a stochastic optimisation formulation for the … - j macneil.pdfa stochastic optimisation...

33
A Stochastic Optimisation Formulation for the Transition from Open Pit to Underground Mining James MacNeil November, 2014 COSMO – Stochastic Mine Planning Laboratory Department of Mining and Materials Engineering 1

Upload: ngoduong

Post on 22-May-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

A Stochastic Optimisation Formulation for the Transition from Open Pit to Underground Mining

James MacNeil

November, 2014

COSMO – Stochastic Mine Planning LaboratoryDepartment of Mining and Materials Engineering 1

Outline

212/3/2014

1. Introduction2. Method and Formulation3. Application at a Gold Deposit4. Conclusions and Future Work

Consideration for Transitioning Between Methods

312/3/2014

• As open‐pit mining deepens:• Stripping ratio (waste:ore) increases• Cost of haulage to surface increases

• Underground mining can provide:• Increased mine life by allowing access to deep ore• Make use of processing facilities already in‐place

Problem Setting

412/3/2014

• Multidisciplinary decision which requires:

Geotechnical Analysis

Detailed Cost/Revenue Structure

Underground Mine Design Received as inputs

Accurate Valuation Proceduresfor both Portions of the Mine

Focus of this presentation

Method and Formulation

512/3/2014

Simplifying the Problem

612/3/2014

• This problem is limited to a finite number of transition opportunities based on:• Viable crown pillar locations• Discretization of space into selective mining units

• Need to define opportunities in 3‐dimensions through:• Ultimate pit for open‐pit resource• Extent of underground orebody• Crown pillar size and location

Method Procedure

712/3/2014

• In order to accurately value the action of transitioning at a certain opportunity, we must create an optimized schedule which considers uncertainty

Open‐Pit Production Year 1

Underground Production Year 1

. . . Open‐Pit 

Production Year N

Transition Year

Life of Mine Schematic:

. . . 

Underground Production Year M

Transition year is fixed, but yearly cash‐flows change across transition opportunities

Broad Scope Schematic of Method

812/3/2014

… Crown Pillar

PotentialOpen‐pit Resource

PotentialUnderground Resource

Determine extent of each corresponding above and below ground orebody

Optimize production schedule above and below ground to assess value at each transition opportunity

UG Production Schedule

OP Production Schedule

Transition Opportunity 1

Transition Opportunity 2

Transition Opportunity n

Optimization Procedure

912/3/2014

Open‐pit Underground

20 geological simulations Input:

Two‐stage stochastic optimization which aims to maximize value while limiting deviations from metal quantity and processing 

tonnage targetsFormulation:

Parallel Implementation of  Tabu Search Metaheuristic

IBM ILOG CPLEX 12.51 C++ Concert TechnologySolution Method:

Portion of Mine:

Different Optimization Frameworks

1012/3/2014

Stochastic Optimization 

Several orebody simulations

…Stochastic Scheduler

Risk‐based Production Schedule

21

3

Deterministic Scheduler

Traditional Production Schedule

21

3Single orebody model

Deterministic Optimization 

Formulation Details

11

• Open‐pit Objective Function:

, , , , , , , ,

• Underground Objective Function:

, , , , , , , ,

Economic value of stopes mined in a given period

Deviations from ore and metal targets

Economic value of blocks mined in a given period

Deviations from ore and waste targets

Evaluation of Optimal Transition Opportunity

1212/3/2014

• Optimal extraction sequence and resulting cash‐flows under uncertainty provide accurate valuation of mining complex

NPV of OP Operation

NPV of UG Operation

NPV of Mining Complex

Transition opportunity specific values

Risk Analysis Procedure

1312/3/2014

90% chance of being below this value

Value

Period

P90

P10

10% chance of being below this value

Range Describes variation 

Several simulations

…Schedule Produced 

by Optimizer

Simulations

Case Study

1412/3/2014

Application at a Gold Deposit

1512/3/2014

• Fictitious gold deposit containing an open‐pit and an underground stoping operation

• Four transition opportunities were selected with varying crown pillar locations

TransitionOpportunity 1

TransitionOpportunity 2

TransitionOpportunity 3

TransitionOpportunity 4

Number of OP Blocks

66,000 63,000 59,000 55,000

Number of UG Stopes

235 315 395 450

Crown Pillar Locations

16

Location 2 – Crown Pillar Depth: 820ft

Location 3 – Crown Pillar Depth: 760ft Location 4 – Crown Pillar Depth: 700ft

• Crown pillar size is assumed to be constant at each locationHeight = 60ft, Width = 740ft, Length = 1260ft

Location 1 – Crown Pillar Depth: 880ft

Crown Pillar

Potential Open‐pit Resource

Transition Opportunities (TO) 

1712/3/2014

TO 1 TO 2

TO 3 TO 4

135

140

145

150

155

Cumulative Discoun

ted Ca

sh‐Flow 

(Millions)

