a visual investigation of the appearance of turbulence in

130
Louisiana State University LSU Digital Commons LSU Historical Dissertations and eses Graduate School 1951 A Visual Investigation of the Appearance of Turbulence in Annular Spaces. omas Anderson Feazel Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: hps://digitalcommons.lsu.edu/gradschool_disstheses Part of the Chemical Engineering Commons is Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and eses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Recommended Citation Feazel, omas Anderson, "A Visual Investigation of the Appearance of Turbulence in Annular Spaces." (1951). LSU Historical Dissertations and eses. 7982. hps://digitalcommons.lsu.edu/gradschool_disstheses/7982

Upload: others

Post on 18-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Visual Investigation of the Appearance of Turbulence in

Louisiana State UniversityLSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1951

A Visual Investigation of the Appearance ofTurbulence in Annular Spaces.Thomas Anderson FeazelLouisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Part of the Chemical Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion inLSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please [email protected].

Recommended CitationFeazel, Thomas Anderson, "A Visual Investigation of the Appearance of Turbulence in Annular Spaces." (1951). LSU HistoricalDissertations and Theses. 7982.https://digitalcommons.lsu.edu/gradschool_disstheses/7982

Page 2: A Visual Investigation of the Appearance of Turbulence in

A VISUAL INVESTIGATION OF THE APPEARANCE OF TURBULENCE IN ANNULAR SPACES

A D is s e r ta t io n

Su b a i t ta d to th e G raduate Facu lty o f th e L ou isiana S ta te U n iv e rs ity and

A g ric u ltu ra l and Mechanical C ollage in p a r t i a l fu l f i l lm e n t o f th e requirem ents fo r th e degree o f

Doctor o f Philosophy

inThe Department o f Chemical Engineering

fcyThomas Anderson Feaasel

B*8«# L ouisiana Polytechnio In s t i tu te * 19^7 L ouisiana S ta te U niversity* 19^9

June* 1951

Page 3: A Visual Investigation of the Appearance of Turbulence in

UMI Number: DP69360

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

U M TDissertation Publishing

UMI DP69360Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

P r o O u e s t

ProQuest LLC.789 East Eisenhower Parkway

P.O. Box 1346 Ann Arbor, Ml 48106 -1346

Page 4: A Visual Investigation of the Appearance of Turbulence in

MANUSCRIPT THESES

U npublished th e se s subm itted fo r th e m as te r’s and d o c to r’s

degrees and d e p o site d in th e L ouisiana S ta te U n iv e rs ity L ib ra ry

a re a v a i la b le f o r in sp e c tio n . Use o f any th e s is i s l im ite d by the

r ig h ts o f th e a u th o r . B ib lio g ra p h ic a l references, may be no ted , b u t

passages may n o t be copied un less th e au th o r has g iven perm ission .

C re d it must be g iven in subsequent w r i t te n o r pub lished work,

A l ib r a r y which borrows th is th e s is f o r use by i t s c l i e n te le

i s expected to make su re th a t the borrow er i s aware o f the above

r e s t r i c t i o n s .

LOUISIANA STATE UNIVERSITY LIBRARY

Page 5: A Visual Investigation of the Appearance of Turbulence in

ACKNOWLEDGMENT

The au tho r w ishes to express h is s in c e re a p p re c ia tio n

to Dr* B* S* Preseburgt under whoee d ir e c t io n t h i s work was

c a r r ie d out* fo r h ie advice and guidance* He a leo wishes

to thank Mr* E* E. Snyder whoee mechanioal s k i l l wae respon­

s ib le fo r th e e e n s tru e tio n o f th e apparatus*

He wishes to thank Dr* P» M. Horton o f th e Chemical

Engineering Department fo r supplying th e m a te ria l needed

in th ie in v e s tig a t io n and th e s t a f f o f th e Audubon Sugar

Factory fo r making th e space a v a ila b le fo r th e c o n s tru c tio n

o f th e apparatus*

i i

116573

Page 6: A Visual Investigation of the Appearance of Turbulence in

TABLE OF CONTENTS

PAGE

acknowledgment............................................................. 11

LIST OF TABLES 9 . . lv

LIST OF FIG URES............................* ........................ V

ABSTRACT . . • . * v t l

CHAPTER

I INTRODUCTION . . .................................... X

I I THEORY OF FLOW MECHANISMS................... 4

A* C irc u la r Pipe • « * . . . . « « 4

B* Annular flection* 12

O* Conclusions 9 . . * .................. SO

I I I SUMMARY OF EXPERIMENTAL WORK « . * 22

A* Apparatus • • • • « » • « * « 22

B# Experim ental Procedure . * . • 27

0* L im ita tio n s o f Apparatus

and Data » * .................................... 26

D* T es ts o f Data . « • * « » • • * *>1

17 EXPERIMENTAL RESULTS............................

A* G e n e r a l ...................... • * « « * «

B. V elocity Measurements * . . . * 40

C# C r i t ie a l Values * * « » 56

7 CONCLUSIONS AID RECOMMENDATIONS . * 66

i l l

Page 7: A Visual Investigation of the Appearance of Turbulence in

TABLE OF CONTENTS

Continued

APPENDIX

I B1BLIOQBAPHX............................... 69

I I NOMENCLATURE...........................................* . . . 95

I I I BATA * ........................... 95

IT CALIBRATION CURVES .............................. 1X5

V ITA ............................................... 115

i v

Page 8: A Visual Investigation of the Appearance of Turbulence in

LIST OF TABLES

I* C r i t i c a l Reynolds Numbers fo r C irc u la r Pipe* • • 6

II* R e su lts o f In v e s tig a tio n * on Annular Spaces a t

Reported by Wiegand and Bakor • • » * * • • • * IT

I I I* Dimensions o f P ip es Usod in th e Experim ental

wark • * « • • • • * * • • • • • • • * • • • • 26

17* T h e o re tic a l P ro p e r tie s o f th e S ec tions T ested • 40

V-a L ast Observed S tream line Plow C onditions fo r

Annulus No* I * * * * * * * * * * * * * * * * * 59

v-b F i r s t Observed T urbu len t Flow C onditions fo r

Annulus No* l * * * * * * * * * * * * * * * * * 61

V I-a L as t Observed S tream line Flow C onditions fo r

Annulus No* £ • « • • • • • • * * • • • * * • • 65

VI-b F i r s t Observed T urbulen t Flow C onditions fo r

Annulus No* 2 « » • • « • • * » • * 64

V II-a L ast Observed S tream line Flow C onditions fo r

Annulus No* ^ * ........................ * * 6J

V II-b F i r s t Observed T urbulent Flow C onditions fo r

Annulus ^7

VIII* Summary o f C r i t i c a l Reynolds Numbers * * * * * 67

v

Page 9: A Visual Investigation of the Appearance of Turbulence in

LiZST OF FIGURES

1 V isual O bservation Apparatus fu r Flow In Annull * * * 25

£ T ypical Wave Motions Observed « • * . * * * • * » • • J6

3 Pye S epara tion P a t te rn * • * • * * « * • • • • • * • 3®

4 V e lee ity D is tr ib u tio n fo r Annulus Wo• 1 * * • * • • • 4 l

3 V e lee ity D is tr ib u tio n fo r Anm lue No* 2 • » ................42

6 V e lo c ity D is tr ib u tio n fo r Annulus No* 5 * * * . . . * 45

7 V e lo c ity D is tr ib u tio n fo r Annulus N o * 4 « * * * * * * 44

8 R atio o f Average V eloc ity to Maximum V eloc ity in

Annulus No* 1 a s a Funotion o f Reynolds Number • • • 47

9 R atio o f Average V eloo ity to Maximum V e lo c ity in

Annul! No* 2 and 3 ** Functions o f Reynolds Number • 48

10 E ffe c t o f In c re ase in Reynolds Number on P o in t

V e lo o itie s Anm lue No* 1 • * * « « • .................................

11 E ffe e t o f In e rease In Reynolds Number on P o in t

V e lo o itie s in Annulus No. 5 52

12 V e lo c ity G rad ien ts a t Walls as Functions o f

Reynolds Number * * • • • • * • • • * • « 5?

13 von {Carman Reduced V elo c ity D is tr ib u tio n fo r

Annulus No* l * * * * * * * * * * * * * * * * * * * * 55

14 von Kerman Reduced V elo c ity D is tr ib u tio n fo r

Anm lue No. 3 ...................... * • • • • • * ♦ 57

15 C r i t i c a l Average Reynolds Numbers a t P o in ts in

Annulus No* • • • * 69

v i

Page 10: A Visual Investigation of the Appearance of Turbulence in

LIST OF FIGUB&S

Continued

16 C r i t i c a l Average Reynolds Numbers a t P o in ta In

Annulus No* 2 * * * * « . * ♦ * * * • • « . » « . * 70

17 C r i t i c a l Average Reynolds Numbers a t P o in ts in

Annulus No* ^ » 71

16 C r i t i c a l Values o f u / ^ a t P o in ts In Annulus No* 1 74

19 C r i t i c a l Values o f u / 7 a t P o in ts in Annulus No* 2 75

20 C r i t i c a l Values o f u /V a t P o in ts in Annulus No* J 76

21 C r i t i c a l V alues o f u / ^ a t P o in ts in Annull No* 1

•nd 3 * * .................................................................................. 77

22 C r i t i c a l Values o f v j a t P o in ts In Annul! No. 1

and 3 .................................................................... 76

25 C r i t i c a l P o in t Reynolds Number as a Function o f

P o s itio n in Anmlue No* 1 . . • • * * * . . * * # ♦ 60

24 C r i t i c a l P o in t Reynolds Number as a Function o f

P o s itio n in Annulus No* 2 * * * # » * » « . » . . * 61

23 C r i t i c a l P o in t Reynolds Number as a Function o f

P o s itio n in Anmlue No* 3 * ♦ • • * * * • * • • • 62

26 C r i t ic a l Values o f ^ a t P o in ts in Annulus No* 1 65

27 C a lib ra tio n o f Rotameter * • • • « • • * • « * • • 113

26 P o s itio n o f Dye Tubing • • • • * • # . * • * * • • 114

vi l

Page 11: A Visual Investigation of the Appearance of Turbulence in

ABSTRACT

Previous in v e s t ig a to r s have s tu d ied th e mechanism o f

s tre am lin e and tu rb u le n t flow* but no t th e c o n d itio n s under

which th e mechanism changes* This re se a rc h was concerned w ith

t h i s t r a n s i t i o n reg io n in whioh i t i s p o ss ib le to determ ine

what p o r tio n o f th e f lu id I s In s tream lin e and what p o rtio n

i s in tu rb u le n t motion*

Most p revious work has used th e o ire u la r se c tio n ; th e

an m lu e was s e le c te d fo r t e s t s here* avoiding th e symmetry

o f th e e l r o le and g iv ing d is s im ila r eu rfeces fo r f r ic t io n *

Dye in je c t io n tech n iq u es were used to observe th e be*

h av io r o f w ater flowing a t room tem peratu re In th re e annular

sections* formed using a 5- inch o u te r g la s s p ipe and cores

&*# 5/^* and l4* s tandard ga lvan ised iro n pipes* V eloc ity

d is tr ib u tio n s * ob ta ined a t a c o n stan t flow r a t e in ttfe stream ­

l in e re g io n were compared w ith accep ted th e o r e t ic a l r e la t io n s

and found to agree favorably* ju s t i fy in g th e technique*

V isual o b se rv a tio n o f th e dye behavior as th e mechanism

©hanged from s tream lin e to tu rb u le n t flow* in d ic a te d th a t

t r a n s i t i o n in flow f i r s t m anifested I t s e l f as a slow sinuous

motion in th e flu id * As th e flow r a te increased* th e wave

len g th decreased u n t i l eddying and d if fu s io n re su lte d * In a l l

v i l i

Page 12: A Visual Investigation of the Appearance of Turbulence in

cases tu rb u le n ce was observed f i r s t in th e c e n tra l p o rtio n s o f

th e se c tio n and spread toward th e w a lls w ith in c re a s in g flow

ra te s*

C r i t i c a l flow c o n d itio n s were ob ta ined a t v a rio u s p o in ts

in a c ro s s -e e o tio n o f th e annull* The minimum c r i t i c a l Reynolds

Number, — t wa8 occur a t th e p o in t o f maximum

v e lo c ity fo r two sections* occu rring approxim ately .0 2 -.0 4 in ch es

( th e exac t v a lu e being a fu n c tio n o f th e r a t i o o f d iam eters) to

th e c e re s id e o f th e m id-poin t o f th e annulus* For th e se c tio n

w ith th e core* t h i s p o in t o f minimum va lue was d isp laced ap­

proxim ately 0 .2 5 inch toward th e core from th e p o in t o f maximum

v e lo c ity * The c r i t i c a l Reynolds Number a t v a rio u s p o in ts In th e

w idest an m lu e was found to in c re a se from 14^0 a t r 8 0*65 inches

to 55OO a t r 8 1*40 in ch e s3 a minimum o f 11^0 was in d ic a te d a t

r = 1*1*5 * max* 'In BUf one annulus p o in t c r i t i c a l v e lo c i t ie s v a ried w ith

p osition* in c re a s in g sharp ly and con tinuously from minimum v a lu es

a t each wall* Rectangular* lo g arith m ic and sem i-logarithm ic

p lo ts o f th e c r i t i c a l v e lo c ity a g a in s t d is ta n c e from a wall* gave

curved lin es* These curves were concave downward near th e walls*

bu t f l a t in th e middle o f th e section*

A p o in t Reynolds Number* y u / -7/ * y being th e d is ta n c e

from a su rfa ce and u th e p o in t ve lo c ity * was adopted to express

th e c r i t i c a l va lu es a t d i f f e r e n t position© in th e sections* The

i x

Page 13: A Visual Investigation of the Appearance of Turbulence in

fo llow ing re la t io n s h ip s were o b ta in ed *

fo r th e l i* core* ^

and fo r th e cor a , ^0l)er> 'i. ' ^ 7e>Q

These expreBaione were found a p p lic a b le to a l l point© i n th e

a ee tlo n e p ro rlded y wae measured from th e core w all fo r p o in ts

between th a t su rface and r •max*F urther work was recommended to determ ine th e e f f e c t o f

w a ll roughness on th e se conditions*

x

Page 14: A Visual Investigation of the Appearance of Turbulence in

c s m m i

i m m m n m

Rven b e fo re th e tim e of R eynolds' o r ig in a l dye experim ents

In 1883 w ith w ater flow ing in p ip es (2g ) , i t had been known th a t

f lu id s flow ing e x h ib ite d d if f e r e n t behav io r f o r d i f f e r e n t flow

r a t e s , t h i s was evidenced by th e f a c t th a t flow a t low v e lo o i t ie s

in sm all p ip es shoved p ressu re drops which were p ro p o rtio n a l to

th e f i r s t power of th e v e lo c ity * t o r flow a t h igh v e lo o i t ie s in

la r g e p ip e s , th ese p ressu re drops were found to be alm ost pro­

p o r t io n a l to the square o f the v e lo c ity * The knowledge of th ese1

f a c t s was th e m o tiv a tio n behind R eynolds' experim ent to determ ine

when th e f lu id m otion would y ie ld th ese d i f f e r e n t r e s u lts *

In h is work Reynolds found , by In je c tin g a dye in to th e f l u id ,

th a t a t low flow r a te s tiie in je c te d dye was c a r r ie d in a s t r a ig h t

l i n e by th e f lu id * T his type o f flow he d esc rib e d a s d irfeet flow ,

b u t i t i s now mere commonly r e f e r r e d to as s tream lin e or lam inar

flow* When th is type o f flow was observed. I t was found th a t th e

p re s su re lo s s doe to f r i c t io n was dependent on the f i r s t power o f

th e v e lo c ity * As th e flow r a t e was in c reased , however, he observed

th a t above c e r ta in c r i t i c a l r a t e s , the dye th rea d was to rn up and

the c o lo r was d isp e rsed throughout the p ip e , f o r th is type o f flow ,

i t was found th a t th e f r i c t i o n lo o s was dependent upon th e v e lo c ity

r a is e d to a power g re a te r than one. By using p ipes o f d i f f e r e n t

1

Page 15: A Visual Investigation of the Appearance of Turbulence in

d iam eter and v a ry in g th e tem pera tu re o f th e w ater flowing*

Beyaolds found th a t th e grouping* » W ^ * • had th e same va lue

f o r th e p o in t o f change in flow behav io r fo r o i l systems te s te d .

T h is grouping has o inco been c a l le d th e Hsynold* Number.

S ince th a t t in e th e Reynold* Slumber hoe Veen w idely need to

o o r r e la te th e b eh av io r o f f lu id s In m otion. I t hoe been found to

bo a convenien t oenoept on which f r i c t i o n drop* h e a t t r a n s f e r and

ness t r a n s f e r s a l e o la t io n s o f system s may be b ased . In a l l such

trea tm en ts t however. th e re a r is e s a c e r ta in range of Reynolds Jfumbers

in which th e behav io r o f the f l u id I s no t c le a r ly d e fin e d . T his

c o n s t i tu te s th e s o -c a l le d t r a n s i t io n reg ion* a reg io n o f change

from flow obeying th e th e o re t ic a l law s of s tre am lin e m otion to

flow obeying the em p irica l r e la t io n s h ip s f o r tu rb u le n t m otion.

The manner in which th is t r a n s i t io n takes p la c e has n o t been

s a t i s f a c to r i l y ex p la in ed . A q u e s tio n vh loh has n o t been s e t t l e d

y e t is* does th e flow change from s tre am lin e to tu rb u le n t through­

ou t th e e ro s s -s e o t io n a t the same time* o r does more and more of

th e f l u id e x h ib it tu rb u le n t c h a r a c te r i s t i c s a s th e f lo v r a t e i s

g ra d u a lly increased?

