a review on mechanical behaviour of pmma

Upload: prabs20069178

Post on 03-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    1/11

    36 5 2014 10

    1)

    , ,,2) ,

    ( 030024)( 030024)

    ( 510640)

    .

    --

    . .

    : O345 : A doi10.6052/1000-0879-13-442

    A REVIEW ON MECHANICAL BEHAVIOUR OF PMMA1)

    DENG Xiaoqiu, LI Zhiqiang,,2) ZHAO Longmao, YAO Xiaohu

    (Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China)(Shanxi Key Laboratory of Material Strength and Structural Impact, Taiyuan 030024, China)

    (School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China)

    Abstract Since PMMA (polymethyl-methacrylate) is an important material used for the aircraft windshield

    and canopy, it is necessary to study its mechanical properties. This paper reviews the studies of mechanical

    properties of PMMA. Constitutive models on viscoelasticity, inelasticity, yield stress and module related to tem-

    perature are summarized. Recent quasi-static and dynamic experiments are discussed, while several examples

    in molecular dynamic simulation and finite element analysis are described. The new research directions are

    commented.

    Key words PMMA (polymethyl-methacrylate), constitutive model, mechanical experiment, numerical simu-

    lation

    (polymethyl-methacrylate, PMMA)

    .

    .

    1905 1

    .

    [1],

    7% 5.7t

    54% 1.

    .

    .

    20131023 1 20131128 .

    1) (11072166) (2011DFA53080) .

    2) , . E-mail: [email protected]

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    2/11

    5 541

    .

    .

    .

    [2-3].

    (Tg)

    Tg 100C

    120

    C

    .

    1

    Tg

    .

    -- 2 0.1s1,

    2000s1.

    1 [2]

    2 --

    .

    () (split Hopkinson pressure bar,

    SHPB)

    (105 s1104 s1) ()

    [4](dynamic

    mechanical analysis, DMA)

    [5-6] .

    PMMA

    .

    .

    (1) Li [7] PMMA (polycarbon-

    ate, PC) (

    104 s1103 s1)PMMA .

    . PMMA

    PMMA .

    Chen [8] SHPB

    PMMA

    .

    .

    [9] PMMA

    PMMA

    18.6s1 .

    ZWT (Zhu--Wang--Tang)

    6 Maxwell

    . [10]

    .

    Rittel [11] PMMA

    .

    . .

    .

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    3/11

    542 2014 36

    --

    . Drucker--Prager

    ( 103 s1104 s1).

    Forquin [12] [11]

    .

    .

    (2)

    Murphy [13] PMMA

    .

    .

    [14]

    .

    .

    GSell [15] (polyethy-

    lene terephthalate, PET) (high

    impact polystyrene, HIPS)

    .

    [16] I II PMMA

    .

    .

    [17] MDYB-3

    .

    [18] MDYB-3

    (

    103 s1103 s1 218K373K)

    . MDYB-3

    .

    2 . PMMA

    PMMA

    .

    (3)

    [19] MDYB-3

    .

    3 .

    (4)

    Sane [20] DMA (dynamic ther-

    mane chanical analysis) (polyvinyl alcohol, PVA) PMMA

    .

    .

    . Segreti [21] PMMA

    PMMA

    . PMMA

    PMMA

    . [22]

    . [23] PMMA .

    Giddings [24] PMMA

    SimplexP

    . Boger [25]

    PMMA PMMA

    3

    PMMA .

    [26]

    .

    1

    .

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    4/11

    5 543

    [2].

    (methyl

    methacrylate, MMA)

    [27].

    .

    YB-3

    [28].

    [29-30].

    10C 30C

    MMA

    (methacrylic acid, MAA)

    [31]

    .

    .

    [32-33]

    MMA

    (polyhedral oligomeric silsesquioxane,

    POSS)[34] [35]

    (graphene nanosheets)[36]MAA

    (methacrylamide, MAAM) [37]

    (di-t-butyl peroxide)

    [38]. [39]

    Yang [40] Chauhan [41] MMA, N-

    ()

    .

    (1)

    (2) -- --

    . --

    ( 50%70%)[42-43](3)

    (4)

    .

