a review of machine learning based anomaly detection

37
A REVIEW OF MACHINE LEARNING BASED ANOMALY DETECTION By Mohamed Elfadly [email protected]

Upload: mohamed-elfadly

Post on 16-Apr-2017

270 views

Category:

Education


0 download

TRANSCRIPT

Page 1: A review of machine learning based anomaly detection

A REVIEW OF MACHINE LEARNING BASED ANOMALY DETECTION By Mohamed Elfadly [email protected]

Page 2: A review of machine learning based anomaly detection

Outline Introduction CyberSecurity Systems Review of CyberSecurity Solutions Machine Learning Machine Learning for Anomaly Detection Machine Learning Based Techniques Machine Learning Applications

Page 3: A review of machine learning based anomaly detection

Introduction As technology moves forward, users became more

technical aware than before. People communicate and cooperate efficiently through the Internet using their personal computers, PDAs or mobile phones.

Through these digital devices linked by the Internet, hackers also attack personal privacy using a variety of weapons, such as viruses, Trojans, worms, botnet attacks, rootkits, adware, spam, and social engineering platforms.

Page 4: A review of machine learning based anomaly detection

Introduction Those different forms of attacks are

considered a cyber-threat which can be categorized into one of three groups according to the intruder’s purpose: Stealing confidential information Manipulating the components of cyber

infrastructure Denying the functions of the infrastructure

Page 5: A review of machine learning based anomaly detection

CyberSecurity System

Page 6: A review of machine learning based anomaly detection

CyberSecurity Systems However, Building defense systems for

discovered attacks is not easy because of the constantly evolving cyber attacks

That’s why, higher-level and adaptive methodologies are required to discover the embedded cyber intrusions

Page 7: A review of machine learning based anomaly detection

Many higher-level adaptive cyber defense systems can be partitioned into component[1]

Page 8: A review of machine learning based anomaly detection

Data-capturing tools, such as Libpcap for Linux and Winpcap for Windows, capture events from the audit trails of resource information sources (e.g., network).

The data-preprocessing module filters out the attacks for which good signatures have been learned.

A feature extractor derives basic features that are useful in event analysis engines, including a sequence of system calls, start time, duration of a network flow, source IP and source port, destination IP and destination port, protocol, number of bytes, and number of packets.

In an analysis engine, various intrusion detection methods are implemented to investigate the behavior of the cyber-infrastructure, which may or may not have appeared before in the record, e.g., to detect anomalous traffic.

Page 9: A review of machine learning based anomaly detection

Solutions to cybersecurity problems: Proactive Approaches: anticipate and eliminate

vulnerabilities in the cyber system, while remaining prepared to defend effectively and rapidly against attacks

Reactive Approaches: such as intrusion detection systems (IDSs). IDSs detect intrusions based on the information from log files and network flow, so that the extent of damage can be determined, hackers can be tracked down, and similar attacks can be prevented in the future.

Page 10: A review of machine learning based anomaly detection

Review of Cyber Security Solutions Proactive security solutions are designed to

maintain the overall security of a system, even if individual components of the system have been compromised by an attack.

Researchers consider data-mining algorithms from the viewpoint of privacy preservation. This new research, introduced by Verykios et al., called PPDM (the Privacy preservation technique)[4].

Page 11: A review of machine learning based anomaly detection

Reactive Security Systems An IDS intelligently monitors activities that occur in a

computing resource, e.g., network traffic and computer usage, to analyze the events and to generate reactions.

The intrusion detection can be classified into the following modules [1]:

Misuse/Signature detection Anomaly Detection Hybrid Detection Scan detector and Profiling modules.

Page 12: A review of machine learning based anomaly detection

IDS Modules Misuse/Signature Detection: is an IDS triggering method that

generates alarms when a known cyber misuse occurs. Anomaly Detection: Anomaly detection triggers alarms when the

detected object behaves significantly differently from the predefined normal patterns

Hybrid Detection: Combining both anomaly and misuse detection techniques to overcome their drawbacks

Scan Detection and Profiling Module: Scan detection generates alerts when attackers scan services or computer components in network systems before launching attacks. The Profiling modules group similar network connections and search for dominant behaviors using clustering algorithms.

Page 13: A review of machine learning based anomaly detection

Purpose Most of the reactive security solutions

depends heavily on Machine learning approach to find solutions to cyber security problems.

That’s why, a literature review will be conducted on the anomaly detection using machine learning

Page 14: A review of machine learning based anomaly detection

Machine Learning Machine learning is one of the corner stone

fields in Artificial Intelligence, where machines learn to act autonomously, and react to new situations without being pre-programmed. It is about designing algorithms that allow computers to learn.