T his re se a rc h i s concerned w ith the t r a n s i t io n reg io n o f flow

and has a s i t s purpose th e d e te rm in a tio n of th e co n d itio n s which

e x i s t when th e f lo v mechanism changes from stream lin e to tu rb u le n t

a t d i f f e r e n t p o in ts In the c ro s s -s e c tio n o f an annu lu s. V isual

* See Appendix I I fo r Nomenclature

Page 16: A Visual Investigation of the Appearance of Turbulence in

5

o b se rv a tio n o f flow behavior i s p a r t ic u la r ly su ite d to thi©

in v e s tig a tio n s by o b se rv a tio n o f a p roperly in troduced dye stream*

th e ex ac t behavior o f th e f lu id flow ing can be observed* In th e

ease o f th e flow o f w ater i t has been found th a t a very d i lu te

s o lu t io n o f a w ater so lu b le dye can be used e ffe c tiv e ly * By t h i s

method i t l a n o t on ly p o ss ib le to observe th e type o f flow e x is tin g

b u t fo r s tream lin e flow i t i s p o ss ib le to o b ta in th e v e lo c ity o f th e

w ater a t th e o b se rv a tio n p o in t and a lso th e maximum v e lo c ity i n th e

section*

In th e flow o f a f lu id p a s t a su rfa ce a t flow r a te s w ell above

th e accepted maximum va lue fo r s tre am lin e flow* P re n d tl 'e boundary

la y e r th eo ry In d ic a te s t h a t th e re i s a s tream lin e su b -lay er o f th e

f lu id near th e su rface ( 52)» b u t i t s th ic k n e ss I s so sm all t h a t

measurement o f I t i s d i f f ic u l t* i f no t im possible* Presuming* how­

ever* th a t in th e t r a n s i t io n reg io n th e p o rtio n o f th e flow whloh

e x is ts i n th ie s tream lin e flow I s f in i te * t h i s can be determ ined by

t h i s dye in je c t io n method and perm it such e v a lu a tio n o f th e behavior

as w il l apply eq u a lly w ell to tu rb u le n t flow*

In th e past* in v e s tig a to r s o f flow behavior have used th e

c i r c u la r s e c tio n as th e flow standard* beeause o f th e symmetry o f

t h i s se c tio n end a lso beoaute o f th e wide a p p lic a tio n o f I t in

flow in s ta l la t io n s * The anzaulue i s se lec te d in t h i s work to avoid

th e symmetry o f th e o i r o le and a lso to a ffo rd two d is s im ila r sur­

fa c e s fo r f r ic t io n *

Page 17: A Visual Investigation of the Appearance of Turbulence in

CHAPTER XI

THEORY O F FhOW MKGKAHZSIMI

A* C irc u la r P ico*

Since th e middle o f th e seven teen th cen tu ry , when T o r r ic e l l i

s tu d ied flow through an o r i f i c e , th e flow o f flu id® has hold coir-

s id e ra b le i n t e r e s t fo r many e e le n t ie t s ( 2) . I n th e m iddle o f th e

n in e tee n th cen tu ry , Darcy and one o f h ia co-w orkers wore th e f i r s t

to recogn ize th e e x is te n c e o f two flow mechanism, as dem onstrated

by t h e i r experim ents on p re ssu re drop In pipes* However, th e law

fo r viecoue flow had been s ta te d about te n y ea rs e a r l i e r by Hagen

and again by F o le e u l l le , who a lso v e r i f ie d th e law w ith s tu d ie s o f

flew in c a p i l la r ie s * This i s th e fa m ilia r H agenrF o leeu llle equa­

t io n fo r c i r c u la r p ip es ,

AF L

T his equation was ob tained fo r th e flow ease In which th e only

fo rc e s which must be considered a re th e v iscous fo rc e s o f one

la y e r e f f lu id s lip p in g p a s t another* I t has been g e n e ra lly ac­

cepted th a t a f lu id w il l obey Equation (1 ) fo r v a lu es o f Reynolds

Humber le s s th a n 2100, a lthough t h i s value i s em p irica l and excep­

t io n s have been reported* This i s c a lle d th e c r i t i c a l Reynolds

Number and flew fo r any value le e s th an t h i s le com pletely s i r earn-

lin e*

4

( i )

Page 18: A Visual Investigation of the Appearance of Turbulence in

5

tli* fo o t t h a t f lu id s flow ing in s tream lin e motion obey t h i s

th e o r e t i c a l law fo r p re ssu re drop makes p o ss ib le tho trea tm e n t o f

ouch ooooo by sim ple m athem atical procedure* However# i f th o

f l u id flow* in tu rb u le n t motion# th en em pirica l r e la t io n s h ip s have

t o t o ob ta ined *o th a t th o trea tm e n t o f th la **•* may bo c a r r ie d

out* Ono o f th o oar H o s t formula* to bo u**d to compute th o flow

i n o i l * o rt* o f oondOit* wa* th a t o f Ohesy (H)# g iven below*

t t y .

L C a # H (a)Since th o appearance o f th ie form ula, sev era l o th e r expression*

have boon developed* two o f which a re g iven below*

Fanning Equation, — - ( 5)L J j D

Hasea-W illiam s Formula* /-?( f o r w ater on ly ) / * / S / & C r<n \ L / (b )

Avj

The Panning Equation 1* th e moot w idely used o f th e se expressions

and may be expressed in many ways, as*

Af_ _ 4 f G * _ 4 f^ v , 34-fiH1L ' 2 9 d ' ? s D f ' D n y g £ * ( 5 .J

In a f lu id system , th e re fo re , i t I s necessary i s know tho typo

o f flow whioh e x is ts* Although Reynolds' in v e s tig a tio n ind ica ted

t h a t th e type o f flow whleh e x is te d could be determined by th e vain#

o f th e Reynolds Number# i t remained fo r S tanton and Pannell ( 54) ^

Page 19: A Visual Investigation of the Appearance of Turbulence in

6

apply t h i s group to tho oo rro l& tion o f f r l o t i o n lo s se s no measured

by numerous in v e s tig a to rs * They found th o t tho f r i c t i o n f a c to r woo

o unlquo fu n c tio n o f th o Reynolds Number fo r smooth c i r c u la r p ip es

c o n ta in in g a v a r ie ty o f f lu id s* They s to to d th e re fo re t h a t

* s im ila r i ty o f n o tio n i n f lu id s a t eono tan t v a lu es o f th o variab le#

nv # w i l l ex is t# provided th e s u r f uses r e l a t i v e to whleh th o

f lu id s aovo o re g e e m str is a lly s im ila r# whleh s im ila r ity # as herd

R ayleigh has po in ted out# o u s t extend to th o se i r r e g u l a r i t i e s in

th o su rfaoo whleh c o n s t i tu te roughness** from th e p lo t o f th e s e

f r i c t i o n f e s t e r s a g a in s t Reynolds Number* th e c r i t i c a l Reynolds

Number was in d ic a te d to he approxim ately 2100.

Table I g iv es some o f th e v a lu es o f c r i t i c a l Reynolds Numbers

ob ta ined by v a rio u s in v e s t ig a to r s u sin g c i r c u la r pipe*

TABLE I

C r i t i c a l Reynolds Numbers fo r C ircu la r P ipe

In v e s t ig a to r % ^( C r i t i c a l ) Method

S tan ton and P enne ll (24 ) 2100

Page and Tewnend (14) 2000*2700 Motion o f c o llo id a l p a r t ic le s*

F r lo tio n

Bend (7 )

B innie and Bowen ( 6 )

B innle ( 2 )

C lbson ( I d )

Reynolds (29 )

1690-2150

1760

1970

2700-4175

2300

Luminescence

P o la r is e d l i g h t

Color Band

Color Band

Stethoscope

Page 20: A Visual Investigation of the Appearance of Turbulence in

T

I n th e development o f P o iB eu ille* * law fo r th e f r l o t i o n lo o s

i n c i r c u la r pipe* th o p o in t v e lo c ity o f th o f lu id l a ob ta ined as

an l a t e r m odiate fo ra* Thie p o in t v e lo c ity may be expressed as*

A ll o f theoe equations a re a p p lic a b le as long as th e flow through-*

o u t th e p ipe l e e e a p le te ly stream line*

When th e e r i t i e e l v a lu e o f th e Reynold* Humber l e exceeded*

th e r e la t io n s h ip s above no longer apply* S tan ton ($4 ) found th a t

th e value o f th e r a t i o o f average v e lo e ity to th e maximum v e lo c ity

in a re ae ee g ra d u a lly th roughou t th o t r a n s i t io n reg io n and reach es a

v a lu e o f approxim ately 0 .60 a t NR# * 10*000* Above th ie v a lue o f

th e Reynolde number# th e r a t i o ren a ln o approxim ately constant*

Throughout t h i s range th e v e lo e ity d i s t r ib u t io n le changing* bo any

ex p ress io n whleh re p re se n ts th e v e lo e ity d i s t r ib u t io n in t h i s reg io n

o u s t eozxt&ln fu n c tio n s o f th e Reynolds KUmber. Therefore* von

Kerman (55) has developed a u n iv e rsa l v e lo e ity d is tr ib u tio n * assuming#

among e th e r th ings* th a t a lanubtar eub -layer o f f lu id e x is ts* In th i s

(5 )

i s ob ta ined from Equation (1)* then*I f th e v a lu e o f

M )

from whleh*

' / 77<J»X

(7 )

Page 21: A Visual Investigation of the Appearance of Turbulence in

a

ho BBk«» u s* o f a reduced v e lo e ity param tor, u% and a reduced

d le ta n s e y +# f b t l t v a lu e s a re defined act#

!

y * - ju

I n abi«h» Tb » tIboobb *h«ar «tr«B* « (d jy )g „ 0

<6)

(9)

( » >Z

For c ircu la r pipes la which 72 - fpAXg- m j

u * =(12)

* S Ir /2 (15 )

B ring th e s e r»UU oA<» N lk a ra d fi (58) determ ined th a t th o flow in

smooth p i poo oouXd ho d iv ided In to th ro o reg io n s a* follow s*

( 1 ) th o U a l s a t lay e r o f f lu id i n which*

u + * - t / + <1*>

(# ) t t * t r m l U r a ra g io n i n whish

U + = /°?K y + - 3 - a s - ( 15)

and (5 ) th o f u l ly tu rb u le n t flow , fo r which

u >* & 7 S * & Btf*+ ^ (W )

M ille r (29) h a s brought some se rio u s doubt in to th o aoooptanoo o f

th o se va lues as c a lc u la te d by H ikuradse, e sp e c ia l ly fo r th o v a lu es

Which wore in tended to prove th e e x is to n e s o f a lam inar lay e r near

th o surface* However, e lnee th a t tim e, o th e rs have ob tained r e s u l t s

Page 22: A Visual Investigation of the Appearance of Turbulence in

9

whleh agree with the re suite of Nikuredee (IJ)#

Rothfua (2 ? ) used a m odified f r i c t i o n fa c to r p lo t to

c o r r e la te p o in t v e lo c i t i e s I n a c ir c u la r pipe* In th ie p lo t

and i t wee found th a t th e experim ental p o in ts f e l l upon th e

l in e s fo r th e f r l o t i o n f a s t e r p lo t in both th e s tre am lin e and

tu rb u le n t flew region* For th e p o rtio n o f th e f lu id in stream*

t 9 3j5/Nr ^ . The c r i t i c a l v a lu e o f $ y u /V was In d ic a te d to be

approxim ately 1000 f o r * 6# 210 and about 600 fo r

Throughout th e m a te r ia l p resen ted th u s far* freq u en t m ention

i s made o f th e Reynolds dumber a s th e b a s is fo r determ ining th e

flow c h a r a c te r i s t i c s o f a f lu id * M th e o r e t ic a l j u s t i f i c a t i o n

i s p resen ted fo r such use* According to Kllnfeenberg and Mooy (17)

th e Reynolds Humber "se rv es as a measure o f th e r e l a t i v e im portance

o f th e t r a n s f e r o f momentum by convection and by d if fu s io n reaper*

t iv e l y ff i . e .# o f th e fo rc e s o f i n e r t i a i n r e l a t io n to fo rce s on

account o f In te rn a l f r ic t io n * " As such i t re p re se n ts th e q u o tie n t

ob ta ined by d iv id in g one term o f th e Navier**Stokes equations by

one o f th e e th e r terms* Since a l l f lu id s obey th e s e eq u atio n s o f

motion# th en I t i s to be expected th a t suoh a r e la t io n s h ip should

se rv e a s a b a s is fo r flew behavior*

T his I s a ls o shown by Brown ( 6 )* In t h i s in stance# two system s

which a re g eo m e trica lly s im ila r a re considered and by assuming

2 TZfpvP* i s p lo tte d a g a in s t a p o in t Reynolds Number* © yu/y’

l in e motion# %T^Jp u 2 * 16 ^/©yu# which i s analogous to

*Rm s fct#30Q#

Page 23: A Visual Investigation of the Appearance of Turbulence in

dynamic s im i la r i ty i t l a found th a t a Reynolda Number group l a

ob ta ined eueh t h a t th e v a lu e o f i t In one system l e equal to th a t

i n th e o th e r system* The fo llow ing sta tem en t le made*

*— *# when dynamic s im ila r i ty e x is ts i n two system s, th e product o f any c h a r a c te r i s t ic dim ension, any v e lo c ity , th e d e n s ity and th e re e ip ro o a l o f th e v ls e o e l ty i s th e seme fo r both system s when th e se v a r ia b le s a re chosen a t eorresponding lo ca tio n s* T here fo re , th e se v a r ia b le s (L , V, f> # / / ) in them selves w ill determ ine th e flow p a tte rn in

g eo m etrica lly s im ila r systems**

T h ere fo re , th e good c o r re la t io n s ob tained when using Reynolds

Numbers fo r c i r c u la r p ipes o f equal roughness a re to he expected

from t h i s statem ent* Although t h i s Reynolds Number i s u se fu l in

p re d ie tin g th e type o f flow which e x is t s i n th e se c i r c u la r p ip e s ,

i t does no t g iv e any in d ic a tio n o f th e mechanism by which th e

Change from s tre am lin e to tu rb u le n t flow ta k e s p isee*

By a purely m echanical a n a ly s is o f th e f a c to r s which would

a f f e c t th e growth o f a d is tu rb an c e in a flow pa tte rn # Reuse (21)

p re se n ts a so -c a lle d s t a b i l i t y parameter# V ,

-y =

^ (X7)

The v a lu e o f t h i s param eter w il l n e e e e sa r lly be se re a t a boundary

( y * 0 ) and again a t th e p o in t o f maximum v e lo e ity (du/dy s 0)*

T herefo re I t w i l l a t t a i n i t s maximum value a t some p o in t between

th e s e two* B ines a h igh value o f t h i s param eter in d ic a te d in ­

s t a b i l i t y o f flow , i t fo llow s th a t th e po in t o f g r e a te s t i n s t a b i l i t y

w i l l be a t a p o in t between th e su rfa ee and th e p o in t o f maximum

v e lo e ity } t h i s should be th e p o in t a t which tu rb u len ce w ill f i r s t

Page 24: A Visual Investigation of the Appearance of Turbulence in

XI

occur* Hathen® t io e 1 ly th ie p o in t i s o n e -th ird o f th e ra d iu s

removed from th e se n io r o f a o lro u la r pipe* th e use o f t h i s

param eter does not seem c o rre o t when i t I s considered th a t i t s

v a lu e i s always aero a t th o p o in t o f maximum v e lo c ity * In d io a tr

th a t flow a t th a t p o in t i s very s ta b le to d istu rbance* Also

in aome p relim inary in v e s tig a tio n s by tho author ( 1^)» i t was

In d ica te d th a t tu rb u len ce appears f i r s t a t th e c e n te r o f a

c i r c u la r pipe* House does not p re sen t any experim ental d a ta

to in d ic a te th e r e l i a b i l i t y o f t h i s parameter*

(Jibson (16) i s one o f th e few workers to t r y to determ ine

th e p o in t a t whleh tu rb u le n ce w ill f i r s t appear in a c ir c u la r

pipe* 3y in je c t in g a dye in to w ater flowing in th e p ipe and by

o b se rv a tio n o f th e dye# he d e te r ad nod th a t tu rbu lonoe f i r s t

appeared a t a p o in t approxim ately s ix - te n th s o f th e ra d iu s from

th e c en te r o f th e pipe* He oonoluded th a t t h i s change occurs

f i r s t a t th e p o in t o f maximum change o f k in e t ic energy# whleh

has th e va lue o f 0*2773 f*or s tream lin e flow o f a f lu id in a

c ir c u la r seetlon* T h is again i s no t in agreement w ith th e pro*

▼ions f in d in g s o f th e author*

I t I s in d ic a te d above th a t th e v iscous ahear s t r e s s in a

th e in te g ra t io n o f t h i s s t r e s s over th e e n t i r e area o f flow y ie ld s

th e p ressu re drop due to th e f r ic t io n * However* when th e flow

becomes tu rb u len t* t h i s v iscous s t r e s s i s no t th e only c o n tr ib u to r

to th e f r i c t io n a l lo sses* Since th e flow o f th e f lu id pa rtic le®

f lu id may be expressed as and* fo r s tream lin e flow*

Page 25: A Visual Investigation of the Appearance of Turbulence in

12

In tu rb u le n t flow has boon found to b© eddying and in d ire c t#

th « v e lo c ity a t a p o in t i© not oonetan t w ith time* Therefore#

a tem poral mean v e lo c ity # tf# must be used* I t i e a lso neoes-

aary to in d io a to th e e f f e c t iv e shear s t r o t s as#

In th is# rj i s o a lled th e eddy v iso o a ity and has been defined

by PrandtX ( 52) as#

In Equation (19) \ I s known as th e mixing len g th and s ig n i f ie s

th e d ie tsn o e in th e t ra n s v e rse d ir e c t io n which a f lu id p a r t i c le

a s s t t r a v e l s t th e mean v e lo c ity o f i t s o r ig in a l la y e r so t h a t

th e d if fe re n c e between i t s v e lo c ity end th e v e lo c ity o f th e new

lo c a tio n eq u a ls th e mean v e lo c ity f lu c tu a t io n o f th e tu rb u le n t

flow* I f v e lo c ity d is t r ib u t io n s and p ressu re drop measurements

a re made# i t ie p o ss ib le to c a lc u la te th e d is t r ib u t io n o f t h i s

mixing leng th in th e flow section*

B* Annular S ec tio n s*

The c o n s id e ra tio n s above have d e a l t alm ost e x c lu siv e ly w ith

c ir c u la r sections* Binoe flow in th e se flections her been more

thoroughly in v e s tig a te d th en th a t in any o f th e o th e r shapes*

This ia understandable* s in ce c ir c u la r p ipes a re th e most w idely

used flow seotienfl* Another widely used flow se c tio n ie th e

(18)

(19)

