a short course at tamkang university taipei, taiwan, r.o.c. march 7-9 2006 an application of coding...

48
A Short Course at Tamkang University Taipei, Taiwan, R.O.C. March 7-9 2006 An Application of Coding Theory into Experimental Design Shigeichi Hirasawa Department of Industrial and Management Systems Engineering, School of Science and

Post on 22-Dec-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

A Short Course at Tamkang University Taipei, Taiwan, R.O.C. March 7-9 2006

An Application of Coding Theory into Experimental Design

Shigeichi HirasawaDepartment of Industrial and

Management Systems Engineering,

School of Science and Engineering ,

Waseda University

No.2

1. Introduction序論

No.3

1.1  Abstract

Orthogonal Arrays (OAs)

Error-Correcting Codes (ECCs)

Experimental Design Coding Theory

・ relations between OAs and ECCs

・ the table of OAs and Hamming codes

・ the table of OAs + allocation

table of OA L8 etc.

Hamming codes,

BCH codes

RS codes etc.

close relation

実験計画 符号理論

直交配列

直交表 L 8

No.4

1.2   Outline

1. Introduction

2. Preliminary

3. Relation between ECCs and OAs

4. Conclusion

序論

準備

結論

No.5

準備2 . Preliminary

No.6

実験計画法Experimental Design

No.7

2.1  Experimental Design ( 実験計画法 )

・ Factor A (materials)A0 ( A company ), A1 ( B

company )

・ Factor B ( machines )B0 ( new ), B1 ( ol

d )

・ Factor C ( temperatures )C0 ( 100℃ ), C1 (

200℃ )

a Ratio of Defective Products

Ex.)

・ How the level of factors affects a ration of defective products ?

・ Which is the best combination of levels ?

要因 A

要因 B

要因 C

2.1.1   Experimental Design

No.8

Complete Array

A  B  C0  0  0

0  0  1

0  1  0

0  1  1

1  0  0

1  0  1

1  1  0

1  1  1

Experiment ①

   ②

   ③

   ④

   ⑤

   ⑥

   ⑦

   ⑧

experiment with A0,B0,C0

experiments with all combination of levels

完全配列

実験

No.9

A  B  C0  0  0

0  1  1

1  0  1

1  1  0

   ②

   ③

   ④

Orthogonal Array (OA) : OA(M, n, s,τ) (s=2)

100 110

000 010

011

111101

001

strength   τ=2

subset (subspace) of complete array

Experiment ①

every 2 columns contains each 2-tuple exactly same times as row

直交配列

部分空間

強さ

No.10

A  B  C0  0  0

0  1  1

1  0  1

1  1  0

   ②

   ③

   ④ 100 110

000 010

011

111101

001Experiment ①

Orthogonal Array (OA) : OA(M, n, s,τ) (s=2)

subset (subspace) of complete array

直交配列

部分空間

strength   τ=2

every 2 columns contains each 2-tuple exactly same times as row

強さ

No.11

A  B  C0  0  0

0  1  1

1  0  1

1  1  0

   ②

   ③

   ④ 100 110

000 010

011

111101

001Experiment ①

Orthogonal Array (OA) : OA(M, n, s,τ) (s=2)

subset (subspace) of complete array

直交配列

部分空間

strength   τ=2

every 2 columns contains each 2-tuple exactly same times as row

強さ

No.12

A  B  C0  0  0

0  1  1

1  0  1

1  1  0

   ②

   ③

   ④ 100 110

000 010

011

111101

001Experiment ①

Orthogonal Array (OA) : OA(M, n, s,τ) (s=2)

subset (subspace) of complete array

直交配列

部分空間

strength   τ=2

every 2 columns contains each 2-tuple exactly same times as row

強さ

No.13

Parameters of OAs

・ the number of factors n・ the number of runs  M・ strength  τ=2t

A    B     C①

   ②   ③   ④

0  0  00  1  11  0  11  1  0

the number of factors n=3

the number of runs  M=4

strength τ=2

Construction problem of OAs is to construct OAs with as few as possible number of runs, given the number of factors and strength (n,τ  →  min M)

this can treat t-th order interaction effect

trade off

2.1.2   Construction Problem of OAs

因子数

実験回数

強さ

因子数

実験回数

強さ

No.14

Generator Matrix of an OA : G

Ex.) orthogonal array { 000 , 011 , 101 , 110 }

(○,○,○) = (□,□)

