

to -

32.6

Geo

-BE

V -

31.1

to -

32.4

Tid

al-B

EV

-31.3

to -

32.0

Wav

e-B

EV

-31.1

to -

31.9

Hydro

-BE

V -

30.9

to -

31.7

Nuc-

BE

V -

28.0

to -

31.3

CC

S-B

EV

-17.6

to -

26.4

Corn

-E85

Cel

-E85

-0.7

8 t

o +

30.4

-16

.4 t

o +

16.4

Page 13: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Low/High U.S. Air Pollution Deaths For 2020 BEVs, HFCVs, E85, Gasoline

0

5000

10000

15000

20000

25000

30000

350002020 U

.S. V

ehic

le E

xhau

st+

Lif

ecycl

e+N

uc

Dea

ths/

Yea

r

Win

d-B

EV

78-1

28

+7.2W

ind-H

FC

V 2

45-3

81

PV

-BE

V 1

89-7

92

CS

P-B

EV

84-1

37

Geo

-BE

V 1

53-7

38

Tid

al-B

EV

321-6

60

Wav

e-B

EV

393-7

53

Hydro

-BE

V 4

55-8

57

Nuc-BEV 641-2181-27,681

CC

S-B

EV

2900

-6900

Corn

-E85 1

5,0

00-1

5,9

35

Cel

-E8

5 1

5,0

00-1

6,3

10

Gas

oli

ne

15,0

00

Page 14: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Ratio of Footprint Area of Technology to Wind-BEVs to Run All U.S. Vehicles

Wind-BEV 1:1 (1-3 square kilometers) Wind-HFCV 3-3.1:1 Tidal-BEV 100-130:1 Wave-BEV 240-440:1 Geothermal-BEV 250-570:1 Nuclear-BEV 770-1100:1 Rhode Island 960-3000:1 Coal-CCS-BEV 1900-2600:1 PV-BEV 5800-6600:1 CSP-BEV 12,200-13,200:1 Hydro-BEV 84,000-190,000:1 California 143,000-441,000:1 Corn-E85 570,000-940,000:1 Cellulosic-E85 470,000-1,150,000:1

Page 15: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Wind Footprints

www.offshore-power.net Pro.corbins.com

Pro.corbins.com

www.eng.uoo.ca

Page 16: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Nuclear Footprints

wwwdelivery.superstock.com; Pro.corbis.com; Eyeball-series.org; xs124.xs.to

Page 17: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Ethanol Footprints

Cellulosic refinery development

www.k0lee.com; amadeo.blog.com; www.istockphoto.com; www.thereisaway.us; media-2.web.britannica.com

Page 18: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Area to Power 100% of U.S. Onroad Vehicles

Map: www.fotw.net

Corn E85 9.8-17.6%

Cellulosic E85 4.7-35.4%

(low-industry est. high-data)

Wind-BEV turbine spacing 0.35-0.7%

Solar PV-BEV 0.077-0.18%

Wind-BEV Footprint 1-2.8 km2

Page 19: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Land For 50% of All US Energy From Wind

Map: www.fotw.net

Turbine area

touching ground

Spacing between turbines

Page 20: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Alternatively, Water For 50% of All US Energy From Wind

Map: www.fotw.net

Spacing between turbines

Page 21: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Water Consumed to Run U.S. Vehicles

U.S. water demand = 150,000 Ggal/yr 0

5000

10000

15000

20000W

ater

consu

mp

tion

(G

gal

/yea

r) t

o r

un U

.S.

veh

icle

s

Win

d-B

EV

1-2

+7.2W

ind-H

FC

V 1

50

-190

PV

-BE

V 5

1-7

0

CS

P-B

EV

10

00-1

360

Geo

-BE

V 6

.4-8

.8

Tid

al-B

EV

1-2

Wav

e-B

EV

1-2

Hydro-BEV 5800-13,200

Nuc-

BE

V 6

40

-13

00

CC

S-B

EV

72

0-1

20

0

Corn-E85 12,200-17,000

Cel

-E8

5 6

40

0-8

80

0

Page 22: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Matching Hourly Electricity Demand in Summer 2020 With 100% Renewables