Page 26: A Visual Investigation of the Appearance of Turbulence in

15

animlua* For etre&m line flow in a co n cen tric annulus, tho

p re ssu re drop may be calcu lated . by a m o d ifica tio n o f P o ise u ill© 1©

law fo r c i r c u la r pipes* Thin y ie ld s , (S I )

( 20)

The ra d iu s o f th o p o in t o f maximum v e lo c ity fo r t h i s type o f flow

in an annulus i s g iven by th e expression#

V - J 7 ^

( 21)

T his po in t i s always toward th e eore from th e m id-poin t o f th e

an m lu e , th e re fo re th e in te n s i ty o f shear a t th e oor© w all i s

g re a te r th a n t h a t a t th e o u te r w a ll, s in ce th e v e lo e ity g ra d ie n t

i s s te e p e r In th e in n e r p o rtio n o f th e annulus* The v e lo e ity

d i s t r ib u t io n fo r s tream lin e flow in an annulus i s g iven as#

* -a - G 1- * 1' / -£ 7( 22)

o r

U * ____ _ /7 j> 1 , / t ? - * ? / xfp>ls 7 ,,, -% f * f 7

(®5)

From t h i s i t can be seen th a t th e r a t i o o f th e average v e lo c ity

to th e maximum v e lo c ity in an anm lue depends upon th e r a d i i o f

Page 27: A Visual Investigation of the Appearance of Turbulence in

th e annulua, to th th e a b so lu te and r e l a t i v e valued o f thee*

r a d i i and t h i s r a t i o may be expressed as#

The r a t i o o f th e shear s t r e s s e s a t th e two su rfa ce s in th e

annalue i s g iven by#

These th e o r e t i c a l r e la t io n s h ip s fo r th e s tream lin e flow

reg io n have been v e r i f ie d experim en ta lly re c e n tly by Rothfu© ( 28#

29) i n a study w ith smooth co n cen tric annuli# However$ to r t u r ­

b u len t flow c o n d itio n s th e knowledge o f flow In annul! i s n o t as

w ell c la r if ie d * Since th e Reynolds Humber has proved so s a t i s ­

fa c to ry fo r u se w ith c i r c u la r pipe# i t has a lso been used fo r

s m a ll# b u t th e r e s u l t s have not been as s a t is f a c to ry in t h i s

ap p lica tio n * The Reynolds Number should be as s ig n i f ic a n t In

d efin in g flew c h a r a c te r i s t ic s i n an annulue as in a c ir c u la r pipe#

provided th a t th e proper v a r ia b le s may be found and used* The

tro u b le which has been met In t h i s a p p lic a tio n seems to a r i s e

from th e a ttem pts to extend th e law o f s im ilitu d e from c i r c le s

t o annul 1* When Brown's sta tem ent on page 10 concerning th e use

o f t h i s Reynolds Humber l a considered , then i t i s seen th a t an

azmulus i s n o t g eo m etrica lly s im ila r to a c irc le *

(2 4 )

^ 2 ( r i - R ' )

(25)

Page 28: A Visual Investigation of the Appearance of Turbulence in

Therefor** s in ce geom etrica l s im lle r l ty I s a p re re q u is i te ,

dynamic s im ila r i ty w il l no t e x is t a t th e same va lue o f th e

Reynold• Number In th e two shapes*

Thl* lock o f s im ila r i ty has been neg lec ted In th e p a s t,

however, and th e Reynolds Number has been c a lc u la te d using th e

e q u iv a le n t d iam eter concept* One o f th e e a r l i e s t form ulae to

be used to compute th e flew in a l l s o r t s o f condu its was th a t

o f Chesy, in which a h y d rau lic ra d iu s term appeared (2)* T his

h y d rau lic ra d iu s i s evaluated by d iv id in g th e c ro ss* e eo tlen a l

area o f flow by th e w etted perim ete r o f th e conduit* The Ohezy

eq u a tio n i s ,

I f t h i s i s compared to th e Fanning Squatlon , Squat ion (2 ) , i t i s

t ie n a to g ive th e same f r i c t i o n lo sses* Thus, th e eq u iv a len t

d iam eter, De , la th e va lue o f fou r tim es th e h y d rau lic rad ius*

For an a nonius, * (Dg-D^)/4 and th© eq u iv a len t d iam eter i s

u su a lly tak en to be &2 -

By using t h i s va lue o f eq u iv a len t diam eter to c a lc u la te th e

Reynolds 'umber fo r flow in an annulus and th e n by using t h i s

v a lue to determ ine th e f r i c t i o n fa c to r from c ir c u la r pip© d a ta ,

i t has been p o ss ib le to o b ta in a good approxim ation o f th e f r i c ­

t io n drop fo r tu rb u le n t flow in an annulue. Although t h i s method

o f extending date i s not s a t is f a c to ry because th e re i s no

2.

( 26)

seen th a t f must equal 2g/0^ and D must equal 4r^ , fo r th e ©qua-

Page 29: A Visual Investigation of the Appearance of Turbulence in

16

s im ila r i ty between th e two shapes* th e re have boon no o u ts tan d in g ly

su c ce ss fu l a l t e r n a te Tcethodc proposed* T herefore! moot m a te r ia l

p resen ted on th e study o f th e behavior o f f lu id s in annul! has

used t h i s e q u iv a le n t diam eter*

A ctually th e amount o f work which has been done on th e flow

o f f lu id s in annu lar spaces i s no t very ex tensive* In a review

VIegand and Baker ( 36) p resen ted a com pila tion o f th e work done

b e fo re 19^*2 on f t lo t io n lo se and h e a t t r a n s f e r in annull* Much

o f th e work p resen ted d e a l t w ith h e a t t r a n s fe r * bu t a comprehensive

l i s t i n g o f th e f r i c t i o n drop s tu d ie s was a lso given* The r e s u l t s

o f th e se a re p resen ted In Table II* In t h i s tab le* j i s de fined as*

These va lu es o f j p resen ted In Table I I w il l no t be d iscussed &t

t h i s point* but w il l be covered la te r*

From Table II* i t can be seen th a t sev e ra l o f th e investlga?-

t o r s worked in both th e s tream lin e and tu rb u le n t reg io n s o f flow*

The rep o rte d c r i t i c a l valuee o f th e Reynolds Numbers cover q u i te

a range and th e re seems to be a marked e f f e c t o f th e width o f th e

annulue on th e se values* The d a ta o f P icrcy in d ic a te t h a t th e

c r i t i c a l va lue o f decreases as th e width o f th e

anratlue decreases* w ith & c o n stan t ja c k e t diam eter* Another i n t e r ­

e s t in g fo o t i s t h a t th e c r i t i c a l va lue fo r th e ja c k e t alone I s 1620

whereas t h i s va lue fo r th e w idest annulu® i s 1020*

2 j

(S7)

Page 30: A Visual Investigation of the Appearance of Turbulence in

17

TABUS I I

R e su lts of In v e s tig a tio n s on Annular Spaces a s Reported toy

Viegand and Raker ( 36 )

V » « 2f e e t

C r i t i c a l(Dg-Dj

V

J A o f3250 10,000

F lu id In v e s t ig a to r

0 .9 :0 .!

0.0100 .5150 .M 90 .513O.&MO0.6830 .7200.75*0.SO3

.3^30 L 0 . ^ o.soo

o.sUto

0.975o.9«5

0 .000o.jito0.6280.805

0.00000.00170 .00580 .01550.0202

.0723

.072320002000

. 00UU

. 00*0.001*0 Water

.09a •0051 .0039 Water

.0622

.0827

.0622

.0827

.1303

.0622

.1303

.0827

.1303

279029202710263019401980241+02080

.0

*888

8

88

88

8 Water

.192

.192

.192

.007

.006

.007

Air* Water Fuel Oil

.0617 .0036 W a te r

.266

.266

.266,266

. 00**0

. 00H2

. 003U

.0030Water

.172

.172

.172

.172 ll+oo

.0056

.00U7

.OO56

.0050

.00U4

.0038

. 00UU

.00*40

Water andCaClgtorlne

. 01+25

.01+25

. 01+25

. 01+25

. 01*25

16201020

920

2 8

.00§7

.006a

. 0060U

.00599

.00582

A ir

Becker ( 3 )

Winkel (37)

Lonsdale ( 23 )

Caldw ell ( 9 )

Sohneokentoerg (33)

e t . a l . (20)

P le rc y # e t . a l . ( 27 )

Page 31: A Visual Investigation of the Appearance of Turbulence in

(a£) treats

XB *^0 'JCOJ0J£

*IV

Jiv

GhOO*8£00*

6£z6£2

moo*s£oo*

06910691

StiOO* It) 00*

£S*iT£Snt

iCoo*xnoo*

£i\2X&«x

6200*g£oo*

2*100* inoo*

S£ox££ox

Si.900* x£loo* TB900*iti900*89900*8iS00*29600*

xtji

±88

8lt£90S899

SznoS2*t0£21t0S2tioSztjOSsnoS21|0

996*0000*0

8X6*0000*0

209*0000*0

Soi*o000*0

sna’o000*0

2X9*0£6tt*0062*0£81*0o£x*o

ioi.o*oxx£o*o

°°0'°T 0fi2£ “i(Vza) *•** . PWi JO hK • ( T»OT»XJIO 2j *0/^

(«>o) xx rcm

81

Page 32: A Visual Investigation of the Appearance of Turbulence in

19

When Pierey* et* s i .* ( 2 7 )* ob ta ined th e low c r i t i c a l

v a lu es o f th e Reynolds Humber as mentioned above* an appara tus

was co n stru c ted fo r th e v isu a l o b se rv a tio n o f flow in an

annulue. To do th is* a dye was in troduced in to th e flowing

water* I t was rep o rted t h a t t h i s dye th read was s t r a ig h t a t

lew v e lo c it ie s * b u t developed a wave o f email am plitude a t

s l ig h t ly above th e l im i t fo r r e c t i l i n e a r flow* A a l ig h t in ­

c re ase o f v e lo c ity produced an e a s i ly seen slow sinuous motion*

approxim ately a c irc u m fe re n tia l swaying* which f u r th e r developed

through a wide range o f in c re a se o f flow through th e an m lu s

b e fo re break ing up in to in co h eren t eddying* Waving th rea d s

remained approxim ately a t a co n stan t ra d iu s so f a r as could

be seen . The a x is o f o s c i l l a t i o n o f th e th read wandered m ostly

in a c irc u m fe re n tia l d irec tio n * bu t sometimes ra d ia lly * I t never

c irc u la te d around th e core*

When Lea and Tadros (22) were working w ith wide annul!* a

low c r i t i c a l va lue was obtained* They a lso found th a t th e ex­

perim ental p ressu re drop fo r a wide annulue was not as g re a t as

th a t p red ic ted by theory* th u s i t was concluded th a t th e re was

s l ip o ccu rring a t one o f th e surfaces* probably th e su rface o f

th e core*

Rothfue ob ta ined c r i t i c a l v a lu es o f th e Reynolds tfumber on

two annular s e c tio n s . These were* 2100 fo r th e wider a n m lu s

and 2400 fo r th e o th er one* Carpenter* e t . a l (10) determ ined

th e p ressu re drops in an annulue fo r both s tream lin e end tu rb u le n t

Page 33: A Visual Investigation of the Appearance of Turbulence in

80

flow conditions* Prom th o se d a ta fo r t h i s anm lus* th e c r i t i c a l

▼slue o f th e Reynolds Number was found to be approxim ately 12^0#

0* C onclusions*

Although co n sid erab le work has been done in th e general

f i e ld o f f lu id flow* moot o f t h i s has been confined to flow in

e i th e r th e s tream lin e re g io n o r th e tu rb u le n t region* There

seems to be a tendency to n e g le c t th e reg io n o f t r a n s i t i o n flow*

e sp e c ia lly th e manner i n which t h i s t r a n s i t i o n ta k e s p lace a t d i f -

f e r e n t p o in ts In th e flow section* Even when th e c r i t i c a l flow

cond itions have been reported* th e method by which th e se va lu es

wears ob tained I s no t u su a lly one o f d i r e c t o b se rv a tio n o f th e

flow mechanism, bu t r a th e r an in d i r e c t observation* most f r e ­

quen tly based upon p ressu re drop measurements* When t h i s s o r t

o f measurement le made* th e only way In which th e t r a n s i t io n may

be de tec ted i s by d e v ia tio n froar th e th e o re t ic a l l in e fo r stream*

l in e flew* T his d e v ia tio n probably ta k e s p lace in such a g radual

manner th a t th e p ro b a b il ity o f d e te c tin g i t i s low*

I t le a lso ev iden t th a t most o f th e work in t h i s f i e ld has

been confined to p ipes o f c ir c u la r c ro ss-sec tio n * From th e stand ­

p o in t o f s im ila r i ty th e o l r c le i s probably th e b e s t se c tio n fo r

study* because any l in e a r dimension in a c ir c u la r c ro ss se c tio n

may be expressed ae a fa c to r o f th e rad ius* However* t h i s

s im p lic ity o f measurement may be & m isleading fa c to r in th e study

o f f lu id flow* I f flow ic etud ied in an annulue* th en th e re a re

two su rfa ce s a t whlob f r i c t i o n occur© and a t l e a s t two l in e a r

Page 34: A Visual Investigation of the Appearance of Turbulence in

a

dimension* a re req u ired to d e fin e th e se c tio n and point© in

th e ©action* A leo, due to th ee e two surf&eee o f d i f f e r e n t a rea

fo r f r ic t io n * th e v e lo c ity d is t r ib u t io n i s no t eyrametrioal about

a c e n tra l aids*

Page 35: A Visual Investigation of the Appearance of Turbulence in

QHAP7KR I I I

SUMMRY OF EXPERIMENTAL WORK

A. A pparatus.

The ap p ara tu s ueed in t h i s work was a m o d ifica tio n o f th e

u su a l la b o ra to ry Reynolds Apparatus and i s shown in F igure Ho. !•

The major f e a tu re s o f i t were described in an e a r l i e r work {1^).

Two changes h a re been made einoe th a t tim e, however. The number

o f dye in ja e t io n tubes has been increased to three* two o f which

e re d ia m e tr ic a lly opposed and th e th i r d placed approxim ately th re e -

fo u r th e o f an inch o f f th e perpendioul& r b ise c to r o f th® ax is o f

th e o th e r two. In t h i s way t h i s tube does no t e n te r th e tube

r a d i a l l y . T his arrangem ent i e shown in th e d e ta i l o f Figure Ho* 1.

The dye tu b es could be moved by th e r o ta t io n o f th e notched wheel*

A* and th u s th e p o s it io n o f o b se rv a tio n changed. The dye tube* B*

was so ldered in to th e d r i l l e d end o f th e th readed b rass rod* C«

The dye was in troduced from above th® head tan k through th e dye

feed l in e and rubber tu b in g connected to a sh o rt tube* D* which

was so ldered in to th e b ra ss rod v e r t ic a l ly * These dye tubes were

made o f copper c a p i l la ry tu b in g , 0 .095 inch O.D. ©nd 0.045 inch

I .D . This dye in je c t io n se e tio n le a leo shown in T la tee I and II*

Im m ediately below th e g la s s o b se rv a tio n section* a one foot

le n g th o f s tandard iro n pipe was added so th a t th e e x i t e f f e c ts

would be minimized. This p ipe was connected to th e o u t le t se c tio n

which remained unchanged.

23

Page 36: A Visual Investigation of the Appearance of Turbulence in

CONSTANT LEVEL HEAD TANK

Dye Injection Section, See Detail

'not -• K

itvorizod Iran Pip* Cara

ELEVATIONS

FRONT

*

i t

LEFT SIDE

Flo

w

DETAIL OF DYE INJECTION SECTION-Pip* to tubing connection

Dye tub*Dy# food tubing

Hond wheely g “ Brow rod

Iron pipe wall

ELEVATIONO I* t

Scale: I—i- I—i— I

TOP VIEW

LO U IS IA N A ST A TE U N I V E R S I T Y f y )

D E P A R T M E N T O F C H E M I C A L E N G I N E E R I N G Q J

VISUAL OBSERVATION APPARATUS FOR

FLOW IN ANNUL I__________DR. BY: T.A.FEAZEL IOATE . MAY, I SSI

SCALE: AS SHOWN I FIGURE NO. I

Page 37: A Visual Investigation of the Appearance of Turbulence in

PLATE I

Photograph o f Dye In je c tio n S e c tio n , L e f t Side

Page 38: A Visual Investigation of the Appearance of Turbulence in

PLATE I I

rhotogxaph o f Dye In je c tio n S e c tio n , F ron t View

Page 39: A Visual Investigation of the Appearance of Turbulence in

26

Four cere© were te s te d i n t h i s apparatus* Th© diam eter

o f each core was ob ta in ed e t sev e ra l point® ©long th e len g th

o f th e c e re and th e average va lue o f thee# measurements wa©

ueed in th e e a le u la tio n a * Theee value© a re p resen ted in

Table I I I*

TABLE 111

Dimension© o f Pi pee Used in th e Experim ental Work

Anm luehttaber

Ja ck e tDiameter#Inches

C.D. o fCore#Inohee

Core D esc rip tio n

4

i

2

5.000

5.000

5.000

5.000

1.646 1 -i* s td . Galv. I ro n P ipe

1.047 5/4* S td . Gtelv. I ro n P ipe

0.6457 1/2* Bid. Oalv. I ro n Pipe

0.8457 1/2* S td . Copper P ipe

Page 40: A Visual Investigation of the Appearance of Turbulence in

27

gw #rl»w nt« t p r o a t d w .

For each M o tio n te s ted * th e procedure follow ed was th e

same* The eo re wee plaoed i n th e ap p ara tu s and a d ju s te d u n til*

v is u a l ly i t seemed to be se n te re d in th e o b se rv a tio n se c tio n .