0 1 11 0 1

OA each k-tuple (k=2) based on{ 0,1 } 2 2k=M

generator matrix G

A B CA B C

2.1.3   Generator Matrix   ( 生成行列 )

To construct OAs is to construct generator matrix

No.15

orthogonal array { 000 , 011 , 101 , 110 }

( 0, 0, 0 ) = ( 0,0 )

0 1 1

A B CA B C

1 0 1

OA generator matrix G

Ex.)

To construct OAs is to construct generator matrix

Generator Matrix of an OA : G

2.1.3   Generator Matrix   ( 生成行列 )

each k-tuple (k=2) based on{ 0,1 } 2 2k=M

No.16

orthogonal array { 000 , 011 , 101 , 110 }

( 0, 1, 1 ) = ( 1,0 )

0 1 1

A B CA B C

1 0 1

OA

To construct OAs is to construct generator matrix

generator matrix G

Ex.)

Generator Matrix of an OA : G

2.1.3   Generator Matrix   ( 生成行列 )

each k-tuple (k=2) based on{ 0,1 } 2 2k=M

No.17

orthogonal array { 000 , 011 , 101 , 110 }

( 1, 0, 1 ) = ( 0,1 )

0 1 1

A B CA B C

1 0 1

OA generator matrix G

Ex.)

To construct OAs is to construct generator matrix

Generator Matrix of an OA : G

2.1.3   Generator Matrix   ( 生成行列 )

each k-tuple (k=2) based on{ 0,1 } 2 2k=M

No.18

orthogonal array { 000 , 011 , 101 , 110 }

( 1, 1, 0 ) = ( 1,1 )

0 1 1

A B CA B C

1 0 1

OA generator matrix G

Ex.)

To construct OAs is to construct generator matrix

Generator Matrix of an OA : G

2.1.3   Generator Matrix   ( 生成行列 )

each k-tuple (k=2) based on{ 0,1 } 2 2k=M

No.19

Parameters of OAs and Generator Matrix : G

orthogonal arrays { 000 , 011 , 101 , 110 }

・ the number of factors n=3・ the number of runs M=4・ strength τ=2

0 1 11 0 1

G =

3

2

the number of factors n=3

the number of runs M=22

any 2 columns are linearly independent

strength   τ=2

Ex.)

No.20

Parameters of OAs and Generator Matrix

orthogonal arrays { 000 , 011 , 101 , 110 }

0 1 11 0 1

G =

3

2

any 2 columns are linearly independent

Ex.)

0

1

1

0+

0

0≠

・ the number of factors n=3・ the number of runs M=4・ strength τ=2

the number of factors n=3

the number of runs M=22

strength   τ=2

No.21

Parameters of OAs and Generator Matrix

orthogonal arrays { 000 , 011 , 101 , 110 }

0 1 11 0 1

G =

3

2

any 2 columns are linearly independent

Ex.)

0

1

1

1+

0

0≠

・ the number of factors n=3・ the number of runs M=4・ strength τ=2

the number of factors n=3

the number of runs M=22

strength   τ=2

No.22

Parameters of OAs and Generator Matrix

orthogonal arrays { 000 , 011 , 101 , 110 }

0 1 11 0 1

G =

3

2

any 2 columns are linearly independent

Ex.)

1

0

1

1+

0

0≠

・ the number of factors n=3・ the number of runs M=4・ strength τ=2

the number of factors n=3

the number of runs M=22

strength   τ=2

No.23

OAs and ECCs [HSS ‘99]

G =

n

m

OAs with generator matrix G ECCs with parity check matrix G

・ the number of factors n・ the number of runs M=2m

・ strength τ=2t

・ code length n・ the number of information symbols k=n-m

・ minimum distance d=2t + 1 this can correct all t errors

any τ=2t columns are linearly independent

this can treat all t-th order interaction effect

No.24

Coding Theory

No.25

2.2  Coding Theory (符号理論)2.2.1 Coding Theory

techniques to achieve reliable communication over noisy channel (ex.   CD, cellar phones etc.)