    [30] YB-2, YB-3, YB-DM-3(MDYB-3)

    [28].

    2

    Maxwell

    Voight/Kelvin

    [5]

    .

    [44-45].

    .

    Perzyna Bodner--Partom (BP )[46]Krempl

    Colak [47-49]

    [45]

    Eyring [50-52]

    Haward--Thachray ( 3) [53]

    Argon [54] (Boyce--Parks--Argon, BPA)

    [55]

    ( 4) (Arruda--Boyce 5) [56-57] [58]Anand

    [59].

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    5/11

    544 2014 36

    .

    3

    4

    5

    2.1

    (

    )

    -- . [45].

    2.1.1

    Boyce [55] 3 (ran-

    dom walk statistics)

    BPA .

    (driving stressBPA

    )

    (back stress)

    .

    B3--chaini =CR

    N

    3

    Pi L

    1 Pi

    N

    1

    3

    3j=1

    PjL1 Pj

    N

    (1)

    CR Pi N

    L .

    2.1.2

    Arruda [56-57]

    -- .

    B8--chaini =CRN3Pi L1

    P

    chainN

    1

    3pchain

    3j=1

    P2j L1Pchain

    N

    (2)

    CR

    (n)

    (k) () n

    . Pchain

    Pchain= 13

    (P2

    1

    + P2

    2

    + P2

    3

    ) (3)

    [60] PMMA

    .

    2.1.3

    Wu [58]

    n

    .

    (molecular chain orientation distribution function)

    .

    3

    Bfull--chaini = (1 P)B3--chaini + PB8--chaini (4)

    P = 0.85Pmax/NPmax

    .

    2.1.4

    [56]

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    6/11

    5 545

    --

    .

    Ahzi [61]

    Boyce [62]

    Ayoub [63]

    --

    . Drozdov [64]

    .

    Mulliken [65] DMA PC

    PMMA

    -- .

    [56-57]

    ()

    -- 6 .

    PMMA PC

    .

    .

    6

    2.1.5 Anand

    Anand Gurtin[66-67]

    Anand [59] .

    .

    . (frame--

    indifference) (

    )

    .

    7 .

    Anand [68]

    Voight/Kelvin -- 7.

    7 Anand

    Hasan [69] /

    . Anand [70] Ames [71]

    Bergstrom

    [72]

    Anand .

    2.2

    Maxwell Voight/Kelvin

    .

    .

    [73-74] Green--Rivlin

    [75] Coleman--Noll

    [76]

    ZWT

    (29) 8.

    [77].

    (t) = E0(t) + 2(t) + 3(t)+

    E1

    t0

    ()expt 1

    d+

    E2

    t0

    ()expt 2

    d (5)

    E0, ; E1

    1 Maxwell

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    7/11

    546 2014 36

    8 ZWT

    E2 2 Maxwell

    . [74]

    .

    ZWT Tervoort [78]

    Leonov Leonov

    Maxwell .

    .

    Ho [47] Krempl [48] (viscoplas-

    ticity theory based on overstress, VBO)

    .

    . Colak [49] Krempl

    .

    [79] .

    2.3

    Zari [44]

    BP

    . [80]

    .

    .

    2.4

    --

    .

    Mahieux [81]

    Weibull

    3

    . Richeton [82]

    [81]

    3

    PC PMMA

    DMA .

    Richeton [83] Eyring

    [50] Fotheringham [84]

    -- [85]

    . [86] PC, PMMA

    (polyamideimide, PAI) ()

    --

    .

    3

    .

    . Lin [87]

    PMMA . Gao [88] 3

    ABAQUS (UMAT)

    MDYB-3 . Dorogoy

    [89] Drucker--Prager [11]

    PMMA

    PMMA .

    .

    (quantum mechanics, QM)

    (Monte Carlo method, MC)

    (molecular mechanics, MM) (molecu-

    lar dynamics, MD)

    MC MM

    MD .

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    8/11

    5 547

    [90-91]

    (1)

    (2)

    (3)

    (4)

    .

    .

    Sane [92] Cerius2 PMMA

    .