Flow was th en s ta r te d and by observ ing th e maximum v e lo c ity w ith

each o f th e th r e e dye j e t s t h i s c o n c e n tr ic i ty was checked* I f

th e maximum v e lo c i t i e s were n o t equal* th e n ad justm ents were made

w ith th e eore u n t i l e q u a lity was obtained* For s tream lin e flow

th e re i s no tra n s v e rs e p ressu re g ra d ie n t in a c ro s s -s e c tio n o f

flow* For t h i s to be t r u e in an e e e e n tr ie annulus* i t i s neces­

sary th a t th e boundary shear s t r e s s be th e same a t a l l p o in ts on

th e eore* T his shear s t r e s s l e th e produot o f th e v is c o s i ty o f

th e f lu id and th e v e lo c ity g ra d ie n t a t th e wall* I f th e se v e lo o lty

g ra d ie n ts a re to be equal* th e n th e v e lo c ity d i s t r ib u t io n i n th e

w idest p a r t o f th e annulus must be such th a t th e maximum v e lo o lty

i s g re a te r th a n th e m axim a v e lo c ity In th e narrow est p a r t o f th e

ansulue* These maximum v e lo c i t i e s a re equal only when th e oore I s

concen tric*

When i t was determ ined th a t th e oore was concentric* v e lo o lty

d is t r ib u t io n s were ob tained a t a co n stan t flow r a t e In th e Bireaar-

l in e flow region* The p o in t v e lo c i t i e s were ob ta ined by t h i s dye

in je c t io n method by in iro d u o tin g th e dye slowly so th a t i t emerged

from th e t i p o f th e dye tube a t approxim ately th e came v e lo c ity as

th e w ater and th en i t was allowed to t r a v e l a ab o rt d is tan c e b efo re

th e movement was timed* This time* was t h a t req u ire d fo r th© dye to

Page 41: A Visual Investigation of the Appearance of Turbulence in

20

move between two measured po in ts* I t was neoee&ary to r e s t r i c t

t h i s v e lo c ity d e te rm in a tio n to th e s tream lin e flow co n d itio n

because th e dye w ill n o t rem ain a t th e same ra d iu s when th e

flew I s no longer stream line* th e se v e lo c ity d is t r ib u t io n s were

ob ta ined on bo th s id e s o f th e oore to g ive an in d ic a t io n o f th e

symmetry about th e sore*

The maximum v e lo c ity In th e se c tio n was ob tained by i n j e c t -

lug a la rg e mass o f dye in to th e moving stream and tim ing th e

t r a v e l o f th e f a s t e s t portion*

A fter sym m etrical v e lo c ity d i s t r ib u t io n s were obtained# one

o f th e dye tu b es was plaeed a t a d e s ired p o in t and th e flow o f

th e dye and w ater both s ta r te d a t a low ra te* The behavior o f

th e dye stream was observed and d escribed and th e v e lo c ity a t

th e o b se rv a tio n p o in t and th e maximum v e lo c ity in th e se c tio n

were determined* When t h i s was done a t t h i s flow ra te# th e r a t e

was in c reased s l ig h t ly and th e o b se rv a tio n repeated* This was

continued u n t i l tu rb u len ce appeared a t th e p o in t o f observation*

When th e se o b se rv a tio n s had been made e t one point# th e dye

j e t was moved to ano ther lo c a tio n and th e o b se rv a tio n rep ea ted

there*

0* L im ita tio n s o f Apparatus and P a ts *

The appara tu s has c e r ta in in h e re n t lim ita tio n s* Due to th e

s iz e o f th e dye tube# th e c lo s e s t th a t th e c en te r-iin © o f th e dye

j e t oould be brought to th e w all was 0 *0*W>9 inches* However# t h i s

v a lu e could not always be obtained* In bending and forming th e

Page 42: A Visual Investigation of the Appearance of Turbulence in

29

dye tubes* c e r t a in im p e rfec tio n s arose* One o f ih ee e was th e

f e e t t h a t th e len g th o f dye tub ing p a r a l le l to th e w ater flow

wee s o t e x a c tly p e rp en d icu lar to th e tra n s v e rs e p o rtio n o f

th e dye tube* I f th e ang le between th e two wee lean th an 90°,

i t wee n e t p e ee lb le to p lace th e dye tube a g a in s t th e core w alls

and I f th e ang le was g re a te r th an 90°$ I t wae n o t p o ss ib le to

p la c e th e tube a g a in s t th e g lace wall* Also th e bend In th e

tu b in g wae curved and no t rig h t-an g led * so t h a t th e tu b e d id

n e t peso through th e s tu f f in g box and l i e f l a t a g a in s t th e p ipe

w all*

lie measurements o f proa aura drop were made* because th e

measurement o f p re ssu re d if fe re n c e s o f th e o rder o f magnitude

e f th o se which e x is te d h e re (approxim ately *00^ in ch o f w ater fo r

th e f i r s t f o o t o b se rv a tio n se c tio n ) would have req u ire d th e develop*

cen t and c a l ib r a t io n o f an e x ce p tio n a lly s e n s i t iv e ml©r©manometer•

As was sa id e a r l ie r* th e d e te rm in a tio n o f p o in t v e lo c i t i e s

by th e method e f dye in je c t io n tree l im ite d to th e s tream lin e flow

region* These v e lo c i t i e s were determ ined by tim ing th e t r a v e l o f

th e dye th rough len g th s o f 1* 1^ o r 2 fee t* The longer le n g th s

were used to detarm ine th e h igh v e lo c it ie s * When checks were

made on th e v e lo c ity d e te rm in a tio n s a t a point* i t was found th a t

th e maximum d e v ia tio n between th e two was 0*4 seconds i n th e

minimum observed tim e o f approxim ately 10 second a* T his gave a

maximum d e v ia tio n o f approxim ately

The major source o f e r ro r e n te r in g in to th e da ta o f t h i s

re se a rc h was th e doubt involved in th e p o s it io n o f th e dye tube*

Page 43: A Visual Investigation of the Appearance of Turbulence in

30

A c a l ib r a t io n curve was made fo r th e p o e itio n o f each tube ae

a fu n c tio n o f th e number o f tu rn s o f th e handwheel* Theee

tu rn s were measured from th e n e a re s t p o s i t io n o f th e dye tube

to th e g la s s wall* The c a l ib r a t io n was ob ta ined by suspending

th e dye i n l e t s e c tio n above a p iece o f paper and determ ining

th e d ir e c t io n e f th e dye tube movement* Then th e assembly was

connected to th e g la s s p ip e se c tio n and read ings o f p o e itio n

made using a p iece o f s t e e l tap e placed aeroas th e section* I t

was p o ss ib le to read th e g rad u a tio n s on th e ta p e to 1/ 52% so

t h a t th e maximum probable e r ro r o f th e s e read ings was 1/ 52%

which was eq u iv a le n t to k tu rn o f th e handwheels*

In th e o b se rv a tio n s o f th e dye behavior* care had to be

tak e n th a t th e dye did not e n te r th e w ater a t a h ig h er v e lo c ity

th a n th a t o f th e water* I f t h i s was done* th e dye *piled**up*

and spread o u t in th e flow* g iv ing th e appearance o f non-stream*

l in e flow* A ctu a lly I t was not d i f f i c u l t to c o n tro l th e flow o f

dye so t h a t t h i s did not happen and th e c r i t e r io n used was th a t

th e diam eter o f th e dye stream leav in g th e dye tu b e should always

be sm aller th a n th e diam eter o f th e opening In th e tube* When

observing t h i s precaution* th e dye seemed to be drawn ou t o f th e

tu b e and picked up by th e w ater to be o&rriod downstream*

The lo c a tio n o f t h i s appara tus was suoh t h a t a t tim es i t was

sub jec ted to a g re e t deal o f ex traneous v ib ra tio n s and t h i s has

caused some o b se rv ers o f th e work to have q u estio n s regard ing th e

e f f e c t o f th e s e v ib ra t io n s on th e flow behavior* During th e

sugar season a c e n tr ifu g e nearby was operated q u ite fre q u e n tly a t

Page 44: A Visual Investigation of the Appearance of Turbulence in

%

th© ©aw© tim e th a t experim ental work was being c a r r ie d out*

I t wee observed, however, t h a t air©amiin© flow was m aintained

under th e e e ©ever© v ib ra t io n s , and i t wae a le e found th a t

very good s tream lin e flow condition© e x is te d when th e eo re

could be seen to v ib ra te* I t i s to be concluded from th e s e

o b se rv a tio n s t h a t , ( l ) below some c r i t i c a l flow r a t e , stream*

l in e flew I s com pletely s ta b le to any v ib ra t io n , and ( 2 ) th e r e

was no p o s s ib i l i ty o f m e ta s ta t ic condition© g iv ing s tream lin e

flow a t h igh r a t e s o f flow*

D* T ests o f D ata,

The d a te ob tained were te s te d in sev e ra l ways* The v e lo c ity

d is t r ib u t io n s ob ta ined fo r s tream lin e flow co n d itio n s were com*

pared w ith th e th e o r e t ic a l d is t r ib u t io n s ob tained by Equations

(25) and (84)* These were combined to g ive a th e o re t ic a l va lue

o f th e r e t i e e f th e p o in t v e lo c ity to th e maximum v e lo o lty in th e

section* These th e o r e t ic a l r a t i o s app lied fo r any flow r a te as

long as th e flow was s tream lin e th roughout th© section*

The p o in t v e lo c i t ie s ob tained under a l l flow co n d itio n s were

compared to th e se th e o r e t ic a l r a t i o s to determ ine th e e f f e c t o f

th e In c re a se ir< flow r a t e upon th e v e lo c ity d is tr ib u tio n * With

th ee e p o in t v e lo c i t i e s i t was p o ss ib le to o b ta in th e v e lo o lty

d is t r ib u t io n s a t a number o f d i f f e r e n t Reynolde Numbers* Xt was

a ls o p o ss ib le to o b ta in th e v e lo c ity g ra d ie n t, du/dy, a t th e

v a rio u s p o in ts in th© c ro n e -se c tio n as a fu n c tio n o f th e Reynolds

Chamber* By p lo tt in g th ee e v&lues o f v e lo c ity g ra d ie n ts a t th e

Page 45: A Visual Investigation of the Appearance of Turbulence in

same Reynolds Number a g a in s t th e p o s i t io n In th® se c tio n , and

by e x tra p o la tin g th ee e p lo ts to th e w a lls , th e v e lo o lty

g ra d ie n ts a t each w all were obtained* The v a lu es o f th e se w all

g ra d ie n ts were determ ined a t se v e ra l Reynolds iumbere and th e

v a lu e s were p lo tte d a g a in s t Reynolds Number*

As a cheek on th e observed v e lo c ity d is t r ib u t io n s , th e

In te g ra l o f udA was o b ta in ed g ra p h ic a lly and compared w ith th e

flow r a t e in d io a te d by th e ro tam eter*

The von Kerman reduced fu n c tio n s , u * and y + , Equations

( a ) and (9 )# were c a lc u la te d , assuming th a t th e shear s t r e s s a t

a s Ion? as th e r e e x is t s a lam inar la y e r o f f lu id near th e w all*

The va lu es ob ta ined fo r th e s e ex p ress io n s were p lo tte d and com*

pared w ith E quations (1 4 ) , (12) and (16) p resen ted by Mlkuradse*

C r i t i c a l c o n d itio n s a t v a rio u s p o in ts i n th e se e tlo n e were

ob tained by observ ing th e l a s t s tream lin e behavior and th e f i r s t

tu rb u le n t behavior a t each point* The o r l t i e a l va lue a t th e

p o in t was th e n between these* Theee c r i t i c a l co n d itio n s were

expressed in se v e ra l ways* Zn th e p a s t th e o r l t i o a l flow r a t e

fo r an anisilue hr e been expressed as a c r i t i c a l va lue o f th e

Reynolds dumber, . T herefo re , th e value o f t h i s

term was ob tained fo r every d e te rm in a tio n made* The o r l t i e a l

v a lu es o f t h i s exp ress ion fo r each p o in t were p lo tte d a g a in s t

p o s it io n in th e s e c tio n , expressed as th e ra d iu s o f th e p o in t,

g iv in g on in d ic a tio n o f th e amount o f th e f lu id which was flowing

i n each o f th e mechanisms*

a v a lid assum ption

Page 46: A Visual Investigation of the Appearance of Turbulence in

35

Since th e p o in t v e lo c i t i e s wore observed when determ ining

th e s e o r l t i e a l c o n d itio n s , th e p o in t o r l t i e a l v e lo c i t ie s wore

a ls o obtained* Since a l l de te rm ina tion* were n e t made a t

e x ac tly th e came tem pera tu re , i t was necessary to b ring them

to a common b a s ic ! accord ing ly th e v e lo o lty was d iv ided by th e

k inem atic v is c o s i ty o f th e f lu id * T his r a t io u/V was p lo tte d

a g a in s t p o s it io n in th e annulus*

A p o in t o r l t i e a l Reynolds Rumber was a lso ob ta ined fo r each

p o s it io n by m u ltip ly in g u /V by y th e d is ta n c e o f th e p o in t from

a wall* T his d is ta n c e was measured from th e g la s s w all fo r th o se

p o in ts between th e g la s s w all and th e p o in t o f maximum v e lo o lty

and from th e eore w all fo r th o se p o in ts between th e eore and th e

p o in t o f m axim a v e lo c ity * P lo ts were made o f th e s e c r i t i c a l

v a lu es a g a in s t y fo r each annulus*

R ouse's s t a b i l i t y param eter*%$ Equation (17)* was a lso

ob tained fo r th e o r l t i e a l flow c o n d itio n s a t each p o in t and th e

v a lu es o f t h i s p lo tte d a g a in s t th e p o s i t io n o f observation* This

wae done to determ ine th e u se fu ln ess o f t h i s parameter* A ll d a ta

necessary fo r th e d e te r mi n a tio n o f "3 * have been p resen ted above,

y , du/dy and V* •

Page 47: A Visual Investigation of the Appearance of Turbulence in

CHAPTER X?

KXFSRIMBJflVJi RESULTS

A* G enera l*

Whan th e flow o f th e w ater was s ta r te d In th e se c tio n s end

m aintained a t a low r a t e , s tream lin e flow wae obtained* In th le

flow th e dye emerged from th e dye tu b e and tra v e le d th e len g th

o f th e o b se rv a tio n se c tio n w ithout a break o r iu te ru p tio n * As

th e flow r a t e was in c reased however* t h i s behavior d id n o t p e rs is t*

Instead* a slow« sinuous motion was im parted to th e dye* T his

motion was a wave o f long w ave-length and high amplitude* At

tim es i t s w ave-length was so long t h a t only two cy c les were p re sen t

in th e f iv e - f o o t o b se rv a tio n length* F igure 2 (a ) p re sen ts a

sketch o f t h i s motion* I n S ec tion A-A o f t h i s sketch# th e dye

th re a d I s p ic tu red as being d is t r ib u te d e iro u m fe re n tia lly a t th e

ra d iu s o f th e p o in t o f observation* T his view o f th e se c tio n was

n o t v is ib le # but i s based upon th e f a c t th a t th e dye th read remained

a t a p o s it io n o f c o n stan t v e lo c ity w hile in t h i s motion* For con­

c e n tr ic annuity p o in ts which have th e same v e lo c ity a re a t th e

same p o s it io n r e l a t i v e to th e cen te r o f th e system* This wave was

sym m etrical about th e im aginary l in e extending from th e dye tube

to th e bottom of th e o b se rv a tio n section* While e x h ib itin g t h i s

sinuous motion# th e dye was not broken in any way# th e re fo re th e

flow was described as stream line*

&

Page 48: A Visual Investigation of the Appearance of Turbulence in

55

In F igu re 2 (b ) a wav© a c tio n I s shown o f much sh o rte r wove

le n g th th a n th a t In (a )# This motion was observed when th© flew

r a t e was in c re a sed above th a t a t which th e sinuous motion appeared*

This s h o r te r wave had a sm aller am plitude th an th e slow sinuous

motion* b u t was s t i l l seen to e x is t a s a continuous stream through**

o u t th e o b se rv a tio n length* When th e flow r a t e was increased

slowly* t h i s type o f wave a c tio n continued and m aintained approx­

im ately th e same wave length* b u t th e number o f waves passing a

p o in t in c reased w ith th e flow ra te * S t i l l th e dye e x h ib ited sym­

metry about th e p o s i t io n o f th e dye tube end gave no signs o f a

r a d ia l movement* This ty p e o f flow was a lso considered stream line*

s in ce th e dye stream remained continuous*

As th e flow r a t e was in creased more* th e ra p id wave a c tio n

was rep laced by a snapping n o tio n or tu rb u le n t bu rsts* as shown In

F igu re 1 (o)* In t h i s no tion th e dye th read was com pletely broken

by th e s e snaps and th e re g u la r wave p a tte rn was rep laced by an i r ­

re g u la r p a tte rn * This was considered th e f i r s t appearance o f

tu rbu lence* S lig h tly above t h i s flow ra te* edd ies were formed and

th e dye was d is t r ib u te d over a p o r tio n o f th e annulus*

The o b se rv a tio n s p resen ted In F igure 2 were obtained a t a l l

p o s it io n s in th e sections* b u t th e flow ra te s a t whloh each ty p e

e x is te d a t v a rio u s p o in ts in any one se c tio n were n o t th e same*

Thus th e d isc u ss io n above a p p lie s to th e general behavior o f th e

dye fix ed a t a p o in t as th e flow r a t e was increased*

Another type o f flow p a tte rn was observed when th e flow a t

a p o in t was no longer stream line* T his i s shown In f ig u re No* 5*

Page 49: A Visual Investigation of the Appearance of Turbulence in

36

G l o s s J a c k e t

O

D y e T u b e

C o r e

D y e T u b e

SECTION A-A

- D y e S t r e a m

( b )( a )

D y eS t r e a m

( c )

FIGURE NO. 2 - TYPICAL WAVE MOTIONS OBSERVED

Page 50: A Visual Investigation of the Appearance of Turbulence in

5 7

When viewed from th e Bide* th e wave p a tte rn was broken, h u t th e re

wee no in d ic a t io n o f mixing* From th e f ro n t o f th e apparatus*

however* i t wae eeen th a t th e dye had been p a r t i a l l y d is t r ib u te d

aereee th e e e e tio n eo th a t a l l o f i t wae no t in a p o e itio n o f

c o n s ta n t v e lo o lty * When th e dye wae d is t r ib u te d in t h i s manner

th e r e wae a d if fu s in g e f f e c t ev id en t in th e decreased concentra­

t io n o f c o lo r and a la o in th e widening o f th e co lo r band* When

th ie happened to th e flow pa tte rn* th e flow wae no longer eon*

e ldered stream line*

To e e ta b l is h s tre am lin e flow in th e se c tio n s te s ted * i t was

necessary to o p e ra te w ith very low flow ra te s* such th a t th e

average v e lo o lty in th e annulus wae approxim ately 0*10 f e e t per

second* These v a lu es were eo sm all t h a t i t was im possib le to

o b ta in s tream lin e flow when th e d if fe re n c e between th e tem perature

o f th e w ater and th e a i r wae g re a te r th a n 15° This was thought

to be caused by th e convective c u rre n ts e s ta b lish e d by h e a t t r a n s ­

fer* During th e w in ter months th e surroundings o f th e appara tus

were not heated so th a t th e tem pera tu re o f th e w ater was h ig h er

th an th e tem pera tu re o f th e a ir* As th e water flowed through th e

system i t l o s t some o f i t s h e a t and in doing so th e lay e r o f w ater

n ex t to th e ja c k e t became coo ler th a n th e r e s t o f th e water* This

d if fe re n c e in tem pera tu re in a c ro s s -s e c tio n caused a d if fe re n c e

in d e n s ity to e x is t so th a t motion in th e tra n s v e rse se c tio n wae

induced* T his e f f e c t wae g re a te r in a wide anm lue* Ho* 2* th an

in a narrow annulus* Ho* ;$* s in ce th© maximum v e lo c ity fo r e t roam-

l in e flow was about h ig h er in th e narrow section*

Page 51: A Visual Investigation of the Appearance of Turbulence in

38

G l a s s J a c k e t

C o r e

D y e T u b e

SECTION A -A SECTION B-B

- D y e - S t r e a m

SIDE VIEW FRONT VIEW

FIGURE NO. 3 - DYE SEPARATION PATTERN

Page 52: A Visual Investigation of the Appearance of Turbulence in

359

l a a lm ost any work i n th e flaw o f f lu id s* th e re l a u su a lly

• p m l& t lo n concerning th e e x is te n c e o f a lam inar * film M o f f lu id

a t a * u rf i# i« In t h i s ap p ara tu s t h i s *film * was on do v is u a l by

d i r e c t in g a stream o f dya toward th e ao ra w all* I f t h i s was dona

w h ile th e f lu id waa moving* a vary g ro a t v e lo c ity g ra d ie n t became

v i s i b le and th e dya wae " s tre tc h e d " in to a th in line* w ith one

end rem aining alm ost s ta t io n a ry a t th e p o in t where I t f i r s t ap­

proached th e eore* Whan viewed from d i f f e r e n t p o sitio n s* t h i s l in e

seemed to stand away from th e wall« However* t h i s d ls ta n o e could

n e t be measured as such due to m ag n ifica tio n a t t r ib u ta b le to th e

d i s to r t io n o f th e w ater and (o r ) th e cu rv a tu re o f th e g la s s Ja c k e t.