0 → 000

1 → 111

0 000 100 0

Ex.)

encoder channel decoder

noise

codewords符号語

No.26

Error-Correcting Codes

subspace of linear vector space

100 110

000 010

011

111101

001

000111

codeword

Ex.)

誤り訂正符号

部分空間

符号語

No.27

・ code length n

・ the number of information symbols  k

・ minimum distance d=2t + 1 this can correct t errors

trade off

0 000

1 111

the number of information symbols   k=1

minimum distance d=3

this can correct 1 error

2.2.2   Construction Problem of ECCs : (n, k, d) codeParameters of ECCs

Construction problem of ECCs is to construct ECCs with as many as possible number of information symbols, given the code length and minimum distance ( n, d → max k )

符号長

情報記号数

最小距離

No.28

Parity Check Matrix of ECCs

Ex.)    (3,1,3) code { 000 , 111 }

parity check matrix H =0 1 1 1 0 1

0 1 1 1 0 1

000

= 00

0 1 1 1 0 1

111

= 00

codeword

To construct of linear codes is to construct parity check matrix

2.2.3   Parity Check Matrix

HxT=0

No.29

Parameters of ECCs and Parity Check Matrix

・ code length n=3・ the number of information symbols k=1

・ minimum distance d=3

0 1 11 0 1

H =

3

2

code length  n=3

the number of information symbols k=3 - 2

any d-1=2 columns are linearly independent

minimum distance  d=2 +1

Ex.)    (3,1,3) code { 000 , 111 }

No.30

OAs and ECCs [HSS ‘99]

G =

n

m

OAs with generator matrix G ECCs with parity check matrix G

・ the number of factors n・ the number of runs  M=2m

・ strength τ=2t

・ code length n・ the number of information symbols n-m

・ minimum distance d=2t + 1 this can correct all t errors

any d-1=2t columns are linearly independent

this can treat all t order interaction effect

No.31

3 . Relation Between OAs and ECCs

関係

No.32

3.1   OAs and ECCs

0 1 11 0 1

G =

100 110

000 010

011

111101

001

100 110

000 010

011

111101

001

OA with generator matrix G ECC with parity check matrix G

No.33

OAs and ECCs [HSS ‘99]

G =

n

m

OAs with generator matrix G

・ the number of factors n・ the number of runs M=2m

・ strength τ=2t

・ code length n・ the number of information symbols k=n-m

・ minimum distance d=2t + 1 this can correct all t errors

any 2t columns are linearly independent

this can treat all t order interaction effect

ECCs with parity check matrix G

No.34

Table of OAs and Hamming Codes直交表

No.35

3.2   Matrix   in which any 2 columns are linearly

an OA with strength τ=2 , a linear code with minimum distance

independent ①

0 0 0 1 1 1 10 1 1 0 0 1 11 0 1 0 1 0 1

001

111

・・・

G = 3

n=7

No.36

3.2   Matrix   in which any 2 columns are linearly

0 0 0 1 1 1 10 1 1 0 0 1 11 0 1 0 1 0 1

G = 3

independent ①

001

010

+ ≠000

an OA with strength τ=2 , a linear code with minimum distance 0

01

111

・・・

n=7

No.37

3.2   Matrix   in which any 2 columns are linearly

an OA with strength 2 , a linear code with minimum distance

0 0 0 1 1 1 10 1 1 0 0 1 11 0 1 0 1 0 1

G = 3

independent ②

・ table of OA L8

・( 7,4,3 ) Hamming code

the number of factors 7 , the number of runs 8 , strength 2

code length 7, the number of information symbols 4, minimum distance 3

001

111

・・・

n=7

No.38

3.2   Matrix   in which any 2 columns are linearly

an OA with strength 2 , a linear code with minimum distance

independent ①

・ table of OA L16

・( 15,11,3 ) Hamming code

the number of factors 15 , the number of runs 16 , strength 2

code length 15, the number of information symbols 11, minimum distance 3

0 0 0 1 1 1 1 0 0 0 0 1 1 1 10 1 1 0 0 1 1 0 0 1 1 0 0 1 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1