Page 15: A review of machine learning based anomaly detection

Machine Learning Machine learning algorithms are

categorized, based on the desired outcome of the algorithm Supervised Learning Unsupervised Learning

Page 16: A review of machine learning based anomaly detection

Machine Learning for Anomaly DetectionLust for victory will not give you the victory. You must receive the victory from your opponent. He has no choice but to give it to you because he will sense your heart as better or truer. Nature is your friend; it helps you to win. Your enemy will have unnatural movement; therefore you will be able to know what he is going to do before he does it.

Masaaki HatsumiSecret Ninjutsu

Page 17: A review of machine learning based anomaly detection

Anomaly Detection The goal of anomaly detection is to target any

event falling outside of a predefined set of normal behaviors.

Anomaly detection first defines a profile of normal behaviors, which reflects the health and sensitivity of a cyber-infrastructure. Correspondingly, an anomaly behavior is defined as a pattern in data that does not conform to the expected behaviors.

Page 18: A review of machine learning based anomaly detection

Anomaly Detection Anomaly detection relies on a clear boundary

between normal and anomalous behaviors, where the profile of normal behaviors is defined as different from anomaly events. The profile must fit a set of criteria as explained by Gong[10].

For example, if a user who usually logs in around 10 am from university dormitory logs in at 5:30 am from an IP address of China, then an anomaly has occurred

Page 19: A review of machine learning based anomaly detection

Challenges1. The key challenge is that the huge volume of data with high-

dimensional feature space is difficult to manually analyze and monitor. Such analysis and monitoring requires highly efficient computational algorithms in data processing and pattern learning.

2. In the huge volume of network data, the same malicious data repeatedly occur while the number of similar malicious data is much smaller than the number of normal data.

3. Much of the data is streaming data, which requires online analysis4. The concept of an anomaly/outlier varies among application domains;

the labeled anomalies are not available for training/validation.

Page 20: A review of machine learning based anomaly detection

Machine Learning for Anomaly Detection Workflow of

anomaly detection system

Page 21: A review of machine learning based anomaly detection

However, anomaly detection approaches has a major drawback, since it may trigger high rates of false alarm. Because it can flag any significant deviation from the baseline as an intrusion

Hackers often modify malicious codes or data to make them similar to normal patterns. So when such an attack occurs, it will detect it as part of the normal profile and the attack will be missed because it was judged to be part of normal profile, a false negative occur.

The problem always remain is how to minimize the false negative and false positive rates.

Page 22: A review of machine learning based anomaly detection

Machine Learning Based Techniques

Page 23: A review of machine learning based anomaly detection

Technique Pros/ConsFuzzy Logic - Reasoning is approximate rather than precise

- Effective, especially against port scans and probes- High resource consumption involved

Genetic Algorithm - Biologically inspired and employs evolutionary algorithm.

- Uses the properties like Selection, Crossover, and Mutation

- Capable of deriving classification rules and selecting optimal parameters

Neural Network - Ability to generalize from limited, noisy and incomplete data.

- Has potential to recognize future unseen patternsBayesian Network - Encodes probabilistic relationships among the variables

of interest.- Ability to incorporate both prior knowledge and data

Page 24: A review of machine learning based anomaly detection

Machine Learning Applications1. Fusion of BVM and ELM for Anomaly

Detection

2. Anomaly Detection Using Neural Network Optimized with GSA Algorithm

Page 25: A review of machine learning based anomaly detection

Fusion of BVM and ELM for Anomaly Detection Changning et al., in their paper “Fusion of BVM and ELM

for Anomaly Detection in Computer Networks” stated that fusion or ensemble of classifiers is generally better than a single classifier. Therefore, the fusion of classifiers for anomaly detection not only improves the accuracy but also sustains the low false alarm rates with a high reliability and scalability. [13]. they utilizes the extreme learning machine (ELM) and ball vector machine (BVM) as two kinds of single classifiers.

Page 26: A review of machine learning based anomaly detection

Extracting a suitable features for representing the network traffic flow can be divided into three groups:

The content features: containing information about the data content of packets that could be relevant to anomaly or intrusion.

The intrinsic features are some general information related to the connection.

Traffic features: for example, statistics related to past connection similar to the current one.

Page 27: A review of machine learning based anomaly detection

Fusion Method Step 1: Prepare three kinds of features that should be labeled. Step 2: Every kinds of features is trained by BVM and ELM separately. The

classifier is denoted as bvm(i) and elm(i) i =1, 2,3 . Lable(i) i =1,...,6 is each classifier’s output.

Step 3: Train a single hidden layer BP neural network with 6 input nodes, 30 hidden nodes and 6 output nodes using labeled data of BVM and ELM from step 2. (Using Lable(i) of bvm(i) and elm(i) as BP neural network’s input)

Step 4: Then using acquired Lable(i) as the input of neural network, to train a BP neural network, and then we obtain Train U as the output.