I f th e dye tu b e was p laced so th a t th e dye emerged from th e tube

and clung to th e wall* i t s p resence on th e w all a t th e p o in t o f

emergence was observed even a f t e r th e flow o f dye had been stopped

fo r approxim ately two m inu tes. A ll o f th e dye d id n o t remain

m otionless* b u t t h a t p o rtio n on th e eore did* T his was p a r t i a l

v e r i f i c a t io n o f a fundam ental assum ption in th e development o f

th e th e o r e t ic a l laws fo r s tream lin e flow t t h a t th e v e lo c ity o f

th e f lu id a t a su rfa ce i s zero*

I f one o f th e dye tu b es was p laced in th e c e n tra l p o rtio n o f

th e anoulue and ano ther plaoed so t h a t th e dye was near th e core*

i t was seen th a t th e flow became tu rb u le n t In th e c e n tra l p o r tio n

w h ile th e flow was s t i l l lam inar a t th e core w a ll. The same

o b se rv a tio n was ob tained by p lac ing th e dye tube so t h a t th e dye

was near th e g la s s w a ll. For v a lu es o f g re a te r th a n

55OO in Anoulue Do* 5 s tre am lin e flow was no longer in d ic a te d ©i

Page 53: A Visual Investigation of the Appearance of Turbulence in

th e g la s s w ell* Howevert t h i s d id n o t preclude th e e x is te n c e

o f th e * fil» * a t t h i s ra te# because th e th ic k n e ss o f th e "m m *

was probably le e e th a n th e w idth o f th e dye stream# thus# th e

behav io r o f th e dye stream was no longer in d ic a t iv e o f th e f lu id

behavior*

B* T e lo c ity Measurements*

The th e o r e t i c a l v a lu es fo r th e ra d iu s o f maximum v e lo c ity

and th e r a t i o o f th e average to th e maximum v e lo c ity fo r stream*

l in e flew in th e an n u li te s te d a re p resen ted In Table IT* These

va lues were ob ta ined by u se o f fiqu&tlons ( 21 ) and (24)*

TABLS IV

T h e o re tic a l P ro p e r t ie s o f th e S ee tlo n s Tested

Annolus No* ®2in*

£ to r m*x.In* Vmax.

1 1.55* •5*9 1.144 0.669

2 1.955 •549 O.969 0 .6 6 2

5 2 .156 .282 0.904 O.657

4 2 .156 .282 0 .9 0 4 0 .6 5 7

In F igu res 4# 5# 6# and 7# th e v e lo c ity d is t r ib u t io n s as

ob ta ined in th e s tre am lin e flow reg io n a re presented* In thee© d is ­

t r ib u t io n s # th e p o in t v e lo c i t i e s were expressed a s p ercen t o f th e

Page 54: A Visual Investigation of the Appearance of Turbulence in

rtvm

,-«w

yvM

y-

. »

ton

Mgxi

mjm

Vel

ocit

y

.

-<j

> •

o

Q C

,

Page 55: A Visual Investigation of the Appearance of Turbulence in

FIGURE NO. 5 * Velocity Distribution for Anniiilus No. 2

Reynolds N u m b e r - 8 5 0

R t . T r a v e r s e L e f t T r a v e r j s

C l

>

<40=2

Q_

I . f3 07105 2 3

R a d iu s o f p o i n t , in

Page 56: A Visual Investigation of the Appearance of Turbulence in

43

6 - Velocity Distribution for Reynolds fslumber -:9 70 i j

FIGURE

O <*

3

: i I : .^O i I ;R a d iu s cjf Po n t^ i|i.

; 70

Page 57: A Visual Investigation of the Appearance of Turbulence in

44

f j g Or e NO. 7 “ V e lo c i ty D isftri l i j ;

Reynolds N um l

bufion lfoi[ A n r tu lu s N b . 4

b e | r - 1255 P P

100

. 9 0 j |

ladiuis cf Poibtjln,l.-O l . ' iO

Page 58: A Visual Investigation of the Appearance of Turbulence in

4?

observed maximum v e lo c ity * The th e o r e t ic a l d is t r ib u t io n s an

g iv en by com bination o f aquations (2 1 ), ( 2 J ) , and ( 24) e re

in d ie a te d by th e s o lid curves*

From th e se f ig u re s i t seems th e b e s t agreement w ith th e

th e o r e t ic a l v a lu es was ob ta ined w ith Annultts Ho# 1* tthon each

o f th e s e o b se rv a tio n s was made th e flow was seen to be stream ­

l in e th roughou t th e c ro ss se e tio n j th e maximum v e lo c i t ie s ob­

ta in e d w ith th e th re e dye j e t s were very nearly th e same, and

th e r a t i o s o f th e average v e lo c ity to th e maximum v e lo c ity were

approxim ately equal to th e th e o re t io a l values* In a l l v e lo c ity

d is t r ib u t io n s o b ta in ed , th e maximum v e lo c ity found by in je c t in g

th e ty e blob was u su a lly h ig h er th an th e maximum o f th e p o in t

v e lo c it ie s * The v e lo c i t i e s in th e o u te r p o rtio n o f th e se c tio n

a g ree more e le s e ly w ith th e th e o re t io a l curve th an th o se in th e

in n e r portion# The measured v e lo c ity probably was th a t o f th e

p o s i t io n o f th e o u ts id e o f th e dye tube and no t th a t o f th e

e en te r* lln e* A c o n s tan t s h i f t i n p o s i t io n o f 0*04 inches toward

th e co re w all would g ive much c lo s e r agreement w ith th e th e o r e t ic a l

carve*

The b e s t smooth curves were drawn through th e se experim ental

v e lo c i t i e s and th e r a t e o f flow ob ta ined by g rap h ica l in te g ra t io n

fo r comparison w ith th e t r u e flow in th e section* These va lues

a r e p resen ted below#

Page 59: A Visual Investigation of the Appearance of Turbulence in

m

A nm lusNo* -r'

Average V elocity f t* /s e c *

In te g ra te d Actual

% Error o f In te g ra te d V elocity

1-R ig h t 820 0*0669 0.0661 1*21- L e f t 820 0*0607 0,0661 - 8*1

2 -R ight 850 0,0*05 0.04*9 - 9*02 -L e ft 85O 0*040$ 0*0445 - 9*0

5 970 0,0*4* 0,0551 —16*4

A 1255 0,059* 0*0670 - 17 .5

The d is t r ib u t io n s ob tained in a n m li 5 and A showed th e l a r g e s t

e r ro r In in te g ra te d flow va lue* • Theee annul! were formed w ith

th e same e ls e core* but Ho* J wee made w ith ga lvan ised iron# a

rough core and Ho* A w ith Copper pipe# a smooth core* The f a c t

t h a t both o f th e s e gave th e same g en era l v e lo c ity d is t r ib u t io n

showed th a t th e r e p ro d u c ib il i ty o f th e d a ta was good*

The d e v ia tio n s o f th e p o in t v e lo c i t ie s in th e in n e r p o rtio n

o f th e a n m li could r e s u l t from th e f a c t th a t th e two su rfaces

o f th e a n m li a re o f d is s im ila r m ateria ls* This i s no t sup­

ported* however* by th e f a c t th a t th e v e lo c ity d is t r ib u t io n s in

F igures 6 and 7 a re approxim ately th e setae w ith a smooth oore

rep resen ted in F igure 7 end a rough one in Figure 6*

I n F igures 8 and 9 th e r a t io o f th e average v e lo c ity in th e

se c tio n s o f th e maximum observed v e lo c ity I s p lo tte d with va lues

o f w - f a # <rhe p o in ts p resen ted were determ ined in -Re -7^

d e p e n d e n t ly a t th e corresponding Reynolds Number and do not

Page 60: A Visual Investigation of the Appearance of Turbulence in

Aye

rpqq

V

eloc

ity

Mox

imum

V

eloc

ity

Ratio of Annulus

. FIGURE NO. 8 - city . to notion of

imum Veto Reynolds Ni

erageVelc I as a

Q Q Q Q Q c Pr \ O (

Streorfime -Flow

Page 61: A Visual Investigation of the Appearance of Turbulence in

T~ " T

rI-

0 : 8 0

— - *

oO <?o 0 \o o 0° oS5 -' 1 u a • t?p- o -

I o °o O . 0~JTV& p 5 ~n Stream line flow"

o

©-4SM - <5-

— i

■ i—

8 0 0

o o00 1 o1O f o

i—Q-

O o jAnnulus No. 2

lOpO W 1 4 0 0"D .jV

1000r ~

1 8 0 0

m

FTGlifRE NO. 9 | Ratio of Average Velocity to MaxFmum Velocity In Annulji No. 2: S^3Reynolds Numb

A nnulusan ju^S tream line Flow

1000

CD

S5 5 C 2600 m ) 0

Page 62: A Visual Investigation of the Appearance of Turbulence in

Fdprecen t check d e te rm in a tio n s made a t 0. constan t flow ra te*

For Annulus No* 2# thi© r a t i o waa approxim ately equal to th e

v a lu e fo r pu rely s tream lin e flow to ®R * 1100* Above thl®

va lu e o f Reynold© tim ber th e r a t io in creased ©lowly a© th e

flow r a t e wbb increased* The f i r s t appearance o f tu rb u len ce

i n th e ©action was th e cause fo r th ie break from th e s tream lin e

flow v a lu e and th e r a t i o in c reased as th e amount o f th e f lu id

i n tu rb u le n t motion increased* The maximum value which th ie

r a t i o w il l a t t a i n wae not determined# but from Rothfu®‘e d a ta

fo r an annulus o f C^/Dg * 0*162 th e va lue a t * 21 #600 was

0*826 and fo r Dj/B2 * 0*650 th e va lue a t * 14#400 was

0 *807* Theee va lues in d ic a te th a t th e l im itin g value o f th e

r a t i o In an an ru lue ie g re a te r th an th e value fo r c ir c u la r pipe*

For Annulus No* 5# th e p lo t o f t h i s r a t i o shows a g radual

in c re a se ever th e e n t i r e range in v es tig a ted # from * 1000 to

*R . * *700* Although s tream lin e flow was ob tained throughout

th e s e c tio n a t v a lu es o f NRe le s s th an l 400t t h i s r a t io was

always found to be h igher th an th e th e o re t io a l value* For th e

range o f Reynolds Numbers between 1000 and 1400 th e average ex­

perim enta l va lue was approxim ately 8$ h igher th an th e th e o re t ic a l

va lue fo r t h i s anrulue* The r a te o f in c re a se o f t h i s r a t i o w ith

th e Reynolds Number was not so g re a t as th a t fo r Annulus No* 2#

b u t was approxim ately th e same as th a t fo r Annulus No* 1# th e

v a lu es fo r whieh a re p resen ted in F igure No. 8 * For t h i s annulus

th e experim ental r a t i o o f th e v e lo c i t ie s i e again always h igher

Page 63: A Visual Investigation of the Appearance of Turbulence in

50

th an th e th e o r e t ic a l v a lu es by approxim ately 5%*

I n F igu res 10 and 11 th e v a r ia t io n In p o in t v a lo c i t ie s

to r Annuli No* 2 and 5 w ith tho Reynolds Number based on th e

average v e lo o ity i s shown* These v e lo c i t i e s a re expressed as

percen tage o f th e average v e lo c ity , For a p o s it io n w ith a

v e lo c ity l e s s th an th e average ve lo c ity * t h i s r a t i o in creased

as th e flew r a t e Increased* and th e op p o site was t ru e fo r th e

p o s it io n s w ith v e lo c i t i e s g re a te r th an th e average ve loc ity*

Using th e s e v a lu es o f p o in t v e lo c it ie s * v e lo c ity d i s t r i ­

b u tio n curves w e e ob ta ined a t d i f f e r e n t Reynolds Numbers and

from these* th e v e lo c ity g ra d ie n ts a t d i f f e r e n t p o in ts in th e

s e c t io n were obtained* P lo ts were th e n made o f v e lo c ity g ra d ie n t

v e rsu s p o s i t io n in th e s e c tio n and th e se p lo ts ex tra p o la ted to th e

wall* o b ta in in g an approxim ation o f th e g ra d ie n t a t th e wall* The

v a lu e s ob ta ined by t h i s method fo r Annul! 2 and 5 a r © p resen ted

i n F igure No* 12* In t h i s f ig u re th e v e lo c ity g ra d ie n t a t th e

Reynolds Number.

The w all shearing s tre s s* *72 * i s g iven by th e product o f th e

v is c o s i ty and t h i s v e lo c ity g ra d ie n t and fo r s tream lin e flow* th e

r a t i o o f th e shear a t th e in n er w all to th e shear a t th e o u te r

w a ll in an annulus i s g iven by Equation ( 25)* For Annulus No* 5»

th e value o f t h i s r a t i o in s tream lin e flow i s 1*5&* The experi­

m ental r a t i o found from th e e x tra p o la tio n o f tho v e lo o ity g ra d ie n t

p lo ts v a ried from 1*60 a t s 1600 to 1*665 s 2^00*

was p lo tte d a g a in s t th e

Page 64: A Visual Investigation of the Appearance of Turbulence in

Avg

V

teJa

clty

IS

Page 65: A Visual Investigation of the Appearance of Turbulence in

*r = r.049

OrTO

r~h 4 0 6

poo

FIGURE W U H E ffe

22 0 0 n v m > u

Iip Reyjnoltis Numof tncrea on Point [Velocities. . L . ... .

ulus No. 3

Page 66: A Visual Investigation of the Appearance of Turbulence in

53

FIGURE NO. 12“ Velocity Gradients at Walls as Functionsof Reynolds Number

0 . Annulus No.t,. Wbll

Li O ^ i j l u ^ N p . . j j

(Og “ D| ) Vjjyq 7 ^ —

Page 67: A Visual Investigation of the Appearance of Turbulence in

5*

T his lncr«ae« in th e r a t i o in d ic a te d th a t th e shear s t r e s s a t

th e in n e r w all was in c re a s in g more ra p id ly th an th a t a t th e

e n te r w all in th e range o f flow covered* The only way th a t

t h i s could occur so th a t both o f th e shear s t r e s s e s would g iv e

th e s a mo p re ssu re drop was fo r th e p o in t o f maximum v e lo o ity

to s h i f t toward th e o u te r w all 00 th a t th e value o f Equation (25)

could be increased* I f t h i s p o in t o f maximum v e lo c ity s h if te d

toward th e o u te r w a ll, and i f th e v e lo c ity g ra d ie n t a t th e core

w a ll In c reased f a s te r th an th a t a t th e o u te r wall* i t was

necessary th a t tu rb u le n ce appear between th e co re w all and th e

p o in t o f maximum v e lo c ity be fo re i t appeared In th e o u ter p o rtio n

o f th e annulus*

Prom th e v a lu es o f th e w all shearing s t r e s s ob tained from

th e v e lo o ity g ra d ie n ts a t th e walls* th e von Karatam reduced

v e lo o ity and p o s it io n term s g iven in Equations (6 ) and (9 ) were

evaluated fo r Annuli Ho* 1 and 5* In f ig u re 15 th e values o f u +

and y a re p lo tte d * Some o f th e se va lues were ob tained from

th e v e lo c ity d is t r ib u t io n de te rm ina tion p resen ted in F igure Ho* 4 .