Net Present Value at Each Transition Opportunity

TO 1

TO 2

TO 3

TO 4

Deterministic Study

1812/3/2014

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13

Cumulative Discoun

ted 

Cash‐Flow

(Millions)

Period

Cumulative Cash‐Flow Generated throughout LOM

TO 1

TO 2

TO 3

TO 4

Optimal to transition at Opportunity 4

Transition Year

Risk Analysis on Deterministic Result

1912/3/2014

0123456789

1 2 3 4 5Metal To

nnes Produ

ced 

Underground Production Period

0

50

100

150

200

250

1 2 3 4 5

Cumulative Discoun

ted 

Cash‐Flow

(Millions)

Underground Production Period

Deterministic

p50

p10

p90

Likelihood of meeting yearly target:25%        45%         8%            0%         29%

Target Simulations 

Stochastic Result

2012/3/2014

020406080100120140160180

1 2 3 4 5 6 7 8 9 10 11 12 13

Cumulative Discou

nted

 Cash‐Flow

(Millions)

Period

TO1TO2TO3TO4

130

135

140

145

150

155

160

Cumulative Discou

nted

 Cash‐Flow 

(Millions)

Net Present Value at End of Life of Mine Plan

TO 1TO 2TO 3TO 4

Optimal to transition at Opportunity 3

Transition Year

Risk Analysis on Stochastic Result

2112/3/2014

012345678

1 2 3 4 5

Tonn

es of M

etal 

Prod

uced

Period

Likelihood of meeting yearly target:89%       71%         37%         74%          11%

0

100

200

300

400

500

600

1 2 3 4 5

Tonn

es Sen

t to Mill

(Tho

usands)

Period

Deterministic Target Simulations 

Visual Comparison

22

Stochastic ResultDeterministic Result

Ope

n‐pit 

Resource

Und

ergrou

nd 

Resource

Plan View

700ft 760ft

Comparison of Two Studies

23

Transition Opportunity 3

• 59,000 Open‐Pit Blocks• 395 Underground Stopes

• Crown Pillar at Depth of 760 ft

Stochastic Result

Transition Opportunity 4

• 55,000 Open‐Pit Blocks• 450 Underground Stopes

• Crown Pillar at Depth of 700 ft

Deterministic Result

• Different schedules and design for both portions of the deposit for stochastic versus deterministic results

Comparison in Result Variation

24

• Able to measure variation based on difference between P90 and P10• Apparent that there is higher certainty in cash‐flows predicted by 

stochastic scheduler 

0

20

40

60

80

100

120

1 2 3 4 5

Cash‐Flow Variatio

n(M

illions)

Underground Production Period

Deterministic

Stochastic

Comparison in Result Value

2512/3/2014

151

152

153

154

155

156

157

Cumulative Discou

nted

Cash‐Flow

(Millions)

Net Present Value of Optimal Transition Opportunity

Stochastic

Deterministic

• 3% increase in NPV for stochastic decision to transition at opportunity 3

• Deterministic optimizer makes a risky and less profitable decision  to transition at opportunity 4

Conclusions and Future Work

2612/3/2014

Conclusions

2712/3/2014

• Made an initial attempt at solving a large pertinent problem

• Stochastic transition depth is different than deterministic

• Benefits of incorporating geological uncertainty:• Increased ability to meet targets• Higher NPV

Future Work

2812/3/2014

• Attempt a more thorough evaluation of the solution space

• Incorporate into context of a mining complex

• Observe the impact of price uncertainty

• Improve ability to accurately model and value underground mines

Thank you for your attention...

29

Questions?

12/3/[email protected]

Widescreen Test Pattern (16:9)

Aspect Ratio Test

(Should appear circular)

16x9

4x3

4x3

4x3

4x3

4x3

4x3

4x34x3

4x34x3

4x34x3

4x34x3

16x9

16x9

16x9

16x9

16x9

16x916x9

16x916x9

16x916x9

Relevant Parameters

3112/3/2014

Economic Parameters

Metal Price $750

Crown Pillar Height 60ft

Economic Discount Rate 10%

OP Mining cost/ton $1.5

UG Mining cost/ton $135

Processing cost/ton $31.5

Open‐Pit Stochastic Optimization Formulation

32

• Objective function::

, , , , , , , ,

• Subject to: 1,2, … , ; 1,2, … ,

1 1,2, … , 0 1,2, … , ; 1,2, … , ; ∈

Economic value of blocks mined in a given period

Deviations from ore and waste targets

Ore target in each period Waste target in each period

Reserve Constraint Slope Constraint

Methods Used to Solve Scheduling Problems

33

Open-Pit MethodTabu Search Heuristic

• Smart algorithm that efficiently searches the solution space for optimal solution

• Uses a diversification strategy to overcome local optima

• Implemented in parallel to reduce solving times

• No optimality guarantee 

CPLEX

• Commercially available mathematical programming solver

• Implements branch and bound algorithm to 

• Implemented in parallel to reduce solving times

Underground Method