a priori error analysis of fully discrete fe-hmm...a priori error analysis of fully discrete fe-hmm...

29
A Priori Error Analysis of Fully Discrete FE-HMM Monika Wolfmayr Introduction FE-HMM for Elliptic Problems Elliptic model problem First convergence results Error Analysis of the Fully Discrete FE-HMM Fully discrete FE problem Convergence results for the macrosolution H 1 -error L 2 -error L 2 -projection of u ε Convergence results for the fully discrete solution H 1 -error Conclusions A Priori Error Analysis of Fully Discrete FE-HMM Monika Wolfmayr 5th December 2011

Upload: others

Post on 10-Feb-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    A Priori Error Analysis of Fully DiscreteFE-HMM

    Monika Wolfmayr

    5th December 2011

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Outline

    Introduction

    FE-HMM for Elliptic ProblemsElliptic model problemFirst convergence results

    Error Analysis of the Fully Discrete FE-HMMFully discrete FE problemConvergence results for the macrosolution

    H1-errorL2-errorL2-projection of uε

    Convergence results for the fully discrete solutionH1-error

    Conclusions

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Introduction

    Heterogeneous Multiscale Method (HMM) introduced by Eand Engquist in 2003

    the name heterogeneous was used to emphasize that themodels at different scales may be of very different nature

    Difference between traditional MM and HMM:

    MM: general purpose are microscale solvers, i.e. to resolvethe details of the solutions of the microscale model

    HMM: objective is to capture the macroscale behavior of thesystem with a cost that is much less than the cost of fullmicroscale solvers

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Introduction

    HMM:physical problem is directly discretized by a macroscopicfinite element method model (coarse scale)microproblems are either unit-cell problems or problems on apatch with a fixed number of unit cells (fine scale)

    study of accuracy properties in HMM:

    I first approach: assumption that the microproblems areanalytically given; macro- and microerrors oftenseparately estimated

    I further approach: combination of microscopic andmacroscopic models; microproblems are solvednumerically as well; estimates for the errors transmittedon the macroscale by discretizing the fine scale(Abdulle, 2005)

    analysis for piecewise linear continuous FEMs in the micro-and macrospaces and for the periodic case

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Notation

    r = (r1, ..., rn) ∈ Nn, |r | = r1 + ...+ rn, Dr = ∂r11 ...∂rnn ;

    H1(Ω) = {u ∈ L2(Ω); Dru ∈ L2(Ω), |r | ≤ 1},

    ‖u‖H1(Ω) =

    ∑|r |≤1

    ‖Dru‖2L2(Ω)

    1/2 ;W l ,∞(Ω) = {u ∈ L∞(Ω); Dru ∈ L∞(Ω), |r | ≤ l};

    W 1per (Y ) = {v ∈ H1per (Y );∫Y

    v dx = 0};

    H10 (Ω) = C∞0 (Ω)

    ‖·‖H1 , H1per (Y ) = C∞per (Y )

    ‖·‖H1 , Y = (0, 1)n

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Elliptic Model Problem

    −∇ · (aε∇uε) = f in Ω ⊂ Rn

    uε = 0 on ∂Ω,(1)

    ε ... length scale, Ω ... convex polygon, f ∈ L2(Ω),aε(x) = a(x , xε ) = a(x , y) ... symmetric and coercive tensor,periodic with respect to each component in Y = (0, 1)n,

    aij(x , ·) ∈ L∞(Rn)

    uε converges weakly to a homogenized solution u0 of

    −∇ · (a0∇u0) = f in Ωu0 = 0 on ∂Ω,

    (2)

    a0 ... smooth matrix with coefficientsa0ij(x) =

    ∫Y (aij(x , y) +

    ∑nk=1 aik(x , y)

    ∂χj

    ∂yk(x , y))dy ,

    χj(x , ·) ... solution of the cell problems

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Elliptic Model ProblemMacro FE space:

    S10 (Ω, TH) = {uH ∈ H10 (Ω); uH |K ∈ P1(K ) ∀K ∈ TH}, (3)

    P1(K ) ... space of linear polynomials on the triangle K ,TH ... quasi-uniform triangulation of Ω of shape regular K ,H ... size of triangulation

    Macrobilinear form:

    B(uH , vH) =∑K∈TH

    |K ||Kε|

    ∫Kε

    ∇u a(xk , x/ε)(∇v)Tdx , (4)