In th e se th e v e lo c ity g ra d ie n t a t th e w all was assumed to be th a t

which would apply in th e s tream lin e flow condition* Tho o th e r

p o in ts in F igure 15 were ob tained from th e l a s t observed stream r

l in e flow c o n d itio n s and th e f i r s t observed tu rb u le n t flow con­

d i t io n s in th e section* These experim ental po in ts do no t fo llow

th e equations o f Kikuradee ae g iven In Equations ( 14}» ( 15) and

(1 6 )# b u t in d ic a te l in e s p a ra l le l to th ese expressions* The

Page 68: A Visual Investigation of the Appearance of Turbulence in

2 0

10-

FIGURE NO. 13- 1. —

r '^’ 1 ^7 TI' r*fI .1 >i • I '" i r ‘’iM'w't’ 4(Vftr|», i ,1.1 I

J .I ' '■ \ - l I ,f* ... JT* IrT

i d Velocity Distribution for Annulua No.(

j ■ -l-t U*[m |

■ UlU

.* i**--* i.1. -„,u4

: t

f f

|-4 !:j ;" I 'o 'L o i t Observed Stream line Flow • ■

4 First Observed Turbulent Fiow ^

J+ Velocity Dtptrfbotieniot+ N*. *820 ~- NIkuradse*e 1 V6lu#s, : . ' * i

* *— i Experijiseh foi

t

•' t-t - * ■ f", . J . . . . . 4.444'■ i !■ 1 ■!- j . . . . • — - »+»tT+.

4 ,*4 : ..i ^ .j..,r L ^ • *-j........ • U> - 4 .-+

. . i

i-i- 4-

~l____

4, - I ---4------

;-H - <~H....-i - . - , 4 u_. . . . . ^T , . 4- . 4 : .

4-^...^4!- j•j-’j

j —J - --+ -f—; ji. . u J . 4 -^ .4

. . , . . - 4- . . .

.4 4 i'..!.-4 fc~ n .7 : ± ~ 4 ± :

. l - U

• t-

It* -i ..--- t - . i—........................

g h a r r i

■’ r

t i• - - • - -- • '4 rf 4*. *■ -*{"f**+-r*,*7**4 -ft""!

. 44-44 !4

i •

4 -

* — |_i LI j. J! 0"rjliZ4 4 — 1 , ! I , . I’1:’!''!!* t , '■r*-**' I" - '*-+ - t* **“rt*

* -|—* - - 4 - ! ^ — t - . . ' i 1 « i ■ »f i >u.—|*. +*it. u* _ |u .^4- . ..|.a i p. 4 -

t r~l- ■t- 4

Jrtr4:

4 •H ■

’T■ * TTT i t -

4 -4- .44i> Ur j— i)<i

-■-’— +- .- I ■ * r-y * r* - * r * - • T { • ■ - - • , ■ - - 4 - - -+ —,-4-+ - —.|- ‘ t r--.— j-+- *'4 yU4-.-. ■■-- +-U."*-T"' •-*

v tTTtrt t" LiLitii*:Mi

3 ^ . ; 4 0

ui_

aio»

Page 69: A Visual Investigation of the Appearance of Turbulence in

96

r a m i t e in F ig u re No. 1J e re rep re sen ted by th e follow ing

equation©:

u f - / / .& /o j/a y f - 4 - 2

~ 7 *> S - ' ■ * (a6J

and

e /+ * 4 . 4 U jto y + / 3 - 9

g + '5 -5' (gp)

I n F igu re No* 14, th e Base e o r l o f p lo t was mad® fo r Annulus

No* % and th® .equation expressing th o se r e s u l t s la s

u * - / £ / < y / o -<*• 7

(50 )

Moat o f theco de te rm ina tlone war® mad® w hile th® flow a t th®

p o in t o f o b se rv a tio n was i n s tream lin e motion, b u t non® o f th®

experim ental va lues corresponded to th e lam inar reg io n in whioh

u ^ * y ^ aeeordlng to Niteur&dse* On c lo se r exam ination o f t h i s4~ 4r e la t io n s h ip , however, i t i s seen th a t fo r u to equal y # I t

i s zteoeseary th a t th e lam inar la y e r be so th in th a t th e v e lo c ity

a t y i e oqual to th e d is ta n c e from th e boundary m u ltip lied by th e

v o lo e ity g ra d ie n t a t th e wall* For th e flow co n d itio n s In t h i s

work, th e th ic k n e ss o f th e lam inar lay e r was g re a te r th an t h i s

a t a l l tim es*

Page 70: A Visual Investigation of the Appearance of Turbulence in

.

' + * * * t t

— rFIGURE NO. 141 von Kormnn

* ............ * I 1 1 ' “ * ■ i t- t I: ...............

> in sj a> © 0- r—i*t—i—t • t" ! mi "| '■ • iH"i|T"fr:vri:ri»!iTM

- - 4i ,

• •" ■ ' • • ■ ^ 4 - r i -4.. k . j .*4*4 t, - i ■ < , ♦ , - t . ■ « » 1 ‘

,..) . . u , . . . .

j . . 4 • - I .................

. . . , j . . . .

. 1 1 . . , . ll

1 1 1 . 1 1

- * • ' T - t

■ 1 ............ - ]•>•■■■ ' 1 ........ 1 •■■!■■ '

. . . ' 4 4 : i

. . . . . . . . . .. . .. i . .. .. : j

• 1 • •*•• •• •••.. ~ L,--.j---- .... . 4.

Velocity Distributibn far:An rruluis :i* f - + r- 1 * t I *-*-1 ' *■■■ • ‘ ■ H*-*.

, , . L. j.«a. . , . 4 i-i -.4 44 .■F«.*.-v

4_..; . - i .

m Tir*<tr

-r - 4*fv* 4*4

a.-T

■fr

ftrr

I . . . i . ,

-20-—

*' UoM Observed*' :....................... ’ ^ ..J . 4 ►.

; Velocity D istribution o t ;N ^ -9 6 jO

rwlkurodse’s Valued Experim ental

■ t

f . . . . . 4- ^ - : j . . . i f . . . , -----

3 E H H

CJi

- - 1 ’ -$► -40 20 sp :::ir^ (c u 3

Page 71: A Visual Investigation of the Appearance of Turbulence in

N lkuradse’e ex p ress io n fo r th e b u ffe r layer ie*

U f - / / ^ % /0 <j 3 . o,j5"

( 15)

aad f a r th e tu rb u le n t p o rtio n

U r ~ —>• /&).\ o ^(1<S)

S ince h ie v a lu es wore ob tained a t extrem ely high Reynolds Numbers

fo r flow in o iro u la r pipes* i t was expected th a t th e re would be

b o me d if fe re n o e In N ik u rad se 's va lues and th o b o ob tained in t h le

work w ith flew o f low Reynold® Humbere in a n m li*

C* O r i t le a l V alues.

The c r i t i c a l flow co n d itio n s were ob tained a t varioue p o e itio n e

w ith in each aaaulus* and th e r e e u l te o f th e se f in d in g s a re p resen ted

i n T ables V, VI* end V II. In T ables V-a* V I-a, and VII~a th e va lues

a re p resen ted fo r th e l a s t observed s tream lin e flow conditions* and

in T ables V-b* VI-b* and V ll-b th e va lues fo r th e f i r s t observed

tu rb u le n t flow c o n d itio n s a re presented*

When th e c r i t i c a l v a lu es o f (pg ~ wer e p lo tte d a t th e

a p p ro p r ia te p o s it io n s in th e annul!* expressed as th e rad iu s o f th e

p o in t from th e c en te r o f th e core* th e curves In F igures 15* 16 and

17 re su lte d * There was co n sid erab le sc a tte r in g o f p o in ts In th e se

f ig u re s and no r e a l c o r re la t io n was obtained* Several g en era l ob­

se rv a tio n s could be made on th e b a s is o f th ese curves* however*

Page 72: A Visual Investigation of the Appearance of Turbulence in

Basalts for Aanulns Bo. 1 Points lnslds r„ , last obsorTtd streamline flow conditions

59

«VJ«

n

*

VC

£

»

»

3

UNU

N

s>HH

%j

t<3n

J•

1m

1•

&to»ssm

*

s fit

Oh

aO

SCMH

acm roH

Hi

lAri

H H

I

unI*i0

• • • . • *kn-s* jt «u t*Np-1! i*HI

p* P**l

«^

8«H «H S2

8-i

b*2

c

&

t »

a

ftR

ST

S' ft

Sl&

miS

?H

©

iH

H

H

I H

rt

m

9■C

ss

•3,2

s

^iS

SH

>

CN

^

ON O

©N

ON 0

0\

0\5

\ ©

©

© CFS O

ONCM

• •

i *

• «

» *

* *

* t

* «

» »

>

iBS

-*?3>^

► v<

fc"I?

**0

V£&•

oHH•3

CM3•

H H

H

H

• *

$8P* •8a

&•

Sa

RU\•

$•

$•

£IA«ft9

S'80

UN3>H

I*

&h-r*»

S'K

tofiSf

»rjUNi

8•

s•

3•

C«O•

3•

30

3*

§a

Oilo

t—ft•

3a

K>

Ka

3ON•

-sr•S

aS'o

K£•oa%o

a

9 9

*9

*

osKNo

Page 73: A Visual Investigation of the Appearance of Turbulence in

I l t t l so, uBasalts fo r Mumlw* Ho. 1

Point s out old# of t9§x • la s t ©bssrrsd s tr s s a lla s flow ooudltlouo

S ailas ofr o l s t , u .

Jf t .

Avar*gofa lae ltg rft./tO O .

y * io 5f t 2/» o a .

i ’ d i j l a s *«• f t l l i T d M ltf f t./M O . f t " 1

1.1*22 .0065 •7*1 .0979 .930 1180 .0468 5.170 33.6

1.1*00 .00*33 .720 .104 1.027 11*5 .0935 9.230 76.8.0*75 .940 1050 .05*5 6.180 51.5

1. 3*1 .00991 .666 .1016 1.027 1U 5 .082 2.070 80.0

1.360 .01166 .607 .112 .990 1275 .103 10,400 121.5.108 1.038 1170 .099 10,900 122.2.0*75 .9$* 10*0 .0794 8,250 96.4

1.325 .0146 .50* 4 0 6 1.004 1190 .125 12.490 1*7

1.320 .0150 .*195 .1265 1.003 1*20 .1292 12,620 189

1.295 .01708 .1*21* .1265 1.045 13«5 .139 13.360 228a o s 1.023 1190 .131 12.730 217.5

1.232 .0223 .250 .11*5 1.045 1274 .140 13.220 295.104 .97* 1200 .125 12,760 2*4.5.1205 1.092 1360 •13*5 13.5®J 302.1205 1.030 1320 .147 14,080 5 4

1.169 .0276 .0703 .1160 1.03 1295 .1342 13,000 359.114 1310 .139 14,199.108 1.01b 1200 .1351 13,280 366.5

1. 1*5 .0296 0 .0935 1.002 1050 .1 % 12.790 37*.0935 1.002 1050 .119 11,880 352.108 1.000 1210 .1328 13,260 392

Page 74: A Visual Investigation of the Appearance of Turbulence in

ttS&S vo. ?-»

ft# s ti lts fo r tiw fln s Vo. 1 P o in ts in sld o » f i r s t ofc#«rr#4 tn fb n lo n t flow co n d itio n s

H atltu of i l l

y r ^ - r

V *1

Avarag.T i l N l i f f t . / i M .

V s 105f t ‘ /» e e . ^ V ^ i )V »*

y

u . P a in t V elM ltjr f t . / « M . f t "1

.917 .00723 .707 .108 .990 1160 .089 8.800 78.9

.951 .01067 .601 .102 .990 1160 .090 8.900 9M

.973 .0125 .533 .1015 .935 1225 .llU 12,200 152.5

. 9** .0 l3 te .*•99 .1185 1.0>*5 1280 .102 10,500 if c

l.O lH .0159 .*•05 .1185 .978 1365 .13S 13.900 221

1.029 .01718 .358 .0975 .935 U 75 .119 12,690 a s

l.O l^ .0185 .308 .116.1185

1.03.990

12601350

.139

.13513.550I3.53O

251250.5

1.077 .02105 .2085 .12U5.108

. 9f f

.996l >»351225

. 1*#9

.12915,29012,1)00

319.5260.5

1.096 .02275 .1*195 .106 1.03 1160 .li(2 13,200 300.5

1.110 .0239 .1059 .1225.1285.l l6.1185

I .0 31.01

.972• * S

1811601360

.1U3

. l **7

.1**

.1^3

13.900iu,6ooi **.950lU*500

3323*93583*?

Page 75: A Visual Investigation of the Appearance of Turbulence in

«JittS s o . f - »

S m i t e t e r ta n g o s So. 1 Points outside of rM. » f i r s t observed turbulent flow send! t ions

S.dlU8 of »int* Is*

Hf t .

r - r ,

*2"T.

Averse*▼eleoityf t . / s e e .

V * i o 5f t* /* # * . y

« , P o in t V elocity f t . / o o c . fir1

l . t2 2 .0069 j n -------

i . to o . 008J3 .7» .110.0975

1.027. 9*10

12101170

.097

.0715 J ’pO79.563

1 . 3& .00991 .666 .106 1.02 1172 .081) 8.300 82. 1)

1.3*0 .01166 .607 .1189 . 9*3 1360 .109 11,080 129.5

.0915 . 9** 1090 .082 8,630 100.3

1.325 .011)6 .50* .112 1.003 1260 .132 13,000 195

1.320 .0150 . 1)95 .1305 1.003 1*70 .13* 13,200 19*

1.295 .01708 .1)21) .1305ail*1.0381.023

11)201255

. 1^9

.135ll),i)2013,220

21)6 .5226

1.232 .0223 .250 .1205.110.121)5.1225

1.03,97*

1.0021,030

1320127011)00131)0

.i>a

:!§.1505

13.92013,1)60l i t , 220 ll),620

511300315326

1.169 .0276 .0703 .1275.1185.111)

1.03.9&

1.016 1270

.1511

.1^3

.11)0

l l ),9201^,^5013,800

>412399321

1 .1^5 .0296 0 .0975.0975.110

1.0021.002

.97*

110011801270

.137

.123

.11)0

13,68012,28011),300

M03363^23

Page 76: A Visual Investigation of the Appearance of Turbulence in

o £ a>

o

o o

(y

w

w8

W

vn to <5

w 3*hi »i H

VO 3 o ♦ o

Oft % \j4 K CJV

& W $ VJI

O

<7>vn

vj

n

o ru «

O is V0

is Si

3vn

o

• •

o

o*-

* Q

3

£

VJI 3

3 *r

rt

* 2^ J:Z

tfS 3 -45?*

• •

• *

S3

3S

S’a

fI•

••

••

#iis

?*.**&

•§1

1

-i

r

o $© 3

3 VII

$ &*

*1

mj

$M* »-

4lO

pO

ftO

ft►

** 8O

ftV

tf

§8

*»* 8

h o

vx>

Oft

Oft V

O

• •

* •

ro1

+* o

Oft

VO

Oft

• 3

o\ 3 o

3

8

S> o VJI

■•

S o

ft S

&

«

s 13

fr-» §

VJ!

e

& 3 I

VJI

VJI

o §•

•©

o

• OH

8

18V

JI

—4 *

"«■“ 8

&

13

3

I U

!2

>

LAJ

M#

o

O

VJI

ss3

s

n

h 1

1

s

'i.-

iII

*

o ** i r :i

€/ €

♦ *f

i*

!

it

!M

A

o?

• • »N

ft I

M

W^

<3

* VJ

I0?

> tv>Of

t V

JI

£9

Page 77: A Visual Investigation of the Appearance of Turbulence in

TABUS KO. TI-B

Raaulta fo r Aumli» Vo* 2 Value* for f i r td oBoorrod turMLaat flow condition*

Hadlne a t F o la t, la .

yf t .

r - r_

*2-r»toreraceV elocityf t . /e e o .

V * io 5f*2/e e e .

*b Z“V Tm *

• V

U t Pwlftt V elocity f t./» e c * f t " 1

S t y

1.390 .00917 .79* .0820 .1(5 15*0

l .» 5 . 0179* .595 .0965 .886 1770 .0SB7 9.580 172

1.22 .0233* .*73 .093 .886 1710 .07*6 8 ,*20 19^.5

1.165 .0279 .370 .090 .880 1665 .0909 10,320 288

1.105 .03295 .258 .090 .875 1675 .096 10,980 362

1 . 0* .0383 .135 .0605 .835 1180

.9« .0*33 .0226 .0785 .865 1*80 .102 11,800 511

.97 .oWa .00

*■”*1

.<>€25

!0705

.8*5

• W

1205103012551280

.0775

.0807

.0926

9.0709.570

10,320

*00*22*55

.92 .0331 .108 .0625 .863 1175

.8 6 .02805 .2*3 .0870.0950

.875

.875l €201770

.0925

.10010,380 11,*20

296.5320

.78 .o a * .*22 .0655 .897 1190 .0833 9.280 198.5

Page 78: A Visual Investigation of the Appearance of Turbulence in

65

ta

s,e

JTH3r-i

JS,ffHt***VO

&♦

©p

C&

*>R*1

8mi•4

mmf«

H H

H

Ht-iH

V>to

10VO

u> o

8IW

vr\

scH

i ** • O*

*#►

C

HACM

CU

oVOtr©

CM

Hi*A

O ©

O

• •

;is8 •

1 sf i

H

H

•►

g

4» ^

a • «•

• a |

««1

3 : s

*

<» u1

.sd«4£

51

fr #stf\

o •i

• o

©

•0

*0

H

MM

,4*

•3-

ITS tfM

TVf£|&«H

• if o in

»|J

a ma

&H

r*

jp jp

&

&

©i**voH

• •

• •

m

• •

*

S81P

ai?

8

POS cm r^s

rijS £}

Page 79: A Visual Investigation of the Appearance of Turbulence in

TAKJ VO, TXX-n

I n tu its fo r Aa&ului Vo* 3

Points outoido *Bax,« Inst oboorrod B trtw a lla t f lo v condition*

Badiu* of Point* in*

y« .

*2"**

M N l | i

ft./***.