    Drei-

    ding (NVT) 5

    25ps NPT

    [20].

    .

    . Dreiding Qeq

    NPT

    25ps.

    Tung [93] Cerius2 (

    ) PMMA

    PMMA

    .

    .

    PMMA PMMA

    .

    PMMA

    PMMA .

    4

    PMMA

    . --

    -- .

    ZWT ZWT .

    PMMA

    .

    .

    PMMA ()

    . PMMA

    PMMA .

    .

    .

    .

    ().

    () --

    .

    .

    .

    .

    PMMA

    .

    PMMA

    . PMMA

    .

    (1)

    .

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    9/11

    548 2014 36

    .

    (2)

    . MC

    .

    (3)

    .

    .

    .

    .

    .

    PMMA

    .

    PMMA

    .

    PMMA .

    1 Thorpe J. 100 years of fatalities and destroyed civil aircraft

    due to bird strikes. 30th Meeting of the International Bird

    Strike Committee, Stavanger, Norway. 2012

    2 . . :

    , 2007

    3 , . . : , 1996

    4 Menard KP. Dynamic Mechanical Analysis: A Practical

    Introduction. Boca Raton: CRC Press, 19995 Grohens Y, Brogly M, Labbe C, et al. Glass transition

    of stereoregular poly(methyl methacrylate) at interfaces.

    Langmuir, 1998, 14(11): 2929-2932

    6 Takehisa M, Sato Y, Sasuga T, et al. Gamma-ray response

    of a clear, crosslinked PMMA dosimeter, Radix W. Radiat

    Phys Chem, 2007, 76(10): 1619-1623

    7 Li Z, Lambros J. Strain rate effects on the thermomechani-

    cal behavior of polymers. Int J Solids Struct, 2001, 38(20):

    3549-3562

    8 Chen W, Lu F, Cheng M. Tension and compression tests

    of two polymers under quasi-static and dynamic loading.

    Polym Test, 2002, 21 (2): 113-121

    9 , , . PMMA

    . , 2005, 20(2): 193-199

    10 Wu H, Ma G, Xia Y. Experimental study of tensile prop-

    erties of PMMA at intermediate strain rate. Mater Lett,

    2004, 58 (29): 3681-3685

    11 Rittel D, Brill A. Dynamic flow and failure of confined

    polymethylmethacrylate.J Mech Phys Solids, 2006, 56(4):

    1401-141612 Forquin P, Nasraoui M, Rusinek A, et al. Experimental

    study of the confined behaviour of PMMA under quasi-

    static and dynamic loadings. Int J Impact Eng, 2012, 40-

    41: 46-57

    13 Murphy N, Ali M, Ivankovic A. Dynamic crack bifurcation

    in PMMA. Eng Fract Mech, 2006, 73(16): 2569-2587

    14 , , . .

    , 2006, 26(5): 106-108

    15 GSell C, Hiver JM, Dahoun A. Experimental characteri-

    zation of deformation damage in solid polymers under ten-

    sion, and its interrelation with necking. Int J Solids Struct,

    2002, 39 (13-14): 3857-387216 , , . I II

    . , 2008, 24(2): 10-13,18

    17 , , . MDYB-3

    . , 2007, 28(4): 874-876

    18 , . MDYB-3

    . 2008, 29(6): 1517-1525

    19 , , . MDYB-3

    . , 2009, (7): 47-49,82

    20 Sane SB, Knauss WG. The time-dependent bulk response

    of poly (methyl methacrylate). Mech Time-Depend Mat,

    2001, 5(4): 293-324

    21 Segreti M, Rusinek A, Klepaczko JR. Experimental study

    on puncture of PMMA at low and high velocities, effect on

    the failure mode. Polym Test, 2004, 23(6): 703-718

    22 . .

    , 2010, 30(3): 78-81

    23 , , . . ,

    2004, (8): 57-59, 64

    24 Giddings VL, Kurtz SM, Jewett CW, et al. A small punch

    test technique for characterizing the elastic modulus and

    fracture behavior of PMMA bone cement used in total joint

    replacement. Biomaterials, 2001, 22(13): 1875-1881

    25 Boger A, Bohner M, Heini P, et al. Performance of ver-

    tebral cancellous bone augmented with compliant PMMA

    under dynamic loads. Acta Biomater, 2008, 4(6): 1688-1693

    26 , , .