    Kε = xk + ε[−1/2, 1/2]n ... sampling subdomain

    u is the solution of the exact microproblem:Find u such that (u − uH) ∈W 1per (Kε) and∫

    ∇u a(xk , x/ε)(∇z)Tdx = 0 ∀z ∈W 1per (Kε). (5)

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Elliptic Model Problem

    It can be shown that

    u = uH + εn∑

    j=1

    χj(xk , x/ε)∂uH(xk)

    ∂xj, (6)

    χj(xk , y) ... unique solutions of the cell problems:∫Y∇χja(xk , y)(∇z)Tdy = −

    ∫Y

    eTj a(xk , y)(∇z)Tdy (7)

    for all z ∈W 1per (Y ); {ej}nj=1 ... standard basis in Rn.

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Elliptic Model Problem

    Variational problem for the macrosolution:Find uH ∈ S10 (Ω, TH) such that

    B(uH , vH) = 〈f , vH〉 ∀vH ∈ S10 (Ω, TH). (8)

    B(·, ·) elliptic, bounded ⇒ unique solution of (8)

    It can be shown that

    B(uH , vH) =∑K∈TH

    ∫K∇uH a0(xk)(∇vH)Tdx . (9)

    Remark:Since we assume an exact microsolver, so far the variationalproblem for the macrosolution (8) is of semidiscrete nature.

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    First convergence estimates for the macrospace

    Assumption: H2-regularity for u0, exact microsolution

    ‖uε − u0‖L2(Ω) ≤ C ε ‖f ‖L2(Ω), (10)‖uε − uH‖H1(Ω) ≤ C (H/ε) ‖f ‖L2(Ω), (11)‖u0 − uH‖H1(Ω) ≤ C H ‖f ‖L2(Ω), (12)‖uε − uεp‖H̄1(Ω) ≤ C (

    √ε+ H) ‖f ‖L2(Ω), (13)

    uεp ... reconstructed solution from uH with (u − uH)

    periodically extended on each K , can be discontinuousacross K , hence H̄1-norm is mesh-dependent;

    ‖Puε − uH‖H1(Ω) ≤ C (ε/H + H) ‖f ‖L2(Ω), (14)

    Puε ... L2-projection of the solution

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Micro FE problemSampling domain: Kε = xk + ε[−1/2, 1/2]n

    Micro FE space:

    S1per (Kε, Th) = {uh ∈W 1per (Kε); uh|T ∈ P1(T ), T ∈ Th},(15)

    Th ... quasi-uniform triangulation of Kε with meshsize h,S1per (Kε, Th) ⊂W 1per (Kε)

    Discrete microproblem:For uH ∈ S10 (Ω, TH) find uh such that(uh − uH) ∈ S1per (Kε, Th) and∫

    ∇uh a(xk , x/ε)(∇zh)Tdx = 0 ∀zh ∈ S1per (Kε, Th).

    (16)

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Fully discrete FE problemIt can be shown that

    uh = uH + εn∑

    j=1

    χj ,h(xk , x/ε)∂uH(xk)

    ∂xj, (17)

    χj ,h(xk , y) ... unique solutions of the cell problems inS1per (Kε, Th)

    Fully discrete macrobilinear form:

    B̄(uH , vH) =∑K∈TH

    |K ||Kε|

    ∫Kε

    ∇uh a(xk , x/ε)(∇vh)Tdx (18)

    Variational problem for the fully discrete macrosolution:Find ūH ∈ S10 (Ω, TH) such that

    B̄(ūH , vH) = 〈f , vH〉 ∀vH ∈ S10 (Ω, TH). (19)

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Fully discrete FE problem

    Proposition

    The problem (19) has a unique solution which satisfies

    ‖ūH‖H1(Ω) ≤ C‖f ‖L2(Ω). (20)

    Proof.Verify the assumptions of the Lax-Milgram Theorem.

    Assumption: the solutions χj of the cell problems satisfy

    χj(xk , ·) ∈W 2,∞(Y ).

    If χj(xk , y) = χj(xk , x/ε), then

    ‖Dαx (χj(xk , x/ε))‖L∞(Kε) ≤ Cε−|α|, |α| ≤ 2, α ∈ Nn. (21)

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Fully discrete FE problem

    LemmaSuppose that the solutions χj of the cell problems satisfy(21). Then the following estimation holds:

    ∣∣B̄(vH ,wH)− B(vH ,wH)∣∣ ≤ C (hε

    )2‖∇vH‖L2(Ω)‖∇wH‖L2(Ω),

    (22)

    where vH ,wH ∈ S10 (Ω, TH), h is the mesh size of the microFE space S1per (Kε, Th).