-7-'1* 105

f t 8/*#*.< V V \ „ «, Point

T *loeitjr ft./*** .

u /-jJ

f t "1

i.Hoo .00833 .822 .1525 . 9ta 2910 .0595 6.320 52.6

1.560 .01166 .765 .lW *.1135

.966

. 9^8268021>*5

.0725

.05507,5005,800 67.6

1.320 .015 .698 .1523.1601

•9M.9®

28803120

.118•139

12 ,i*3015,100

186.5226.5

1.262 .01962 .601 .1H>*5 .930 2790 .123** 13,280 260

1.192 .0257 .*83 . 9*»«.958

25002705

.110

.12111,60012,620

298325

1.110 .0325 . 3*6 .1275. i *&5 :JS

21*302630

.130

.15613,80016.120

1*1(9525

1 . 0!»5 .0379 .2365 .l lH . 9*a 2175 .139 1U.7S0 560

.96U .0^3 .0738 .0900.0985

.9*a

.SSI17a)2005

.119

.12712,600ll*,l*0Q

5*a619

.915 .01*88 .0185 .126.1215

. 95^

.97823702230

.165

.1*917.30015,200

gl*57*3

o

Page 80: A Visual Investigation of the Appearance of Turbulence in

tooolto for Aonalms Yo« 3 Potato inoldo r„ $ first ofeoorrod tor talent flow condition*

67

CM G"k

* •

’{ S

|J

S H

! I

8SS

Vl •

• •

* •

* •

m * * *

V0

CM

«M

f\

J*

Ol

VD

V

0V£> IfV

H

H

H

H

H

tt b £

Xtz

<S 5

(3

(3 fc

•» H

H

H

H

O

0 ► *4

• *

• •

*

8

5,

o

<b VO vo io«H

©

© ©

©■

« •

* •

CMA

N °

Pi< ftCM

ee

. °

»

g

£

&

sp

jpg

w v

Sv

En

Gs Co

m

k>* ry

9-4 r-t

rH

CM

*CM

CM

*§ i 1 It % t t t t Hr

0*

g

H>

<r»•

» «

*

1 &

?!

fi

l*•

si

g 1

1|

|

sswr

• H

H

© ©

H

O

O

©

H

H H

rlb A 4*

« •

* ♦

• •

• » #

• •

«£

c

*

yC

f

s

as

*n

»r

• •

. $

s.

°. °.

n>

&«0u*\

• •

o>u>orH

IPuso

M)•r-•

E*

tEi

S

v* «O «48

~3

5

<S £

* E S

IS

! n

• ♦

0 0

*

Page 81: A Visual Investigation of the Appearance of Turbulence in

V4M J *0< T1I-*

Results for Annul us Ho. 3 Points outsld# r _ • f i r s t observed turbulsnt flow conditionsBOX.

Radius of Point* in.

yf t .

Average Velocity f t./se c .

r 1 io 3f t /••« .

{®2"®l^Vf(j n , Point Velocity ft./ooc . f t"1 ¥

1.1(00 .00*33 ,822 .1605 . 9W 3000 .0626 6,600 55

1.3*0 .01166 .765 .1523 .966 2800 .077»* 8,010 93.1290 . 9<* 21150 .0595 6,290 73,

1.320 .015 .698 .16s •9W 3160 .11138 13,200 228.168 .920 321*0 .11(2 15 , 1(1(0 232

1.262 .01962 .601 .1525 .930 2900 .1312 ll(,100 277

1.192 .0257 M l .1366 . 9>(* 2565 .1150 12,11(0 312.1525 . 95* 2810 .128 13.300 3U2

1.110 .0365 .31*6 .13*5 •9& 2285 .11(7 15,600 507.1H55 .966 2685 .160 lb ,500 537

1.0U5 .0379 .2365 .1 3 5 . 9*1 2285 . 1>*7 15,600 591

. 98U .0U3 . 073* .0950 . 9la 1800 .122 12,960 If7.1072 .881 2160 .137 15.550 669

.915 .01*88 .0185 .1305 .95*1 2U25 . i p 17,800 S69.121(5 , 97« 2260 .161 l6,l*00 801

CNOo

Page 82: A Visual Investigation of the Appearance of Turbulence in

tical Average Reynold s Numbers I in Annulus Nal

al PointsNO. 15-OrFIGURE

O La9t Observed Streamlinie Flow

• First Oosurved Turbulenl Flow

°\>a

!3 08 2 3 1.20- m ax

RadLusLai RointT in

Page 83: A Visual Investigation of the Appearance of Turbulence in

O L ost Observed Sitreomlioej Flow

• F irs t Observed Turbulent Flow

2 0

R o d iu a _ o f Pointy u l_

Numbers ot Pointsticol Averope Reynold in Annulus No.2

FIGURE m Jfir_Cr.

Page 84: A Visual Investigation of the Appearance of Turbulence in

71

:

: i rlGU1 RE NO tiqal Pbints

A v q ra je Anhu

lo w s N u n

-irstT 3403

8 0 €>

L4 0 0

Rad us

Page 85: A Visual Investigation of the Appearance of Turbulence in

72

In F igu re No* 15# th e s e c r i t i c a l value*® fo r Anm lua ft0* 1 a rc

p resen ted* In t h i s f ig u re th e re i s no c le a r d i f f e r e n t ia t io n between

th e c r i t i e a l v a lu es fo r each point# t h a t i e th e flow became tu rb u -

l e n t th roughou t th e p o r t io n o f th e annulus s tu d ied a t approxim ately

the same v a lu e o f (Dg * There was some In d ic a tio n

t h a t th e minimum c r i t i c a l v a lu e was ob ta ined a t th e p o in t o f maxi-

tau Telocity# a v a lu e o f ll^O* The r^nge o f c r i t i c a l v a lu es o f

th e Reynolds Number fo r th e 70$ o f th e annulus w idth covered in

t h i s in v e s t ig a t io n was from ll^O to 1J50*

In F igu re No* 16# th e c r i t i e a l v a lu es a t v a rio u s p o s it io n s in

Arsaulua No* 2 a re presented* In t h i s s e c tio n th e minimum c r i t i c a l

Reynolds Number was observed approxim ately a t th e p o in t o f maximum

v e lo c ity * C r i t i c a l v a lu es in t h i s s e c tio n ranged from 14^0 to

1700 fo r th e co n te r y?% o f th e annulus in v e s tig a te d * Turbulence

was f i r s t observed a t th e p o in t o f maximum v e lo c ity and as th e

flew r a t e was increased# t h i s tu rb u le n ce spread toward th e w a lls

u n t i l th e flow a t p o in ts near th e w a lls became tu rb u len t*

The most thorough In v e s t ig a tio n was made o f Annulus No» 5

and th e r e s u l t s ob ta ined w ith t h i s se c tio n o re p resen ted in

F ig u re No* 17* These r e s u l t s in d ic a te d th a t th e ;ninlmum c r i t i c a l

v a lu e o f th e Reynolds Number d id not occur a t th e p o in t o f maximum

v e lo c ity # b u t occurred a t a p o in t approxim ately 0 .25 inch relieved

toward th e co re w all from th e p o in t o f oaxinttm ve lo c ity * Approx?*

ia a te ly of th e annulus w idth was covered in t h i s in v e s tig a tio n

and th e rang© o f th e c r i t i c a l Reynolds Numbers over th ic w idth was

Page 86: A Visual Investigation of the Appearance of Turbulence in

79

f3roa to 9900* The c r i t i c a l va lu es in d ic a te d on th e g la s s

w e ll wore o b ta in ed by tu rn in g th e dye tube so t h a t th e dye w a s

in je c te d d i r e c t ly on th e g la s s and th e flow was i nor eased u n t i l

s tre a m lin e flow no longer ex is ted* The p o s it io n o f th e observed

stream wee Indeterm inate# b u t i t was approxim ately a t th e

w ell*

V alues o f were ob ta ined fo r each p o in t by

assuming t h a t th e c r i t i c a l va lue lay halfway between th e va lu es

f a r th e l a s t observed s tre am lin e flow and th e f i r s t observed

tu rb u len t flew cond itions# and th e s e were th en p lo tte d a g a in s t

position In th e axxnuli* F igu res 16# 19# and 20 re su lte d * There

did n e t seem to be a very good c o r re la t io n in these* I f th e

Indicated curves were e x tra p o la te d to th e wall# t h i s should

give th e v a lu e o f C u / V J ^ j ^ a t which th e com plete se c tio n

would be In tu rb u le n t flew* A ctua lly th e re w il l always be a

la y e r on th e w all which does n o t move# u n le s s s l ip occurs# so

t h i s v a lu e w i l l have to apply to a p o in t a d i f f e r e n t i a l d is ta n c e

away from th e boundary* From th e p lo ts o f th e se c r i t i c a l v a lu es

a g a in s t th e d is ta n c e from a w all on re c ta n g u la r coordinates# i t

was found th a t th e v a lu es ob ta ined by e x tra p o la tio n o f th e curves

to y ® 0 were p o s i t iv e fo r Annuli 2 and 9# bu t t h i s value fo r

Anoulus no* 1 was negative* P lo ttin g o f th e c r i t i c a l va lues fo r

A nm lus Ko* 3 was t r i e d on rec tan g u lar# lo g arith m ic and semi-

lo g a rith m ic co o rd in a te systems# b u t in a l l systems th© values

e s ta b lis h e d a curve and e x tra p o la tio n o f th ese curves could no t

be done w ithou t in tro d u c in g erro r*

Page 87: A Visual Investigation of the Appearance of Turbulence in

74

VgluoSqf M/if at; Poirits Annulus No. I :

P o in ts Oiutside ' r (max

p o in t s In s l iM % 0J(

Page 88: A Visual Investigation of the Appearance of Turbulence in

75

EKUBE MO. LSi (irliicc I PointsAnnuls

10,00 0

4>_ _ .P o ih K Qwt£ixLe_ I max—# P o in t s ' lnsiideN rmax

Page 89: A Visual Investigation of the Appearance of Turbulence in

76

FIGURE NQ Vqlufes o f in :Annulus No. 3

10,000

O Points • P o in ts

TSS

Page 90: A Visual Investigation of the Appearance of Turbulence in

► ^ i -r + ~ pII I , I !

+ n rrtt“- i m ;

& «m m ties i of

i~; u i i t ; :I 4 4-+ -* !■

f- H • f-

W

I t+i H -

**--4 -*—4—t- «~f *

k i m i i t i s

, | |_pi4

m & m• lArinO lus A . Annuiui

— IrCfcOOO rvnul u s

IO:OQG

5 ;Q0 0

1

Page 91: A Visual Investigation of the Appearance of Turbulence in

FIGURE N 0 .22 - Critical Values of 4^ of Pointsin Annuli I S 3

Page 92: A Visual Investigation of the Appearance of Turbulence in

19

To o o rre c t fo r p o tltlo A i th e c r i t i c a l r a t io s o f u /y wero

n w lt ip l ie d by y# converting th e s e v a lu es in to c r i t i c a l va lues

o f a Reynolds Number* in t h i a ease a p o in t Reynolds Number*

L ogarithm ic p lo ta ware made o f th e se p o in t c r i t i c a l Reynolds

a g a in e t th e d ia ta n e e from a w all and a re shown in

25* 24 and 25* R e su lts o f th e se p lo ts showed th a t p o in t

o r i t i e a l Reynolds Numbers could be expressed as fu n c tio n s o f

th e d is ta n c e from a boundary a s i

fo r Annulus No* 1* (yu/V )e r^ # = <59#000 y**^5 ( 51)

f o r A m ilu s No* 2, ( ^ w V ^ e r i t £ 15*710 y 1*12 (52)

aa4 fop Anmlaa So. J , (y w /V ) e r l t = 57.700 y 1* ^ (5 5 )

The c o n s ta n ts in th e se equations were ob tained by th e method o f

l e a s t squares* At f i r s t se p a ra te equa tions were determ ined fo r

th e p o in ts In th e se c tio n which lay between th e p o in t o f maximum

v e lo c ity and th e g la s s w all and fo r th e p o in ts which lay between

th e p o in t o f maximum v e lo c ity and th e so re wall* bu t In S ec tions

1 and 5» i t was found th a t th e se equations were very n early th e

same* Therefore* a l l o f th e va lues were used to o b ta in th e b e s t

l i n e through th e values*

These f in d in g s a re s ig n i f ic a n t In th a t they may be used to

determ ine th e th io k n esc o f th e lam inar lay e r fo r oond itions in

which t h i s la y e r i s aliaoet d i f f e r e n t i a l in th ickness* I f th e se

equations can be app lied to th e flow cond itions in which t h i s

d i f f e r e n t i a l th ic k n e ss i s p resen t, th en th e th ick n ess can be

c a lc u la te d i f th e p ressu re drop due to f r i c t io n i s known* This

Page 93: A Visual Investigation of the Appearance of Turbulence in

80

FIGURE NO. 2 3 ~ Critical Point Reynolds Number as a Functionof Position in Annulus No.I

3 4 5 8 7 8 3 'I©y , f t .

Page 94: A Visual Investigation of the Appearance of Turbulence in

81FIGURE NO. 2 4 “ Critical Point Reynolds Number as a Function

of Position in Annulus No.2

Page 95: A Visual Investigation of the Appearance of Turbulence in

FIGURE NO. 25-Critical Point Reynolds Number as a Functionof Position in Annulus No.3

Page 96: A Visual Investigation of the Appearance of Turbulence in

85

may be i l lu s tr a te d as fellows*

l a th is laminar lay e r, i t la assumed th a t the velocity a t

a point la given by u » y(dn/dy)y g For the genera l ease# th e o r i t l e a l value o f the point Reynolds Kumber w ill be g iven

( y « / y * A y n ( 54)

te b a ti tu tin g and sim plifying,

ya-n s A ^ / ( i n / i , )y • 0 ( 59)

Aa long as a lan inar layer ex la ta , the shear s tre ss a t the outer

v a i l i s given aa,

■a - rJ )^ ( W J r L * A p (" z~ y ^ 2 L Ra (5«)

Solving fo r (4u/djr)gj ,

(du/dy) _ s ^(57)

S u b s t itu t io n o f E quation 57 in Equation 555 g iv e s ,

_2~n _ g ' V R2“ 4 r e (

s /) /c f ig y

A | - E ( V “ ? ) ( 56)

Bquetion (58} w il l epply only i f Equation® ( 51) * (55 ) apply to

th e s e a t ions when th e flow reechos th e condition® in which th e

la y e r in s tre am lin e flow i s d i f f e r e n t i a l in th idcnoss*

Rouse* s s t a b i l i t y param eter, , was evaluated fo r th e

c r i t i e a l flow c o n d itio n s in Annulus ^o* 1 and th ese r e s u l t s a re

Page 97: A Visual Investigation of the Appearance of Turbulence in

84

p resen ted I n F igure No* 26* In th ie f ig u re th e value o f jL was

p lo tte d a g a in s t p o s i t io n in th e pipe expressed as d is ta n c e from

a w all* The c r i t i c a l v a lu e o f t h i s param eter was not co n stan t

i n a s e c t io n and th e h ig h e s t va lues o f i t were not ob tained a t

th e p o s it io n s in which tu rb u len ce was f i r s t d e te s ted ) th e re fo re ,

i t s u se as a s t a b i l i t y param eter does no t seem appropria te* I t

was n o t p o s s ib le to e v a lu a te t h i s param eter a t e i th e r th e p o in t

o f "tffyiisum v e lo c ity o r a t th e w a lls , s in ce th e v a lu e a t both o f

th e s e p o in ts was n e o e ssa r ily z e ro . The maximum value o f ^ was

found to occur a t approxim ately th e same p o in t a s was p red ic ted

by th e u se o f th e s tream lin e flow re la tio n sh ip s* d l l in a l l ,

i s n o t considered a p p ro p ria te fo r u se in t h i s app lloa tion*

Page 98: A Visual Investigation of the Appearance of Turbulence in

85

d \jaliie$ cf X of Poir in Anqulps No.f j ]

FIGURElNO. |26 " |Cifiti

4 0 0

1----50]

Page 99: A Visual Investigation of the Appearance of Turbulence in

OKAiTKR V

CONCLUSIONS k m BKOOMI SJSiliATIOi S

Based on t h i s work* th e fo llow ing conclusions worn drawn*

(1 ) fho t r a n s i t i o n from s tre am lin e to tu rb u le n t flow In

on a n n ilu i occurred In euoh a manner th a t p o rt o f th e f lu id

rem ained in e t r e a a l ln e m otion w hile th e rem ainder o f th e f lu id

became tu rb u le n t* Thie tu rb u len ce o r ig in a te d a t th e p o in t o f

maxims* v e lo c ity f o r two o f th e e ee tlo n e tooted# b u t fo r

Annulus No* 5* i t o r ig in a te d a t a p o in t removed approxim ately

0*25 in ch toward th e eo re from th e p o in t o f maximum ve lo c ity *

The amount o f f lu id which remain* s tre am lin e was decreased as

th e flew r a t e was ino reased and f i n a l ly a flow r a t e was reached

a t which th e flow i n th e e n t i r e section# except fo r a very em ail

amount near th e w alls# was tu rb u len t*

( 2 ) T h is t r a n s i t i o n f i r s t m anifested i t s e l f by im parting

a wavy m otion to th e f lu id * At f i r s t t h i s motion was a slow

s im o u e motion# bu t i t s wave len g th decreased as th e flow r a t e

was increased u n t i l a fu r th e r in c re a se in flow r a t e r e s u l te d in

irregu l® 1* w iggles and tu rb u le n t bu rsts*

(5 ) The minimum c r i t i c a l Reynold* Number# (Dg - D1 ) Vavfi>»

v a rie d w ith th e width o f th e annulus# In t h i s InveeS ga tiO tt I t

was found th a t t h i s va lue wae lower fo r th e wider an rn li*

Table V III p re se n ts a summary o f th e se findings*

66

Page 100: A Visual Investigation of the Appearance of Turbulence in

87

TABUS n x I

Summary o f C r i t i c a l Reynold* Numbera

AnzulueNumber

V » iin ch es

Minimum O r i t lc a l Reynolde Number

Range o f O r i t le a l Reynolds Numbers

% o f Width o f Annulus S tudied

1 1. 55* 1150 U 50-1250 70

2 1 .955 1450 1450-1700 55

5 2.156 1*50 1450-5500 85

The le n g th o f th e t r a n s i t i o n reg io n was eeen to vary w ith th e w idth

o f th e ammlus* also* The wider annulus had th e la rg e r range o f

Reynolds lumbers b e fo re a l l o f th e flew in th e s e c tio n was tu rb u len t*