    . , 2007, 27(5): 385-389

    27 . (). :

    , 1979

    28 . ( 2

    ). , 2001

    29 . . [].

    : , 2007

    30 . . : ,

    2002

    31 , , .

    . , 1999, 15(5): 154-159

    32 Kuo S, Tsai H. Complementary multiple hydrogen-bonding

    interactions increase the glass transition temperatures to

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    10/11

    5 549

    PMMA copolymer mixtures. Macromolecules, 2009,

    42(13): 4701-4711

    33 Lin C, Kuo S, Huang C, et al. Glass transition temper-

    ature enhancement of PMMA through copolymerization

    with PMAAM and PTCM mediated by hydrogen bonding.

    Polymer, 2010, 51(4): 883-889

    34 Xu H, Yang B, Wang J, et al. Preparation, Tg improve-

    ment, and thermal stability enhancement mechanism of sol-

    uble poly (methyl methacrylate) nanocomposites by incor-

    porating octavinyl polyhedral oligomeric silsesquioxanes. J

    Polym Sci Pol Chem, 2007, 45(22): 5308-5317

    35 Zhou D, Teng H, Koike K, et al. Copolymers of methyl

    methacrylate and fluoroalkyl methacrylates: effects of flu-

    oroalkyl groups on the thermal and optical properties of the

    copolymers. J Polym Sci Pol Chem, 2008, 46(14): 4748-

    4755

    36 Wang J, Hu H, Wang X, et al. Preparation and mechan-ical and electrical properties of graphene nanosheets-poly

    (methyl methacrylate) nanocomposites via in situ suspen-

    sion polymerization. J Appl Polym Sci, 2011, 122(3): 1866-

    1871

    37 Wu P, Zhao D, Li L, et al. Preparation of blends of poly

    (methyl methacrylate) copolymers with high glass transi-

    tion temperatures and low hydrophilicity. Polym Eng Sci.

    2013, 53(11): 2370-2377

    38 Teng H, Koike K, Zhou D, et al. High glass transition

    temperatures of poly (methyl methacrylate) prepared by

    free radical initiators. J Polym Sci Pol Chem, 2008, 47(1):

    315-317

    39 , , . .

    , 2000, 16(1): 173-175

    40 Yang L, Sun D. Synthesis and characterization of terpoly-

    mer of N-cyclohexylmaleimide, methyl methacrylate, and

    acrylonitrile. J Appl Polym Sci, 2007, 104(2): 792-796

    41 Chauhan R, Choudhary V. Thermal and mechanical prop-

    erties of copolymers of methyl methacrylate with N-aryl

    itaconimides. J Appl Polym Sci, 2009, 112(2): 1088-1095

    42 Mark JE. Polymer Data Handbook. Oxford: Oxford Uni-

    versity Press, 1999

    43 Brandrup J, Immergut EH, Grulke EA, et al. Polymer

    Handbook (4th ed). John Wiley & Sons, 1999

    44 Zari F, Nat-Abdelaziz M, Gloaguen JM, et al. Modelling

    of the elasto-viscoplastic damage behaviour of glassy poly-

    mers. Int J Plasticity, 2008, 24 (8): 945-965

    45 , . .

    , 1995, 25(3): 289-302

    46 . . :

    , 2012

    47 Ho K, Krempl E. Extension of the viscoplasticity theory

    based on overstress (VBO) to capture non-standard rate

    dependence in solids. Int J Plasticity, 2002, 18(7): 851-

    872

    48 Krempl K, Khan F. Rate(time)-dependent deformation be-

    havior: an overview of some properties of metals and solid

    polymers. Int J Plasticity, 2003, 19(7): 1069-1095

    49 Colak OU. Modeling deformation behavior of polymers

    with viscoplasticity theory based on overstress. Int J Plas-

    ticity, 2005, 21(1): 145-160

    50 Eyring H. Viscosity, plasticity, and diffusion as examples of

    absolute reaction rates. J Chem Phys, 1936, 4(4): 283-291

    51 Ree T, Eyring H. Theory of non-newtonian flow. I. solid

    plastic system. J Appl Phys, 1955, 26(7): 793-800

    52 Ree T, Eyring H. Theory of non-newtonian flow. II. solu-

    tion system of high polymers. J Appl Phys, 1955, 26(7):

