a università degli studi di pavia b università degli studi di bergamo c infn pavia

17
S.Zucca a,c , L. Gaioni b,c , A. Manazza a,c , M. Manghisoni b,c , L. Ratti a,c V. Re b,c , E. Quartieri a,c , G. Traversi b,c a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia d Università degli Studi di Pisa e INFN Pisa 8th International Meeting on Front-End Electronics FEE 2011 Bergamo, 23-27 May 2011 Analog front-ends for monolithic and hybrid pixels developed with a 3D CMOS process

Upload: ceana

Post on 23-Feb-2016

88 views

Category:

Documents


0 download

DESCRIPTION

Analog front-ends for monolithic and hybrid pixels developed with a 3D CMOS process. S.Zucca a,c , L. Gaioni b,c , A. Manazza a,c , M. Manghisoni b,c , L. Ratti a,c V. Re b,c , E. Quartieri a,c , G. Traversi b,c. a Università degli Studi di Pavia b Università degli Studi di Bergamo - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

S.Zuccaa,c, L. Gaionib,c, A. Manazzaa,c, M. Manghisonib,c, L. Rattia,c V. Reb,c, E. Quartieria,c, G. Traversib,c

aUniversità degli Studi di PaviabUniversità degli Studi di Bergamo

cINFN PaviadUniversità degli Studi di Pisa

eINFN Pisa

8th International Meeting on Front-End Electronics FEE 2011

Bergamo, 23-27 May 2011

Analog front-ends for monolithic and hybrid pixels developed with a 3D CMOS

process

Page 2: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Outline

SuperB experiment and SVT Layer0 requirements

Vertical Integration (3D) CMOS Technologies

Analog FE for Apsel VI 3D MAPS chip

Why are they so attractive for HEP applications?

Issue for large matrices: voltage drop on analog VDD/GND lines.

3D Analog FE for Superpix1 hybrid pixels chipComparison with the Apsel VI analog FEFine tuning system for the threshold correction

Conclusion and future plans

DNW MAPS and hybrid pixels in 3D technology

General description

Page 3: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

The SuperB factory, an high luminosity e+-e- collider intended for HEP experiments, has been recently funded by the Italian Ministry for Education, University and Research.

SuperB factory

Two possible approaches for the SuperB Layer0 at full luminosity:

Silicon Vertex Tracker very similar to that of the 5 layer BaBar experiment, completed by a Layer0 very close to the IP (about 1.5 cm) to improve the vertex resolution.

Other requirements:Low material budget (<1% X0)Fine granularity (50 μm pitch)

CMOS MAPS: can provide low material budget and small pitch.

Hybrid Pixels: more mature technology, with somewhat worse material budget features.

Page 4: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

In wafer level 3D processes, multiple layers of planar devices are stacked and interconnected using inter-layer connections.

Vertical Integration (3D) CMOS Technologies

Advantages for HEP particle pixel detectors:

The analog section (and the sensor) do not share the same substrate with the noisy digital readout.

Less material in the IP: monolithic structure of the final chip enables post-process thinning.

Dead area reduction: the readout electronics can be designed with virtually no peripheral circuits.

Higher functional density more complex pixel readout chain (i.e. sparsified, triggered readout techniques).

Apsel VI and Superpix1 have been designed in the Globalfoundries-Tezzaron 130 nm 3D CMOS process.

Page 5: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

DNW MAPS

DNW MAPS and hybrid pixels in 3D Technologies

The inversely biased DNW acts as a collecting electrode.

Hybrid pixels

A readout chain is used for Q-V conversion gain decoupled from CDNMOS analog FE devices are built-in in the deep N-well. PMOS can be included in the design and placed in a separate layer charge collection efficiency close to 100%.

Back to back assembled devices from two chips, by means of bump bonding techniques. They feature:

high SNR100% fill factorno crosstalk between the digital readout electronics and the sensor

Large material budget innovative direct bonding techniques (Zyptronix or TMicro/ZyCube) In 3D design the use of two layers provides a lot of functionality in the pixel cell.

Digital section

DNW sensorAnalog section

Digital section

Analog section

1st Layer

2nd Layer

sensor

Page 6: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

In-pixel logic for a time-ordered readoutComplex in-pixel logic can be implemented without reducing the pixel collection efficiency (thanks to 3D integration) even improving the readout performance (readout could be data push or triggered).

Courtesy of F. Morsani (INFN PI)

Timestamp (TS) is broadcast to pixels and each pixel latches the current TS when fires.

Matrix readout is TS ordered A readout TS enters the

pixel and an HIT-OR-OUT is generated for columns with hits associated to that TS

A column is read only if HIT-OR-OUT=1

DATA_OUT is generated for pixels in the active columns with hits associated to that TS.

Page 7: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Apsel VI front-end architecture

First stage: charge PA with a CFB countinously discharged by an NMOS biased in deep subthreshold region.Second stage: RC-CR shaper with a transconductor feedback network:

TIER1(botto

m)

TIER2(top)

Vbl chip wide distributed by an external voltage reference (not affected by voltage drop issues) Voltage drop effects reduction on the channel-to-channel dispersion of the DC voltage at the shaper output (Vbl)

Third stage: comparator (placed on the top tier along with the in-pixel readout logic).

Page 8: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Charge Preamplifier

Two local feedback networks (M4,M5 and M6,M7) to increase the small signal resistance at the node C.Cp value is a trade-off between noise and bandwidth.

C

MFB is used to discharge CFB after the particle hit.

0

20

40

60

80

100

10 100 1000 104 105 106 107 108 109

Open loop ac response

Vout/Vin [dB]Vo

ut/V

in [d

B]

frequency [Hz]

DC gain=84 dB

F-3dB= 40 kHz

Page 9: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Shaping stage

Cascode input stage and output source follower.

