a study on crashworthiness and rollover characteristics of

8
論文 하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구 신광복 *+ , 고희영 ** , 조세현 *** A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites Kwang-bok Shin *+ , Hee-young Ko ** , Se-hyun Cho *** ABSTRACT This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis. 본 논문은 유리섬유 에폭시 면재에 알루미늄 하니컴 샌드위치 복합재가 적용된 저상버스 차체에 대한 정면충돌과 전복에 대한 특성에 대해 연구하였다. 이때 충돌과 전복 해석은 외연유한요소 해석 프로그램인 LS-DYNA3D를 이용하였다. 차체 구 조물에 적용되는 적층 복합재 면재에 대해 기계적 특성시험을 통하여 물성을 획득하였고, 직교이방성 특성을 갖는 하니컴 심 재의 물성은 유효등가손상 모델을 적용하였다. 저상버스의 충돌 해석은 60km/h의 속도로 정면충돌 사고를 모사하여 해석을 수행하였고, 전복해석은 유럽 안전법규 ECE-R66의 시험 방법을 고려하여 해석하였다. 저상버스의 정면충돌과 전복에 대해 운전자와 승객의 생존 공간 안전성에 관한 결과를 보여준다. 또한, 수정된 Chang-Chang 파손기준식은 충돌과 전복해석에 대 한 복합재 구조물의 파손 모드 예측에 추천된다. Key Words : 하니컴 샌드위치 복합재(Honeycomb sandwich composite), 충돌해석(Crashworthiness analysis), 전복해석(Rollover analysis), 유효손상모델(Effective equivalent damage model) *+ 한밭대학교 기계설계공학과 교수, 교신저자(E-mail:[email protected]) ** 한밭대학교 기계설계공학과, 경량구조 및 CAE 실험실 *** 한국화이바() 차량사업부 1. 서 론 현재 국내의 대중교통은 자가 차량의 증가로 인해 교통 체증 이 지속적으로 증가되고 있는 실정이다. 이에 교통 체증을 줄이 기 위한 방법으로 지하철 및 경전철을 이용하여 도심의 유동인 구를 신속하게 이동하게 하는 방법이 추진되고 있으나, 이는 막 22 韓國複合材料學會誌

Upload: others

Post on 04-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

<3036BDC5B1A4BAB9BCF6C1A4BFCF32322D32392E687770>

*+, **, ***
A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites
Kwang-bok Shin*+, Hee-young Ko**, Se-hyun Cho***
ABSTRACT
This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.


. LS-DYNA3D .
,
. 60km/h
, ECE-R66 .
. , Chang-Chang
.
Key Words : (Honeycomb sandwich composite), (Crashworthiness analysis), (Rollover analysis), (Effective equivalent damage model)
*+ , (E-mail:[email protected]) ** , CAE
*** ()
22
21 1 2008. 2 23

.

.

. ,
(laminate composite)
(sandwich composite)
[1].

(hybrid vehicle carbody)
[2].

. ,
,

[3].
ECE-R66 ,
[4].
1992 ADR59
[5].
2003 1
(G.V.W.) 4.5
.
(survival space)
.
(frontal collision)
(rollover) .
60km/h ,
.
LS-DYNA3D

.
Chang-Chang (modified Chang-Chang criterion) ,
(effective equivalent damage model)
.
.
2.
2.1
Fig. 1 Manufacturing concept of the low-floor bus.
Table 1 The construction of sandwich panels of the low floor bus
Name Facesheet Material
Fig. 1

,

.
,
.

[2]. Table 1
.
WR580/NF4000 /
3mm 1.5mm
. 5052 3/8"
25.4mm .
2.2
,
.
.

24
Fig. 2 Finite element model.
Table 2 Material properties of SUS400
Properties Value

[6-7]. Fig. 2
,
10 5 15 .
CNG ,

. (spotweld)
,
(single surface contact)
.
(air spring) (shock absorber)
.
2.3
LS-DYNA v971 .
(SUS400)
*MAT_24 Piecewise linear plasticity
. Table 2
.
WR580/NF4000 /
Table 3 Material properties of WR580/NF4000 glass fabric laminate
Properties Value Density (kg/m3) 1,830 Young's modulus - Fill direction (GPa) 22.64 Young's modulus - Warp direction (GPa) 22.33 Poisson's ratio between fill and warp 0.148 Shear modulus, Gxy (GPa) 5.85 Shear modulus, Gyz (GPa) 1.40 Shear modulus, Gxz (GPa) 1.40 Compressive strength - Fill direction (MPa) 337.19 Compressive strength - Warp direction (MPa) 321.85 Tensile strength - Fill direction (MPa) 371.15 Tensile strength - Warp direction (MPa) 383.10 Shear strength(MPa) 75.01
Table 4 The modified Chang-Chang failure criterion in LS-DYNA 3D
Failure mode Following conditions
: elastic
σx, σy, τxy : (principal material direction) , Xt, Yt : , Yc, Yc : , S : xy , e : (failue index); ft : fiber tensile; fc : fiber compressive; mt : matrix tensile; mc : matrix compressive; md : shearing mode of fiber & matrix
Chang-Chang
,
. Table 3 WR580/NF4000
/ . *MAT_54 Enhanced composite damage
21 1 2008. 2 25
Fig. 3 The stress-strain curve for aluminum honeycomb core
, Matzenmiller Chang- Chang Tsai-Wu Table 4 Chang-Chang
/
.

