a survey on recursive nonlinear pseudorandom number …

25
A Survey on Recursive Nonlinear Pseudorandom Number Generators Arne Winterhof Austrian Academy of Sciences Johann Radon Institute for Computational and Applied Mathematics Linz MCQMC 2012 A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 0 / 24

Upload: others

Post on 07-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Survey on Recursive Nonlinear Pseudorandom Number …

A Survey on Recursive Nonlinear

Pseudorandom Number Generators

Arne Winterhof

Austrian Academy of SciencesJohann Radon Institute for Computational and Applied Mathematics

Linz

MCQMC 2012

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 0 / 24

Page 2: A Survey on Recursive Nonlinear Pseudorandom Number …

Pseudorandom Numbers

Numbers which are generated by a deterministic algorithm and ’lookrandom’ are called pseudorandom.

Desirable ’randomness properties’ depend on the application!

cryptography:unpredictability → high linear complexity

numerical integration (Monte Carlo):uniform distribution → low discrepancy

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 1 / 24

Page 3: A Survey on Recursive Nonlinear Pseudorandom Number …

Pseudorandom Number Generators

A pseudorandom number generator is a sequence (sn) over a finitefield Fq (or residue class ring Zm).Here we consider only Fp with p prime.

We derive pseudorandom numbers in Z or in [0, 1) in the followingway:Identify Fp with {0, 1, . . . , p − 1}.

xn = sn/p ∈ [0, 1)

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 2 / 24

Page 4: A Survey on Recursive Nonlinear Pseudorandom Number …

Part I: Predictability, Linear Complexity, and Lattice Structure

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 3 / 24

Page 5: A Survey on Recursive Nonlinear Pseudorandom Number …

Linear Complexity

The linear complexity L(sn) of a periodic sequence (sn) over Fp is thesmallest positive integer L such that there are constantsc0, . . . , cL−1 ∈ Fp with

sn+L = cL−1sn+L−1 + . . . + c0sn, n ≥ 0.

For a positive integer N the Nth linear complexity L(sn,N) of asequence (sn) over Fp is the smallest positive integer L such thatthere are constants c0, . . . , cL−1 ∈ Fp satisfying

sn+L = cL−1sn+L−1 + . . . + c0sn,

0 ≤ n ≤ N − L− 1.

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 4 / 24

Page 6: A Survey on Recursive Nonlinear Pseudorandom Number …

Linear Pseudorandom Number Generators

a, b, x0 ∈ Fp, a 6= 0

xn+1 = axn + b, n ≥ 0

– predictable (L(xn) ≤ 2)

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 5 / 24

Page 7: A Survey on Recursive Nonlinear Pseudorandom Number …

(Recursive) Nonlinear Pseudorandom Number

Generators

f ∈ Fp[X ], 2 ≤ deg(f ) ≤ p − 1, x0 ∈ Fp

xn+1 = f (xn), n ≥ 0

(purely) periodic with period t ≤ p

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 6 / 24

Page 8: A Survey on Recursive Nonlinear Pseudorandom Number …

Lower Bound on the Linear Complexity Profile

Gutierrez/Shparlinski/W. 2003:The linear complexity profile of a nonlinear sequence (xn) defined by

xn+1 = f (xn), n = 0, 1, . . . ,

with a polynomial f ∈ Fp[X ] of degree d ≥ 2, purely periodic withperiod t, satisfies

L(xn,N) ≥ min {dlogd(N − blogd Nc)e, dlogd te} .

Reason for weak result: The degrees in the sequence of iteration of f

f0(X ) = X , fk+1(X ) = f (fk(X )), k ≥ 0

grow exponentially.

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 7 / 24

Page 9: A Survey on Recursive Nonlinear Pseudorandom Number …

L∑l=0

clxn+l = 0, 0 ≤ n ≤ N − L− 1, cL = −1

F (X ) =∑L

l=0 cl fl(X ) of degree dL has at least min{N − L, t} zeros.

dL ≥ min{N − L, t}

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 8 / 24

Page 10: A Survey on Recursive Nonlinear Pseudorandom Number …

Inversive Generators

a, b, y0 ∈ Fp, a 6= 0

yn+1 = ayp−2n + b =

{ay−1

n + b, yn 6= 0,b, yn = 0.

Gutierrez/Shparlinski/W. 2003:

L(yn,N) ≥ min

{⌈N − 1

3

⌉,

⌈t − 1

2

⌉}

Reason for better result:f (X ) = bX+a

X, fj(X ) =

ajX+bjcjX+d

(still predictable and not suitable for cryptography but for MC)

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 9 / 24

Page 11: A Survey on Recursive Nonlinear Pseudorandom Number …

Power Generator

f (X ) = X e

Griffin/Shparlinski, 2000:

L(pn,N) ≥ min

{N2

4(p − 1),

t2

p − 1

}, N ≥ 1.