First order RC-CR shaping stage:

2)1()(

p

p

stst

sT

tp: peaking time

The transconductor keeps the circuit in the correct bias point and set the output waveform peaking time at the designed value.

It can be demonstrated that, in order to obtain an output waveform with the desired tp (constant at the varying of the input signal amplitude), the following equations must be satisfied:

21

2200

2

1

00

2

11

CCCfAGm

CC

fAt p

A0: open loop DC gain

f0: -3dB cutoff frequency

Page 10: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Shaping stage

Mirrored load transconductor with source degeneration resistance.

native

MP

MP

gdsgmgmGm

1

Since C2 value has to be small (≈ 50 fF) for area occupancy reasons, Gm value must be very low (≈ 20 nS) to obtain the desired tp (≈ 300 ns) Itransc ≈ 10-9 A

Standard solution Source degeneration solution

Mirrored load transconductor:

T

DMP

MPMP

nVIgm

gmgmGm

21 Higher Itransc Wider linear range

Page 11: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Voltage drop on analog VDD/GND linesMay be an issue with large matrices of relatively current-hungry detectors

DVd=15/20 mV (typ/max)

Voltage drop on the AVDD and AGND lines causes changes in some pixel current sources, in particular in the shaper input branch and in the transconductor.These current changes lead to a degradation of the front-end performance (i.e. charge sensitivity and peaking time).

Apsel VI features: Ianalog_cell=25 μA

128x100 pixels matrix for the next runConsidering the case of a larger matrix (i.e. 256x256 elements), supplied from both sides, we obtain the following voltage drop on AVDD and AGND:

AVDDperipheral

AVDDpixel

AGNDpixelAGNDperipheralM. Manghisoni, E. Quartieri et al.,“High Accuracy Injection Circuit for Pixel-Level

Calibration of Readout Electronics” presented at the 2010 IEEE Nuclear Science Symposium Conference, Knoxville, USA, October 30 - November 6 2010.

I=120 nA

Isib≈120 nA Itransc ≈ 2.5 nA

Page 12: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Effects on the shaper output waveform

Voltage drop is simulated as a symmetrical voltage variation in the analog power (AVDD) and ground (AGND) lines.

AVDD=1.5 V-ΔVd, AGND=ΔVd

w/o voltage drop compensation with voltage drop compensation

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 2 4 6 8 10

DVD=0

DVD=20 mV

DVD=40 mV

DVD=60 mV

Shap

er O

utpu

t [m

V]

Time [s]

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 2 4 6 8 10

DVD=0

DVD=20 mV

DVD=40 mV

DVD=60 mV

Shap

er O

utpu

t [m

V]

Time [s]

ΔVD=60 mVΔVD=40 mVΔVD=20 mVΔVD=0 mV

ΔVD=0 mV

ΔVD=20 mVΔVD=40 mVΔVD=60 mV

Page 13: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Effects on peaking time and charge sensitivity

Voltage drop is simulated as a symmetrical voltage variation in the analog power (AVDD) and ground (AGND) lines.

AVDD=1.5 V-ΔVd, AGND=ΔVd

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

w/o compcompensated

Ę t pk

%

Voltage drop [mV]

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60

w/o comp

compensated

Ę G

Q %

Voltage drop [mV]

Cha

rge

sens

itivi

ty v

aria

tion

[%]

Peak

ing

time

varia

tion

[ns]

Page 14: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Apsel VI performance

Apsel VICharge sensitivity 850 mV/fCPeaking time 320 nsENC 34 e-

Threshold dispersion before/after correction 103/13 e-

INL (@ 2000 e-) 2.1%Analog power consumption 33 μW/pixelDetector parasitic capacitance

300 fFImplemented structure 128x100 pixelsPixel pitch 50 μm

Page 15: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Superpix1 3D hybrid chip front-end architecture

Lower power consumption (Icell ≈ 7μA) reduces the voltage drop effects on the channel-to-channel baseline voltage (Vbl) dispersion current mirror, also less noisy than transconductor.

TIER1(botto

m)

TIER2(top)

C2 linearly discharged by a constant current Imir linear increase of the recovery time with input signal amplitude.

Lower detector parasitic capacitance (CD≈150 fF): lower noise and power consumption

Fine tuning system in order to reduce the threshold dispersion:IDAC is set by a 4 bit current steering DAC in each channel.

DAC driven by a thermometric code decoder.

All in a 50 μm pixel pitch

Page 16: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Superpix1 analog front-end

Superpix1Charge sensitivity 48 mV/fC

Peaking time @ 16000 injected electrons

260 ns

ENC 130 e-

Threshold dispersion before/after correction

560/65 e-

Analog power consumption

10 μW/pixel

Detector parasitic capacitance 150 fFImplemented structure 128x32

pixelsPixel pitch 50 μm

Main features

This plot shows that an optimum condition exists for the threshold correction operation (DAC output range ≈5σth):

Page 17: a Università degli Studi di Pavia b Università degli Studi di Bergamo c INFN Pavia

FEE 2011-Bergamo, 23-27 May 2011

Two different approaches are being considered for the design of the readout chip in view of applications to the SVT Layer0 of the SuberB factory.

Conclusion and future plans

Future steps include the characterization of both the chips (2011-12).

Apsel VI and Superpix1 will be fabricated in the Globalfoundries-Tezzaron 130 nm 3D CMOS technology (to be submitted Q4 2011).

MAPS and hybrid pixels can capitalize on 3D CMOS processes in terms of:

immunity of the analog section (and of the sensor in MAPS) from digital signals increase of the functional density in the pixel cell

higher collection efficiency (MAPS)