[8-11]. *MAT_126
Modified honeycomb
. ,
- . Fig. 3
,

[12]. ,
(strain rate effect)
, .
3.1
Fig. 4
60km/h (16.67m/s) . ,
465mm
1100mm. (surface to surface contact)
.
(surface to surface contact) .
Fig. 4 The initial condition of crashworthiness analysis.
Fig. 5 The results of frontal collision simulation
3.2
. ,
100msec
0 . Fig. 5

. ,
316mm . Fig. 6
, (A1, A2, A3, A4)
. 1.29MJ
,
0.81MJ . Fig. 7 chang-chang

(matrix failure) .

1 .
.
26
Fig. 6 Energy history curves of frontal crashworthiness simulation.
Fig. 7 Failure index(e2 mt) contours of composite carbody structure using
modified Chang-Chang failure criteria.
66(ECE Regulation No.66)

4
. 1) (Complete Vehicle)
2) (Body Section)
3) (Pendulum)
4) (Superstructure)
4
[13]. Fig. 8 (survival space)

750mm .
Fig. 8 Definition of survival space.
Fig. 9 Specification of rollover test.
4.2
Fig. 9 800mm
,
. , 1
(degree)
.
(surface to surface contact)
.
2800kg (70kg×40)
.

.
ANSYS v11.0
.
(1)
21 1 2008. 2 27
Fig. 10 Dynamic simulation of rollover test.
Table 5 Angular & Translation velocity
Dynamic analysis simulation Magnitude
Angular velocity in Y-axis 0.297 × 10-3 rad/sec
Angular velocity in Z-axis 0.157 × 10-3 rad/sec
Translation velocity in X-axis 2.407 mm/sec
Translation velocity in Y-axis 689.420 mm/sec
Translation velocity in Z-axis -2081.110 mm/sec
, , ,
, , ,
. (1)

. Fig. 10

. , 1°/sec

.

. Table 5
( )
. , Y Z
.
300msec
. Fig. 11

. , 110mm
. Fig. 12
(B1, B2, B3, B4) .
1
. 100msec 250msec
. , B6
.

.
,
. 30 ,
150GB .

.
28
Fig. 12 Energy history curves of rollover simulation.
Fig. 13 Failure index(e2 mt) contours of composite carbody structure using
modified Chang-Chang failure criteria.
. 1
2
1
.
,
.
5.
.
60km/h ,
66(ECE-R 66) .
(1)
,

,
. (2) Chang-Chang

/
. (3)

. ,

.
, .

1) Martec Limited Prevost Car, Intercity Bus Weight Reduction Profram Phase I, 2000.
2) Lee, J. Y., Shin, K. B., Lee, S. J., “A Study on Failure Evaluation if Korean Floor Bus Structure made of Hybrid Sandwich Composite,” Korean Society of Automotive Engineers, Vol. 15, No. 6, 2007.
3) Y. Sukegawa, F. Matsukawa, T. Kuboike, M. Oki, “Heavy Duty Vehicle Crash Test Method in Japan,” JAMA, 1998, pp. 892-898.
4) Pankaj S. Deshmukh, “Rollover and Roof Crush Analysis of Low-Floor Mass Transit Bus,” Ambedkar Marathwada University, 2002.
5) Australian Design Rule 59/00-Omnibus Rollover Strength, “Evaluation of Occupant Protection in Buses,” RONA Kinetics and Associates Ltd./Report RK02-06, 2002.
6) Choi, H, Y., Chang F. K., “A Model for Predicting Damage in Graphite Epoxy Laminated Composite Resulting from Low Velocity Point Impact,” Journal of Composite Material, Vol. 26, 1992, pp. 2134-2169.
7) Lee, J. Y., Shin, K. B., Jeong, J. C., “Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application,” Korean Society for
21 1 2008. 2 29
Composite Materials, Vol. 20, No. 4, 2007, pp. 42-50. 8) Azzi, V. D., Tsai, S. W., “Anisotropic Strength of
Composites,” Experimental Mechanics, Vol. 5, 1965, pp. 283-288.
9) Tsai, S. W., Wu, E. M., “A General Theory of Strength for Anisotropic Materials,” Journal of Composite Materials, Vol. 5, 1971, pp. 58-80.
10) Matzenmiller, A., Luvliner, J., Taylor, R. L., “A Constitutive Model for Anisotropic Damage in Fiber-composite,” Journal of Mechanical of Materials, Vol. 21, 1995, pp. 125-152.
11) LS-DYNA, “Keyword User's Manual, Version 971,” Livermore Software Technology Corporation, 2006.
12) Lee, J. Y., Shin, K. B., Ryu, B. J., Lee, S. J., “Simulation of Low Velocity Impact of Sandwich Panels Applied to Korean Low Floor Bus Using LS-DYNA,” International Conference on Composite Materials, 2007, pp. 1348-1349.