With no Change in Current Hydro

Hoste et al. (2009)

Geothermal

Wind

Hydro Solar

Wind

Demand

Page 23: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Overall Ranking Cleanest solutions to global warming, air pollution, energy security Electric power Vehicles 1. Wind 1. Wind-BEVs 2. CSP 2. Wind-HFCVs 3. Geothermal 3. CSP-BEVs 4. Tidal 4. Geothermal-BEVs 5. PV 5. Tidal-BEVs 6. Wave 6. PV-BEVs 7. Hydroelectricity 7. Wave-BEVs 8. Hydro-BEVs **************************************** Not Recommended 8. Nuclear (tie) 9. Nuclear BEVs 8. Coal-CCS (tie) 10. Coal-CCS BEVs (tie) 11. Corn ethanol 12. Cellulosic ethanol

Page 24: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Powering the World on Renewables Global power demand 2010 (TW) Electricity: 2.2 Total: 12.5

Global overall power demand 2030 with current fuels (TW) Electricity: 3.5 Total: 16.9

Global overall power demand 2030 converting to wind-water-sun (WWS) and electricty/H2(TW) Electricity: 3.3 Total: 11.5

Conversion to electricity, H2 reduces power demand 30%

Page 25: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Number of Plants or Devices to Power the World

Technology Percent Supply 2030 Number

5-MW wind turbines 50% 3.8 mill. (0.8% in place) 0.75-MW wave devices 1 720,000 100-MW geothermal plants 4 5350 (1.7% in place) 1300-MW hydro plants 4 900 (70% in place) 1-MW tidal turbines 1 490,000 3-kW Roof PV systems 6 1.7 billion 300-MW Solar PV plants 14 40,000 300-MW CSP plants 20 49,000 ____ 100%

Page 26: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Materials, Costs Wind, solar

Materials (e.g., neodymium, silver, gallium) present challenges, but are not limitations.

Lithium for batteries Known resources > 13,000,000 tonnes, half in Bolivia Enough known supply for 26 million vehicles/yr for 50 yrs. If recycling supply for much longer

Costs $100 trillion to replace world’s power  recouped by electricity sale, with direct cost 4-10¢/kWh  Eliminates 2.5 million air pollution deaths/year  Eliminates global warming, provides energy stability

Page 27: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Summary The use of wind CSP, geothermal, tidal, PV, wave, and hydro to provide electricity fo all uses, including BEVs and HFCVs and will result in the greatest reductions in global warming and air pollution and provide the least damage among the energy options considered.

Coal-CCS and nuclear cause climate and health opportunity cost loss compared with the recommended options and should not be advanced over them. Coal-CCS emits 41-53 times more carbon, and nuclear emits 9-17 times more carbon than wind.

Corn and cellulosic ethanol provide the greatest negative impacts among the options considered, thus their advancement at the expense of other options will severely damage efforts to solve global warming and air pollution.

Page 28: A Plan For a Sustainable Future - Stanford Universityweb.stanford.edu/group/efmh/jacobson/Articles/I/0911SIEPR.pdf · terms of resources, materials, matching supply, costs, ... A

Summary Converting to Wind, Water, and Sun (WWS) and electricity/hydrogen will reduce global power demand by 30%, eliminating 13,000 current or future coal plants.

Materials are not limits although recycling will needed.

Electricity cost should be similar to that of conventional new generation and lower when costs to society accounted for.

Barriers to overcome: lobbying, politics, transmission needs, up-front costs

Energy Environ. Sci. (2008) doi:10.1039/b809990C www.stanford.edu/group/efmh/jacobson/revsolglobwarmairpol.htm

Scientific American, November (2009) www.stanford.edu/group/efmh/jacobson/susenergy2030.html