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Proof of the Lemma - Part I

    ∣∣B(vH ,wH)− B̄(vH ,wH)∣∣=

    ∣∣∣∣ ∑K∈TH

    |K ||Kε|

    ∫Kε

    [∇v a(xk , x/ε)(∇w)T −∇vh a(xk , x/ε)(∇wh)T ]dx∣∣∣∣

    Inserting +/−∇vh a(xk , x/ε)(∇w)T yields

    =

    ∣∣∣∣ ∑K∈TH

    |K ||Kε|

    [

    ∫Kε

    ∇ (v − vh)︸ ︷︷ ︸∈W 1per (Kε)

    a(xk , x/ε) (∇w)T︸ ︷︷ ︸∈W 1per (Kε)

    dx

    ︸ ︷︷ ︸=(5)0

    −∫Kε

    ∇vh a(xk , x/ε)(∇(wh − w))Tdx ]∣∣∣∣.

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Proof of the Lemma - Part IIDue to (5), we have

    ∫Kε∇v a(xk , x/ε)(∇(wh − w))Tdx = 0.

    Together with the boundedness of the bilinear form, we obtain∣∣B(vH ,wH)− B̄(vH ,wH)∣∣=

    ∣∣∣∣ ∑K∈TH

    |K ||Kε|

    ∫Kε

    ∇(vh − v) a(xk , x/ε)(∇(wh − w))Tdx ]∣∣∣∣

    ≤ C∑K∈TH

    |K ||Kε|‖∇(vh − v)‖L2(Kε)‖∇(w

    h − w)‖L2(Kε).

    Moreover,

    ‖∇(vh − v)‖L2(Kε)

    =

    ∥∥∥∥ε n∑j=1

    ∇(χj,h(xk , x/ε)− χj(xk , x/ε))∂vH(xk)

    ∂xj

    ∥∥∥∥L2(Kε)

    ≤∥∥∥∥εmaxj ∇(χj,h − χj)

    n∑j=1

    ∂vH(xk)

    ∂xj

    ∥∥∥∥L2(Kε)

    .

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Proof of the Lemma - Part III

    Since ∇vH is constant,

    ‖∇(vh − v)‖L2(Kε)

    ≤∥∥εmax

    j∇(χj,h − χj)

    ∥∥L2(Kε)

    n∑j=1

    ∂vH

    ∂xj

    ≤ C εmaxj

    ∥∥∇(χj,h − χj)∥∥L2(Kε)

    (n∑

    j=1

    (∂vH

    ∂xj)2)

    12

    ≤ C εh√|Kε|max

    j

    ∣∣χj ∣∣W 2,∞(Kε)

    √∇vH∇vH

    ≤(21) C εh√|Kε|Cε−2

    √∇vH∇vH

    = C

    (h

    ε

    )√|Kε|√∇vH∇vH .

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Proof of the Lemma - Part IVAltogether, we obtain∣∣B(vH ,wH)− B̄(vH ,wH)∣∣≤ C

    ∑K∈TH

    |K ||Kε|‖∇(vh − v)‖L2(Kε)‖∇(w

    h − w)‖L2(Kε)

    ≤ C∑K∈TH

    |K ||Kε|

    (h

    ε

    )√|Kε|√∇vH∇vH

    (h

    ε

    )√|Kε|√∇wH∇wH

    = C

    (h

    ε

    )2 ∑K∈TH

    √|K |√|Kε|

    √|Kε|√∇vH∇vH

    √|K |√|Kε|

    √|Kε|√∇wH∇wH

    = C

    (h

    ε

    )2 ∑K∈TH

    √|K |√∇vH∇vH

    √|K |√∇wH∇wH .

    Since ∇vH and ∇wH are constant,

    = C

    (h

    ε

    )2 ∑K∈TH

    ‖∇vH‖L2(K)‖∇wH‖L2(K).

    Summing up over K finally yields (22). �

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    H1-error between the discrete and the fullydiscrete macrosolutionRemark:If M = dim S1per (Kε), then h ' εM−

    1n with |Kε| = εn.