G =

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4

No.39

Table of OAs + allocation直交表 割付

No.40

1   2   3   4  5   6   7 ①

   ②   ③   ④   ⑤   ⑥   ⑦   ⑧

3.3   Example  ( Allocation to L8 )

0   0   0   0  0   0   00   0   0   1  1   1   10   1   1   0  0   1   10   1   1   1  1   0   01   0   1   0  1   0   11   0   1   1  0   1   01   1   0   0  1   1   01   1   0   1  0   0   1

L8 Linear Graph

2 4

3 5

線点図

No.41

1   2   3   4  5   6   7

   ②   ③   ④   ⑤   ⑥   ⑦   ⑧

0   0   0   0  0   0   00   0   0   1  1   1   10   1   1   0  0   1   10   1   1   1  1   0   01   0   1   0  1   0   11   0   1   1  0   1   01   1   0   0  1   1   01   1   0   1  0   0   1

2 4

3 5

factor A

BD

EA×B

BA D EC

C

3.3   Example  ( Allocation to L8 )

L8 Linear Graph

線点図

No.42

3.4   Construction Problem ( General Case )

Special Case

・ the number of factors n=5

・ strength τ=4

an OA with as few as possible of runs

factors  A,B,C,D,E

this can treat all L=2 order interaction effects ( A×B,A×C, ・・・ ,D×E )

General Case

・ the number of factors n=5

・  ? this can treat partial 2order interaction effects ( A×B )

Ex.)

an OA with as few as possible of runs

No.43

3.5   Generator Matrix ( General Case )

Special Case ( A×B,A×C, ・・・ ,D×E )

General Case ( A×B )

A B C D Egenerator matrix G =

any 4 columns are linearly independent

A B C D E

・ any 4 columns are linearly independent

・ any 3 columns which contain A, B are linearly independent

factors  A,B,C,D,E

Ex.)

generator matrix G =

No.44

3.6   Meaning of allocation

Generator Matrix of L8 Projective Geometry ( Linear Graph )

0   0   0   1  1   1   10   1   1   0  0   1   11   0   1   0  1   0   1

001

010 100

011 101

110

111

No.45

0   0   0   1  1   1   10   1   1   0  0   1   11   0   1   0  1   0   1

001

010 100

011 101

110

BA D ECfactor A

BD C

E

if C, D, E are not allocated to this column, any 3 columns which contain A, B are linearly independent

A×B

111

3.7   Meaning of allocation

Generator Matrix of L8 Projective Geometry ( Linear Graph )

No.46

4 . Conclusion

No.47

4.1  Conclusion

1. Construction problems

ECCs : n, d → max k

OAs : n, τ → min M

2. A generator matrix of OAs is equal to a parity check matrix of ECCs.

3. Relations of each columns in construction problems of OAs are more complicate than in those of ECCs.

No.48

参考文献)[Taka79] I.Takahashi, “Combinatorial Theory and its Applications (in Japanese), ” Iwanami shoten, Tokyo, 1979

[HSS99] A.S.Hedayat , N.J.A.Sloane , and J.Stufken ,“ Orthogonal Arrays : Theory and Applications ,” Springer , New York , 1999 .

[SMH05] T.Saito, T.Matsushima, and S.Hirasawa, “A Note on Construction of Orthogonal Arrays with Unequal Strength from Error-Correcting Codes,” to appear in IEICE Trans. Fundamentals.

[MW67] B.Masnic, and J.K.Wolf, “On Linear Unequal Error protection Codes,” IEEE Trans. Inform Theory, Vol.IT-3, No.4, pp.600-607, Oct.1967