In the predicting process, BP neural network receives the labels from trained ELM and BVM classifier, obtains the Lable(i) and w(i) i = 1,...,6 .Then using major weighted vote to process the value of weight, if

Page 28: A review of machine learning based anomaly detection

Experiments & Results

  BVM ELM BVM+ELM+BP

Accuracy 97.7% 93.32% 99.06%

False alarm rates

0.28% 0.36% 0.13%

They randomly selected 20000 examples from the whole dataset to compose an experiment dataset.The features are divided into three parts: the content features, which have 13 attributes, intrinsic features, which have 9 attributes, and the traffic features, which have 19 attributes.

Page 29: A review of machine learning based anomaly detection

Fusion Method VS SVM A comparison between fusion method

with other fusion method, like SVM and BP neural network as single classifier with same fusion scheme.  ELM+BVM+BP SVM+BP

Training Time 86s 102s

Accuracy 98.06% 98.02%

False alarm rates 0.13% 0.11%

Page 30: A review of machine learning based anomaly detection

Anomaly Detection Using Neural Network Optimized with GSA Algorithm In their paper “Flow-Based Anomaly

Detection Using Neural Network Optimized with GSA Algorithm” [11] the authors proposes an anomaly-based Network IDS which is an important tool to protect computer networks from attacks.

Page 31: A review of machine learning based anomaly detection

Traditional packet-based NIDSs are time-intensive as they analyze all network packets. A state-of-the-art NIDS should be able to handle a high volume of traffic in real time. Flow-based intrusion detection is an effective method for high speed networks since it inspects only packet headers. Anomaly-based intrusion detection is a well-known method capable of detecting unknown attacks. So they offered a GSA-based flow anomaly detection system (GFADS), a multi-layer perceptron neural network with one hidden layer (MLP)

Page 32: A review of machine learning based anomaly detection

They used GSA to overcome the slow convergence and the local minima caused by the back-propagation used to train the MLPs. GSA is memory-less and uses distance to agents in its updating procedure. It has an adaptive learning rate and it also has faster convergence.

Page 33: A review of machine learning based anomaly detection
Page 34: A review of machine learning based anomaly detection

PerformanceThey compared GSA with five gradient descent algorithms and PSO:1. Gradient descent momentum and an adaptive learning rate

(Train Gdx)2. Gradient descent backpropagation (Train gd)3. Gradient descent with adaptive learning rate backpropagation

(Train Gda)4. Gradient descent with momentum backpropagation (Train gdm) 5. Sequential order incremental training with learning function

(Trains)6. Particle Swarm Optimization Algorithm (PSO)

Page 35: A review of machine learning based anomaly detection
Page 36: A review of machine learning based anomaly detection

Future Work Review researches on Hybird approaches where Anomaly

and misuse (Signature Based) are combined together . Since each of these methods has cons and pros.

One of the most important disadvantages of anomaly detection is high false alarm ratio; however misuse detection is incapable in recognizing new attacks.

Thus if they are combined in smart way , the proposed model could use the combination of the qualities of two mentioned methods to cover the weakness of each one.

Page 37: A review of machine learning based anomaly detection

Reference1. Sumeet Dua and Xian Du. Data Mining and Machine Learning in cybersecurity. April 25, 2011 by Auerbach Publications2. Canetti, R., R. Gennaro, A. Herzberg, and D. Naor. Proactive security: Long-term protection against break-ins. CryptoBytes 3

(1997): 1–8.3. Barak, B., A. Herzberg, D. Naor, and E. Shai. The proactive security toolkit and applications. In: Proceedings of the 6th ACM

Conference on Computer and Communications Security,Singapore, 1999, pp. 18–27.4. Verykios, V.S., E. Bertino, I.N Fovino, L.P. Provenza, Y, Saygin, and Y. Theodoridis. State of-the-art in privacy preserving data

mining. ACM SIGMOD Record 33 , 2004:50–575. Denning, D. An intrusion-detection model. IEEE Transactions on Software Engineering 13 (2) (1987): 118–131.6. Tom M Mitchell. Machine Learning, volume 4. Burr Ridge, IL: McGraw Hill, June 1997. 7. Phil Simon. Too Big to Ignore: The Business Case for Big Data. Wiley, 2013 8. Taiwo Oladipupo Ayodele. New Advances in Machine Learning. InTech, 2010. 9. Harjinder Kaur, Gurpreet Singh, Jaspreet Minhas, “A Review of Machine Learning based Anomaly Detection Techniques”10. Gong, F. Deciphering detection techniques: Part II. Anomaly-based intrusion detection. white paper, Mcafee Network Security

Technologies Group, 2003.11. Zahra Jadidi, Mansour Sheikhan, “Flow-Based Anomaly Detection Using Neural Network Optimized with GSA Algorithm”12. Eskin, E., A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting

intrusions in unlabeled data. In: Applications of Data Mining in Computer Security, edited by S. Jajodia and D. Barbara. Dordrecht:Kluwer, 2002, Chap. 4.

13. Changning Cai, Guojian Cheng, Huaxian Pan, “Fusion of BVM and ELM for Anomaly Detection in Computer Networks”