    =⇒ h/ε independent of ε

    Proposition

    Let uH , ūH be the solutions of the variational problems forthe macrosolution and the fully discrete macrosolution,respectively, and suppose that the assumptions of theLemma hold. Then

    ‖uH − ūH‖H1(Ω) ≤ C M−2n ‖f ‖L2(Ω). (23)

    Proof.Use coercivity of the bilinear forms, the Lemma before andthe Proposition about existence and uniqueness of the fullydiscrete solution.

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    H1-error between the homogenized and the fullydiscrete macrosolution

    TheoremAssume the solution of the homogenized problem u0 isH2-regular and ūH is the fully discrete solution. Let theassumptions of the Lemma hold. Then

    ‖u0 − ūH‖H1(Ω) ≤ C (H + M−2n )‖f ‖L2(Ω). (24)

    Proof.Use triangle inequality, ‖u0 − uH‖H1(Ω) ≤ C H ‖f ‖L2(Ω) and(23) from the Proposition before.

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    L2-error between the homogenized/exact solutionand the fully discrete macrosolution

    Corollary

    Suppose that the assumptions of the Theorem before hold.Then

    ‖u0 − ūH‖L2(Ω) ≤ C (H2 + M−2n )‖f ‖L2(Ω), (25)

    ‖uε − ūH‖L2(Ω) ≤ C (H2 + ε+ M−2n )‖f ‖L2(Ω). (26)

    Proof.Use triangle inequality, ‖u0 − uH‖L2(Ω) ≤ C H2 ‖f ‖L2(Ω),‖uε − u0‖L2(Ω) ≤ C ε ‖f ‖L2(Ω) and (23) from the Propositionbefore.

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    H1- and L2-error between the L2-projection of thesolution and the fully discrete macrosolution

    For u ∈ H1(Ω), we define Pu ∈ S10 (Ω, TH) as unique solutionof

    〈Pu, vH〉 = 〈u, vH〉 ∀vH ∈ S10 (Ω, TH). (27)

    TheoremLet Puε be the solution projected on S10 (Ω, TH) and ūH bethe fully discrete solution. Suppose that the assumptions ofthe Lemma hold and that u0 is H2-regular. Then

    ‖Puε − ūH‖H1(Ω) ≤ C (ε

    H+ H + M−

    2n )‖f ‖L2(Ω), (28)

    ‖Puε − ūH‖L2(Ω) ≤ C (ε+ H2 + M−2n )‖f ‖L2(Ω). (29)

    Proof.Use triangle inequality, ‖Puε − uH‖H1(Ω) ≤ C (ε/H + H) ‖f ‖L2(Ω),‖Puε − uH‖L2(Ω) ≤ C (ε+ H2) ‖f ‖L2(Ω) and (23).

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Procedure to retrieve the microscopic information

    We define the fully discrete fine-scale approximation of uε by

    ūεp(x) = ūH(x) + (uh(x)− ūH(x))|PK for x ∈ K ∈ TH ,

    (30)

    where |PK denotes the periodic extension of the fine-scalesolution (uh − ūH), available in Kε on each K .Extension is defined for w ∈ H1(Kε):

    wp(x + εl) = w(x) ∀l ∈ Zn ∀x ∈ Kε s. t. x + εl ∈ K .

    ūεp can be discontinuous across K . Hence, we define thefollowing broken H1-seminorm:

    |u|H̄1(Ω) :=

    ∑K∈TH

    ‖∇u‖2L2(K)

    12 . (31)

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    H1-error between the exact and the fully discretesolution

    TheoremSuppose that the assumptions of the Lemma hold. Then theerror between the exact and the fully discrete solution can beestimated by

    |uε − ūεp|H̄1(Ω) ≤ C (√ε+ H + M−

    1n )‖f ‖L2(Ω). (32)

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Proof of the Theorem - Part I

    |uε − ūεp |H̄1(Ω) ≤ |uε − uεp |H̄1(Ω)︸ ︷︷ ︸≤C (

    √ε+H) ‖f ‖L2(Ω)

    +|uεp − ūεp |H̄1(Ω)

    |uεp − ūεp |2H̄1(Ω) =∑K∈TH

    ‖∇(uεp − ūεp)‖2L2(K)

    =∑K∈TH

    ‖∇(uH + (u − uH)|PK )−∇(ūH + (uh − ūH)|PK )‖2L2(K)