    800-809

    53 Haward RN, Thackray G. The use of a mathematical model

    to describe isothermal stress-strain curves in glassy thermo-

    plastics. Proc R Soc Lond A, 1968, 302(1471): 453-472

    54 Argon AS. A theory for the low-temperature plastic de-

    formation of glassy polymers. Philos Mag, 1973, 28(4):

    839-865

    55 Boyce MC, Parks DM, Argon AS. Large inelastic deforma-

    tion of glassy polymers. part I: rate dependent constitutivemodel. Mech Mater , 1988, 7(1): 15-33

    56 Arruda EM, Boyce MC. A three-dimensional constitutive

    model for the large stretch behavior of rubber elastic ma-

    terials. J Mech Phys Solids, 1993, 41(2): 389-412

    57 Arruda EM, Boyce MC. Evolution of plastic anisotropy in

    amorphous polymers during finite straining. Int J Plastic-

    ity, 1993, 9(6): 697-720

    58 Wu PD, van der Giessen E. On improved network models

    for rubber elasticity and their applications to orientation

    hardening in glassy polymers. J Mech Phys Solids, 1993,

    41(3): 427-456

    59 Anand L, Gurtin ME. A theory of amorphous solids un-

    dergoing large deformations, with application to polymeric

    glasses. Int J Solids Struct, 2003, 40(6): 1465-1487

    60 Arruda EM, Boyce MC, Jayachandran R. Effects of strain

    rate, temperature and thermomechanical coupling on the

    finite strain deformation of glassy polymers. Mech Mater,

    1995, 19(2-3): 193-212

    61 Ahzi S, Makradi A, Gregory RV, et al. Modeling of de-

    formation behavior and strain-induced crystallization in

    poly(ethylene terephthalate) above the glass transition

    temperature. Mech Mater, 2003, 35(12): 1139-1148

    62 Boyce MC, Socrate S, Llana PG. Constitutive model for the

    finite deformation stress-strain behavior of poly(ethylene

    terephthalate) above the glass transition. Polymer, 2000,41(6): 2183-2201

    63 Ayoub G, Zari F, Nat-Abdelaziz M. Modelling large de-

    formation behaviour under loading-unloading of semicrys-

    talline polymers: Application to a high density polyethy-

    lene. Int J Plasticity, 2010, 26(3): 329-347

    64 Drozdov AD, Gupta RK. Constitutive equations in finite

    viscoplasticity of semicrystalline polymers. Int J Solids

    Struct, 2003, 40(23): 6217-6243

    65 Mulliken AD, Boyce MC. Mechanics of the rate-dependent

    elastic-plastic deformation of glassy polymers from low to

    high strain rates. Int J Solids Struct, 2006, 43(5): 1331-

    1356

    66 Gurtin ME. On the plasticity of single crystals: free energy,

    microforces, plastic-strain gradients. J Mech Phys Solids,

    2000, 48(5): 989-1036

  • 7/21/2019 A Review on Mechanical Behaviour of Pmma

    11/11

    550 2014 36

    67 Gurtin ME. On a framework for small-deformation vis-

    coplasticity: free energy, microforces, strain gradients. Int

    J Plasticity, 2003, 19(1): 47-90

    68 Anand L, Ames NM. On modeling the micro-indentation

    response of an amorphous polymer. Int J Plasticity, 2006,

    22(6): 1123-1170

    69 Hasan OA, Boyce MC. A constitutive model for the non-

    linear viscoelastic viscoplastic behavior of glassy polymers.