Reason for better result: fk(X ) = X ek mod p−1

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 10 / 24

Page 12: A Survey on Recursive Nonlinear Pseudorandom Number …

Dickson generator

De(x + x−1) = xe + x−e , x ∈ Fp2

un+1 = De(un), n ≥ 0,

with some initial value u0 and e ≥ 2.Aly/W. 2006:

L(un,N) ≥ min{N2, 4t2}16(p + 1)

− (p + 1)1/2

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 11 / 24

Page 13: A Survey on Recursive Nonlinear Pseudorandom Number …

Other nice nonlinear generators

Redei generator, Meidl/W. 2007multivariate polynomials, Topuzoglu/W. 2005: nonlinear andinversive generators of order mpolynomial systems, Ostafe/Shparlinski/W. 2010polynomials with low p-weight degree, Ibeas/W. 2010

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 12 / 24

Page 14: A Survey on Recursive Nonlinear Pseudorandom Number …

Marsaglia’s Lattice test, 1972

(ηn) T-periodic sequence over Fp

For s ≥ 1 we say that (ηn) passes the s-dimensional lattice test if thevectors {un − u0 : 1 ≤ n < T} span Fs

p, where

un = (ηn, ηn+1, . . . , ηn+s−1), 0 ≤ n < T .

S(ηn) = max{s : 〈un − u0, 1 ≤ n < T 〉 = Fs

p

}

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 13 / 24

Page 15: A Survey on Recursive Nonlinear Pseudorandom Number …

Niederreiter/W. 2002: L(ηn) = S(ηn) or = S(ηn) + 1

Dorfer/W. 2003: Lattice test for parts of the period, S(ηn,N)We have either

S(ηn,N) = min(L(ηn,N),N + 1− L(ηn,N))

orS(ηn,N) = min(L(ηn,N),N + 1− L(ηn,N))− 1.

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 14 / 24

Page 16: A Survey on Recursive Nonlinear Pseudorandom Number …

Little is known about lattice tests with arbitrary lags, i.e., vectors(xn+d0 , xn+d1 , . . . , xn+ds−1) ∈ Fs

p with 0 ≤ d0 < d1 < . . . < ds−1.

modified inversive generator, Niederreiter/W. 2007some explicit nonlinear generators, Pirsic/W. 2010, Chen/Ostafe/W.2010

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 15 / 24

Page 17: A Survey on Recursive Nonlinear Pseudorandom Number …

Part II: Uniform Distribution and Discrepancy

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 16 / 24

Page 18: A Survey on Recursive Nonlinear Pseudorandom Number …

Discrepancy

Γ ={

(γn,0, . . . , γn,s−1)Nn=1

}sequence of N points in the s-dimensional unit interval [0, 1)s

∆(Γ) = supB⊆[0,1)s

∣∣∣∣TΓ(B)

N− |B |

∣∣∣∣ ,where TΓ(B) is the number of points of Γ inside the box

B = [α0, β0)× · · · × [αs−1, βs−1) ⊆ [0, 1)s

and the supremum is taken over all such boxes.

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 17 / 24

Page 19: A Survey on Recursive Nonlinear Pseudorandom Number …

Erdos-Turan-Koksma inequality (from discrepancy

to exponential sums)

∆(Γ) ≤(

3

2

)s 2

H + 1+

1

N

∑0<|a|≤H

s−1∏j=0

1

max{|aj |, 1}

∣∣∣Σ(s)N (Γ, a)

∣∣∣ ,

where

Σ(s)N (Γ, a) =

N∑n=1

exp

(2πi

s−1∑j=0

ajγn,j

)and the outer sum is taken over all integer vectorsa = (a0, . . . , as−1) ∈ Zs \ {0} with |a| = max

j=0,...,s−1|aj | ≤ H .

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 18 / 24

Page 20: A Survey on Recursive Nonlinear Pseudorandom Number …

Nonlinear Pseudorandom Numbers

f ∈ Fp[X ], 2 ≤ deg(f ) ≤ p − 1, x0 ∈ Fp

xn+1 = f (xn), n ≥ 0

SN(a) =N−1∑n=0

ψ(axn), a 6= 0,

where ψ(x) = exp(2πix/p) is the additive canonical character of Fp.

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 19 / 24

Page 21: A Survey on Recursive Nonlinear Pseudorandom Number …

Niederreiter/Shparlinski 1999:

SN(a) = O(N1/2p1/2 log(d)1/2 log(p)−1/2

), a 6= 0

(improvement, Niederreiter/W. 2008)

Main idea of proof:Reduction to Weil-bound:∣∣∣∣∣∣

∑x∈Fp

ψ(F (x))

∣∣∣∣∣∣ ≤ (deg(F )− 1)p1/2

Here:F (X ) =

∑ai fki (X )

Exponential degree growth when iterating f (X ) is the reason for theweakness of these bounds. (Cf. linear complexity bounds.)

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 20 / 24

Page 22: A Survey on Recursive Nonlinear Pseudorandom Number …

Improvements for Special Nonlinear Generators

inversive generators: Niederreiter/Shparlinski 2001

DN = O(N−1/2p1/4 logs(p))

power generator: Friedlander/Shparlinski 2001Dickson generator: Gomez/Gutierrez/Shparlinski 2006Redei generator: Gutierrez/W. 2007polynomial systems: Ostafe/Shparlinski since 2009low p-weight degree: Ibeas/W. 2010

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 21 / 24

Page 23: A Survey on Recursive Nonlinear Pseudorandom Number …

under construction

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 22 / 24

Page 24: A Survey on Recursive Nonlinear Pseudorandom Number …

Linz opera house will open 2013

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 23 / 24

Page 25: A Survey on Recursive Nonlinear Pseudorandom Number …

Thank you for your attention.

A.Winterhof (RICAM (Linz)) Pseudorandom Number Generators MCQMC 2012 24 / 24