    =∑K∈TH

    ‖∇uH +

    =∇(u−uH )︷ ︸︸ ︷n∑

    j=1

    ∇(εχj(xk , x/ε))∂uH

    ∂xj

    −∇ūH −

    =∇(uh−ūH )︷ ︸︸ ︷n∑

    j=1

    ∇(εχj,h(xk , x/ε))∂ūH

    ∂xj‖2L2(K)

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Proof of the Theorem - Part II

    |uεp − ūεp |2H̄1(Ω) ≤ C∑K∈TH

    ‖∇uH −∇ūH‖2L2(K)︸ ︷︷ ︸=(I )

    + C∑K∈TH

    ‖n∑

    j=1

    ∇(εχj)(∂uH

    ∂xj− ∂ū

    H

    ∂xj

    )‖2L2(K)︸ ︷︷ ︸

    =(II )

    + C∑K∈TH

    ‖n∑

    j=1

    ∇(ε(χj − χj,h))∂ūH

    ∂xj‖2L2(K)︸ ︷︷ ︸

    =(III )

    (I ) ≤ ‖uH − ūH‖2H1(K) ≤(23) (CM− 2n ‖f ‖L2(K))2

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Proof of the Theorem - Part III

    (II ) = ‖n∑

    j=1

    ∇(εχj)(∂uH

    ∂xj− ∂ū

    H

    ∂xj

    )‖2L2(K)

    ≤ ‖εmaxj∇(χj)

    n∑j=1

    (∂uH

    ∂xj− ∂ū

    H

    ∂xj

    )‖2L2(K)

    ≤ ε2‖maxj∇(χj)‖2L2(K)‖∇u

    H −∇ūH‖2L2(K)

    ≤(21) ε2C (ε−1)2‖uH − ūH‖2H1(K) ≤(23) (CM− 2n ‖f ‖L2(K))2

    (III ) = ‖n∑

    j=1

    ∇(ε(χj − χj,h))∂ūH

    ∂xj‖2L2(K)

    ≤Pr.Lem.III C2(√∇ūH∇ūH)2ε2 max

    j‖∇(χj − χj,h)‖2L2(K)

    ≤ C∇ūH∇ūHε2h2|K |maxj

    ∣∣χj ∣∣W 2,∞(K)︸ ︷︷ ︸

    ≤(21)(Cε−2)2

    ≤ Ch2ε−2|K |∇ūH∇ūH

    ≤ C (εM− 1n )2ε−2|K |∇ūH∇ūH

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Proof of the Theorem - Part IV

    Since ∇ūH is constant,

    (III ) ≤ CM− 2n ‖∇ūH‖2L2(K) ≤ CM− 2n ‖ūH‖2H1(K) ≤ CM

    − 2n ‖f ‖2L2(K).

    Altogether, we obtain the estimate

    |uεp − ūεp |2H̄1(Ω) ≤ C∑K∈TH

    2(CM−2n ‖f ‖L2(K))2 + C

    ∑K∈TH

    CM−2n ‖f ‖2L2(K)

    = C 2(M−2n )2‖f ‖2L2(Ω) + CM

    − 2n ‖f ‖2L2(Ω)≤ CM− 2n ‖f ‖2L2(Ω).

    So,

    |uεp − ūεp |2H̄1(Ω) ≤ C (√ε+ H) ‖f ‖L2(Ω) + CM−

    1n ‖f ‖L2(Ω)

    = C (√ε+ H + M−

    1n ) ‖f ‖L2(Ω). �

  • A Priori ErrorAnalysis of Fully

    Discrete FE-HMM

    Monika Wolfmayr

    Introduction

    FE-HMM forElliptic Problems

    Elliptic model problem

    First convergenceresults

    Error Analysis ofthe Fully DiscreteFE-HMM

    Fully discrete FEproblem

    Convergence resultsfor the macrosolution

    H1-error

    L2-error

    L2-projection of uε

    Convergence resultsfor the fully discretesolution

    H1-error

    Conclusions

    Conclusions

    The numerical results presented in

    Abdulle, On A Priori Error Analysis of Fully DiscreteHeterogeneous Multiscale FEM, Multiscale Model. Simul.

    Vol. 4, No. 2, pp. 447 - 459, 2005

    show that the theoretical bounds are sharp.

    Thanks for your attention!

    IntroductionFE-HMM for Elliptic ProblemsElliptic model problemFirst convergence results

    Error Analysis of the Fully Discrete FE-HMMFully discrete FE problemConvergence results for the macrosolutionConvergence results for the fully discrete solution

    Conclusions