    Polym Eng Sci, 1995, 35(4): 331-344

    70 Anand L, Ames NM, Srivastava V, et al. A thermo-

    mechanically coupled theory for large deformations of

    amorphous polymers. Part I: Formulation. Int J Plasticity,

    2009, 25(8): 1474-1494

    71 Ames NM, Srivastava V, Chester SA, et al. A thermo-

    mechanically coupled theory for large deformations of

    amorphous polymers. Part II: Applications. Int J Plas-

    ticity, 2009, 25(8): 1495-153972 Bergstrom JS, Boyce MC. Constitutive modeling of the

    large strain time-dependent behavior of elastomers. J Mech

    Phys Solids, 1998, 46(5): 931-954

    73 , Pluvinage G, Labibes K.

    . (),

    1995, 8(3): 30-57

    74 , , .

    . , 1992, 12(4): 333-

    342

    75 Green AE, Rivlin RS. The mechanics of non-linear materi-

    als with memory. Arch Ration Mech An, 1957, 1(1): 1-21

    76 Coleman BD, Noll W. An approximation theorem for func-

    tionals, with applications in continuum mechanics. Arch

    Ration Mech An, 1960, 6(1): 355-370

    77 . . [].

    : , 2005: 22-31

    78 Tervoort TA, Klompen ETJ, Govaert LE. A multi-mode

    approach to finite, three-dimensional, nonlinear viscoelastic

    behavior of polymer glasses. J Rheol, 1996, 40(5): 779-797

    79 Chaboche JL. A review of some plasticity and viscoplas-

    ticity constitutive theories. Int J Plasticity, 2008, 24(10):

    1642-1693

    80 Tvergaard V. Influence of voids on shear band instabilities

    under plane strain conditions. Int J Fracture, 1981, 17(4):

    389-407

    81 Mahieux CA, Reifsnider KL. Property modeling across

    transition temperatures in polymers: a robust stiffness-

    temperature model. Polymer, 2001, 42 (7): 3281-3291

    82 Richeton J, Schlatter G, Vecchio KS, et al. A unified model

    for stiffness modulus of amorphous polymers across transi-

    tion temperatures and strain rates. Polymer, 2005, 46(19):

    8194-8201

    83 Richeton J, Ahzi S, Daridon L, et al. A formulation of the

    cooperative model for the yield stress of amorphous poly-

    mers for a wide range of strain rates and temperatures.

    Polymer, 2005, 46(16): 6035-6043

    84 Fotheringham DG, Cherry BW. The role of recovery forces

    in the deformation of linear polyethylene. J Mater Sci,

    1978, 13(5): 951-964

    85 Williams ML, Landel RF, Ferry JD. The temperature de-

    pendence of relaxation mechanisms in amorphous polymers

    and other glass-forming liquids. J Am Chem Soc, 1955,

    77(14): 3701-370786 Richeton J, Ahzi S, Vecchio KS, et al. Influence of temper-

    ature and strain rate on the mechanical behavior of three

    amorphous polymers: characterization and modeling of the

    compressive yield stress. Int J Solids Struct, 2006, 43 (7-8):

    2318-2335

    87 Lin CR, Chen RH, Hung C. The characterisation and finite-

    element analysis of a polymer under hot pressing. Int J Adv

    Manuf Technol, 2002, 20(3): 230-235

    88 Gao ZZ, Liu W, Liu ZQ, et al. Experiment and simulation

    study on the creep behavior of PMMA at different temper-

    atures. Polym-Plast Technol, 2010, 49(14): 1478-1482

    89 Dorogoy A, Rittel D, Brill A. A study of inclined impactin polymethylmethacrylate plates. Int J Impact Eng, 2010,

    37(3): 285-294

    90 . . :

    , 2002

    91 . . , 2002,

    (5): 23-25

    92 Sane SB, Cagin T, Knauss WG, et al. Molecular dynam-

    ics simulations to compute the bulk response of amorphous

    PMMA. J Comput-Aided Mater, 2001, 8(2-3): 87-106

    93 Tung KL, Lu KT. Effect of tacticity of PMMA on gas trans-

    port through membranes: MD and MC simulation studies.

    J Membrane Sci, 2006, 272(1-2): 37-49

    (: )

    () .

    ()

    -- -- .(

    )