(A) The c r i t i c a l v a lu e o f th e p o in t Reynolds Number* y u /-!^ *

was found to vary w ith p o s it io n in a g iven annulue and t h i s v a r ia ­

t io n was expressed as*

fo r Anmilus No* 1 ^ ^ ^ ^ e r i t ~

fo r Annulus No* 2 (y u /V ) oy^ ~ 15# 710

fo r Annulus No* 5 ^ T ^ ^ J e r i t S 57*7^0

The s ig n if io a n e e o f th e se f in d in g s l i e s in t h e i r a p p lic a tio n

to o b ta in th e th ic k n e ss o f th e lam inar "file** a t high r a te s o f

flow in th e s e c tio n s . I t w ill be necessary to o b ta in p re ssu re

drop measurements however* before th e s e th ick n esses can be oal—

culated*

Page 101: A Visual Investigation of the Appearance of Turbulence in

67

TABLE V III

^amraary o f C r i t i c a l Reynolds Numbers

AnnulusNumber

V ® iinches

Minimum Oritical Reynolds Humber

Range of C ritical Reynolds Numbers

% of Width of Annulus Studied

1 1. 55* 1150 1150-1550 70

2 1 .955 1*50 1*50-1700 55

5 2*156 1^50 1*50-5300 85

The le n g th o f th e t r a n e i t io n reg io n was seen to vary w ith th e w idth

o f th e e n m lu i i a lso* The wider annulus had th e la rg e r range o f

Reynolds lumbers b e fo re a l l o f th e flow in th e aeo tio n was tu rb u len t*

(* ) The c r i t i c a l v a lu e o f th e p o in t Reynolds Number, yWV^ $

vac fbund to vary w ith p o s it io n in a g iven annulue and t h i s v a r ia ­

t io n was expressed a s ,

fo r Annulus No# 1 ^ ^ ^ ^ c r l t * JT*#^

fo r Anmlue No# 2 ^ o r i i * y l* l2

fo r Annulus No# 3 ^ jn a /^ ^ c r i t s 57#7G°

The e ig n if ie a n c e o f th e se f in d in g s l i e s in t h e i r a p p lic a tio n

to o b ta in th e th ic k n e ss o f th e lam inar "film* a t h igh r a te s o f

flow in th e s e c t io n s . I t w il l be necessary to o b ta in p re ssu re

drop measurements however, befo re th e se th ick n esses can be Cal­

culated#

Page 102: A Visual Investigation of the Appearance of Turbulence in

88

( 5 ) T his method o f v is u a l o b se rv a tio n has many advantages

ever e th e r methods fo r determ ining c r i t i c a l flow co n d itio n s In

any ty p e o f flow emotion* I t p re se n ts th e only d i r e c t method

o f d e te rmi ni ng th e amount o f a f lu id stream which e x is ts in

tu rb u le n t flow* The method o f d e te rm ln ir^ v e lo c i t i e s l a e n tire *

ly s u i ta b le as long as th e f lu id rem ains I n s tre am lin e flow* but

can only be used to e b ta la maximum v e lo c i t i e s fo r th e p o rtio n

e f th e f lu id whieh i s i n tu rb u le n t flow*

(6 ) I t was concluded t h a t th e s t a b i l i t y param eter p resen ted

by House was n o t s u i ta b le to determ ine th e p o s it io n a t which

tu rb u le n c e would f i r s t appear in a section*

I t i s recommended t h a t fu r th e r study be made e f t h i s problem*

w ith p a r t ic u la r eiaphaela on th e e f f e c t e f roughness on th e c r i t i c a l

flow c o n d itio n s . I f a s u i ta b le sderoaanem eter were constructed*

i t would be p o s s ib le to o b ta in th e p re ssu re drop along w ith th e

v is u a l d e te rm in a tio n s and thus* more comprehensive d a ta would be

o b ta in e d . T his would a id In comparison o f th e w all shearing

s t r e s s e s as c a lc u la te d from th e v e lo c ity g ra d ie n ts and as ob ta ined

from th e p re s su re drop m easurements.

I f i t i s possib le* i t would be in te r e s t in g to arrange th e

system fo r th e use o f a more v iscous f lu id than w ater. This could

be done by i n s t a l l a t i o n o f a pump to r e tu rn th e f lu id to th e head

tsxdc. Blnee th e re a re now a v a ila b le commercial products which

can be d isso lv ed In sm all q u a n t i t ie s in water to in c re ase th e

v is c o s i ty g re a t ly , t h i s should be p o s s ib le .

Page 103: A Visual Investigation of the Appearance of Turbulence in

APPENDIX I

BIBLIOGRAPHY

R eferenceNumber

1 A therton , D* H*f F lu id Flow in P ipes o f AnnularCross S ec tio n , T ran sac tio n s o f th e Amor loan 8«ol« iy « f M>ch»nleal Engln<>«rBT*xtV III.1*5-162 U 92ST.

2 B ardsley , C larence Edward, H is to r ic a l Resume o f th eDevelopment o f th e Science o f ^ y d rau liee , Oklahoma A H College* P i v is io n o f Engineer" ing P u b lic a tio n s , P u b lica tio n Ho* 59* IX* l A p r i l l ? ^ ) *

5 Becker, E ra s t , Stromungsrorgange in ringform lgenA palten ( la b y rin th d lo h tu n g en ), S e i te c h r l f t dee Y orelnee deuteoher Ingonlaura* £ l ,11 l y i i h i (1907)*

4 B lae iue , H» * Phyalkallaohe Z e ita c h rif t* XXI, 1175 ( 1911)<

5 B inn ie , A. M * , A D ouble-R efractive Method o f DeterminingTurbulence in L iqu id s, Proceedings o f ifo P hysica l Society ( London)* Lvil* wO^HSz

6 B innie, A* M«, and Bowen, E* J* , A Method fo r MakingS tream lines Momentarily V is ib le , Proceedings o f th e Cambridge P h ilo soph ica l Society*XXXVII, 4 5^457 (lp jfl)*

7 Bond, W. N ., T urbulen t Flow through P ip es, Proceedingeo f th e Physical Society (London), XLIII-1S3- ? ? (1951).

8 Brown, George G*, and A sso c ia te s , U nit O perations,John Wiley and Sons, Ino*, Now York, 19?0 *Pp* x i i / 611*

9 C aldw ell, J* , Jou rna l o f th e Royal Technical C ollege( G lasgow ),~ I I , 265 ( 1950)•

10 C arpen ter, F* G*, Colburn, A* P*, Schoenborn, E. M«,and W urster, A*, Heet T ransfer and th eF r ic t io n o f Water in an Annular Spaoe, T ran sac tio n s o f th e American I n s t i tu t e of Chemical 'E ngineers, XLII, 1$5“ 1®7 ( 1940/7

89

Page 104: A Visual Investigation of the Appearance of Turbulence in

90

Refer©*©#^Washer

11

12

1?

14

15

16

1?

16

19

20

Cornish# R. j»# R trbuU nt Flow through Fine Eccentric

* s o a a u m w R M i wDelssler# Robert <$«# Analytical and Experimental

Investigation of Adiabatic Turbulent Flowin hwtk jgaugaU.ableac asmiuss

Fage# R* and Townend# H# 0* H## An Examination of Turbulent Flow with an Ullra^Mlefoeoope#

Soeletar at £ojgefi,

Fea*el# Thomoo A«t Visual Observation©f C ritical Reynold© Somber* in Shapes other than Oirouler, M.8.Tb»»l». LwrtgUn* Stoti OntT»r«lty, l w *

Gibson# A. H*# The Breakdown of Streamline Motion a t the Higher C rltloal Velocity in Pipes of Circular Croce Section# Philosophicals£ Ig M te'OT»

Rllnkenberg# A. and Mbey# H* H«» Dlmenslonles* Groups In Fluid Friction# Heat and Material Tramfwr, OhwAoal E nglaw lm Pr.SS.ttta*3 JY , 17- j i t ( 19W ).

Knudsen# Jernes G.# Heat Transfer# Friction and Velocity Gradients in Anmll Containing Plain and f lu Tuba** Pht-Bt tha»l»* »nl<ror«ity of Michigan# 1949*

Knud sen# J* G.# and Kate# Donald L.# Heat Transfer and Pressure Drop In Annul!# Chemical Engineering Progress# XLVI# tyQ^^dt}, (1950) •

Kratz# A. p## Maclntir©# H* J.# and Gould# R* Flew ©f Liquids In Pipes of Circular and Annular Croee-Sectiona# University of I llin o is#Engineeri m Experiment S ta tio n Bulletin8oT 222 ( 193l 7 o

Page 105: A Visual Investigation of the Appearance of Turbulence in

91

R®f®r dumber

*»«**# Rwaw, Hydrodynamics, Sixth Edition, Cambridge University Prose, London, wr ^ 7Jft (1932)*

28 Lea, F# 0* and Tadroe, A* 0*, Flow o f Water through ftCircular Tub* with ft Control Cor® and through Rectangular Tubes, Philosophical Mftgasjn® (7)o XI#

25 Lonodal®, Thoaftl# Th® Flow of Water 1ft th® AnnularSpeoe between two Coaxial Cylindrical5 K fc JW ? ‘ SSl m $*&*£ <*)• XLVI,

24 Maurer, Edvard# Dio fcrltisch® Roynoldssehe Zahl furKrelarefere naoh dem Entropiepr insip,Zoltoohrlft fu r Physlk, o x m , 5^2- J2 ( 19*9 )*

25 Millar, Benjamin, 9ho Lead nftr~Film Hypothesis, Trane*ftg^loag &g J&2 jmgrleag ^olgtg o£ jfega&a&2&£B t i s s m t t h m i W J l p W h

26 Palmer, Louie Qftlvin, M« J g BSSSli MaUI&gS .SfeSlgPmftvorolty, 1939*

27 Pi«roy# H* A, Y*, Hooper# M* ft*, and dinar, H* F«,Viscous Flow through Pipes w ith Ceres,Philosophical dftgaaino and Journal of MfiAmse* i? , 7th s«rl®«# 769-7®3Tl933)*

28 RothfUe, Robert R«, V e loc ity D is tr ib u tio n and F lu idF r ic t io n In C oncentric Annul!, fte* D* th e C arnegie I n o t 1 tu t® o f Technology, JUn® ly

29 R othfue, Robert R*, Menrad, 0 . C«, and B®n®oal, V* E*,V e lo c ity D is tr ib u tio n and F lu id F r ic t io n In Smooth C oncentric Annul1,and E ngineering Chanda t r y , X t l l , a jjll*

Reynold#, Osborn®, An Experimental In v e s tig a tio n o f th e Circumatancee Which Determine Whether th e Motion o f Water Shell Be D irec t o r S inuous, and o f th e Law o f R esistance in P a r a l le l Channels, ihl.loftOPhl.fial pranftaotio n j o f th e Royal Society o f London, CLXHY, ( I f

Page 106: A Visual Investigation of the Appearance of Turbulence in

92

H eferea&ee N eater

Jk Route, Hunter, glementary Mechanics o f Fluids* JohnWiley and Sen#, Wow fo rk , W T jT? / x li*

32 B o h lio h tin g , R«* Boundary ta y a r Theory*Adeleery Oottffldtioo foi n ie a l

Of Apr!

35 SahMokanborg, S ., Z e lta a h r in t e m w i f t i Mrfchamatlksad aaahw&k, h i . a ^ ir d g i; ! .

3* S taatoa* T»S*» and Pannell* J . P ., S im ila r ity o f MotionIn R e la tio n o f th e Surfaeo P r lo t io n o f P lu id o t FhU oeophleal T ran aae tlo n t o f th e Royal Sooloty o f hondotu A CiCXIV* 1 ^ *

55 you Karaan, Th+, Turbulence and Skin Fr lo t io n , Jou rnalo f A eronau tica l Splonoo, I# 1-20 ( lp jS K

56 tfleg&nd* J* H« and Baker* S . M*, T ransfe r Preeeeeeain Annul!* T ranaaotlona o f th e AmericanIn a tita te o f 'p fg & a a l ' f x m i l *‘j & J j M C jP b T T ^

37 Winkal, S ., ZattMfcrlft f ^ angwndte K>tfeaa»t.ife £*&Moohanlk, I I I* 2pl

56 Zerban* Alexander H*, Fh» D* Theolt» U n iv e rs ity o j

Page 107: A Visual Investigation of the Appearance of Turbulence in

APPENDIX I I

NOMENCLATURE

Sy®hol D e fin itio n Dimension*

A C onstent

C C onstant —-

D Diameter o f Pipe L

f F r ic t io n f a c to r ——

g G ra v ita tio n a l constan t L/T^

C Maoe flow r a t e M/LT^

H V eloc ity head, V^/gg L

J T ranefor f a c to r

L Length, p a r a l le l to flow L

1 Mixing le n g th L

r Radius o f p o in t, v a r ia b le L

Vaax Radius o f p o in t o f maximum L▼ eloeity

R Radius o f w a ll, c o n stan t L

R^ H ydraulic ra d iu s L

u P o in t T e lo c ity L/T

V V e lo c ity , u su a lly average L/T

w Weight r a t e o f flow M/T

y D istance from a boundary L

F r ic t io n lo s s per fo o t o f p ipe L/LL

95

Page 108: A Visual Investigation of the Appearance of Turbulence in

94

Symbol D e f in itio n Dimension!

A pL

P ressu re l e s s per fo o t o f p ipe f/\?

P D ensity o f f lu id m/ i ?

/* A bsolute v is so c i ty o f f lu id m/ lt

V Kinem atic v is c o s i ty o f f lu id Ls/T

n Sddy v is c o s i ty M/LT

'T Shear S tre s s M/LS

S ubscrip t*

1 Refer* to eore w all

2 R efers to ja c k e t w all

9 o r wbjl* maximum value

avg* average value

o r i t* c r i t i c a l va lue

Page 109: A Visual Investigation of the Appearance of Turbulence in

APPENDIX I I I

Bey to Colson Barbers in tab les of Beta

Colson ItemM i r

1 Badius o f o b se rv a tio n p o in t . Inches fro o c e n te r­l i n e of

2 T e lo o ity a t p o in t of observation* f t . / s e c .

3 Average v e lo c ity in th e section* f t . / s e c .

h Bemarks* flev descriptionSL — streataHne to * b .- tnrbalent

5 Beynolds Vhaber* based on average v e lo c ity andV ° i

6 B a tlo o f p o in t v e lo c ity to average v e lo c ity

95

Page 110: A Visual Investigation of the Appearance of Turbulence in

96

112—

0.917

0.951

0.973

0 .9 * *

1 .0 1 *

1 .089

l .o *(5

1 .0*5

1.077

DASA

m m a a no. 1

1 f t ............0 ? ................ B*___________ <1> <s>.0872.0975. lo t

.07*17 .0878

.o n o .0975— .102

.0839

.0973

.106

.107

.11*

A.0895-0955.1015

.0781 .0995

.09** .110 .1185

.125 .110

.198 .1185

.10*0 .0

.112 .0912

.11** .0975

.113 .0975

.1282 .10*1

.1332 .11*5

.135 .1185

.1153 .108

.102 .112

.130 .11*

.139 .11®

.098 .079

.100 .023

.103 .0895

.112 .0955

.119 .102

.1 0 .10$

.1*78 .1185

.1*9 .12*5

SISID iffusing

97211101192

.682

.832

SI91D iffusing

9871U01138

.868

.8*2

SI8181810 •IttUBtt* D iffusing

1080U H1230

I .0681.1151.119

1,12

8181D iffusing

106211901283

.786

.858tm

SIfus%«

12$01370

1.115i .lw

SISISIfurb*

8*8102*1100H75

1,2221.221.2291.222

8L» slxmous91SITurb.

11081180127513*5

l.lS1.831.181.1*

SLSL, sinuous 91Turb.

1180123$12511277

1.071.1**1.1*1.198

11 is

ii

877917

1000106211**116013701*35

1.2*1.20*I . I 92X*XB1.1661.207 1 .2*2 1.196

Page 111: A Visual Investigation of the Appearance of Turbulence in

nretc*fa*

Xt*®J8*sir

*E

If

*6rm*MT’fit*

gt2i *oto*QllX ISS60t 16

Lxl isfixxx IS010T IE186 ISBSfi ISOfrOT kiothtsjfiOI IS&16 IS

gfifl •<W«4slsx is sfixx teSett is££ot isOtrti ’V*1*©S£t stiomzs *»jglist ISjjtti vasrm%$

•**»*ISIS

•noimii *is

SfifX ‘WAX

SgX mwubx* •'Btt «n»nafB *TO

*xxx IS

Ol£l *<l-roi09TT •%***88 XX *«X» to* *B890T , *<18OOOT „ ‘IS1X6 •cumsx* ‘IB 118 IB

am *«nuSfitX <|»tbox isI96 is

oaor££ox*£16o*ixx*

(wot*fi£ox* 516o*fi£6o*Slso*£66o*£180*

ISO*

9x1*oxr

8801*£16o*£680’£881*fiosx* 2IT*

901*

tor£8X1*

SXX*8QX*

fiairfisxx*80X* Off

£l£o* SBX*

fisxx*9WSOX’

fifito*

£80*do*aox*sox*

£16o*£180*

w

6£x*«X*szx*6£x*f£x*«x*£sx*6ox*£sx*nx*£xx*

s?*£x*

zfixx*Hl6o*

lux*tox*

»r££sx*

&?fiifx*

9*X*

Kfx*

ofix* 6*r

K*XX*TTt*001*

*fex*S*xx*nsxx*2T0I*

Oil* I

OtX*I

Oil* I

OXX*X

©XI* I

9$o*l

Uo*x

TtT ITT1ST

{•proj)) x ‘on gtnxturav

Z 6

Page 112: A Visual Investigation of the Appearance of Turbulence in

96

Dnt*

Annulu* Vo. l (Cont)

Cl) . ( * i - r (3) .....< H L ____ (5)

1.1*9 .100-15?.121.117.112

.on

.0975

!ov$o

9 1*urV.sinuous31SL

86*110910501000950

1.300l .*051.371.311.317

1.1*5 .1*3.119.1 1 2 *• 1 0 9

.0973

.0935

.OS95

.0250

Ttu*b.SinuousSinuousSL

110010901000930

1.2621.2721.2551.28

1.1*5 0162

I S

.0975

.108

.11850122.0925OO38OlO

SLSLTurli.SLSLSlttBSUSTor**.

1099121013S01*7511*5119*1272

1 .19*1.231.2*1.2151.2*1.291.272

1.169 J .265.131*.1369a * 3• »

.09750050 .11* 0205 O l* 0183

SLSinuousSinuousTurL.SinuousTurb.

109012001300138013101355

I ' f f l1.1981.1881.881.205

1.169 .12*2.15*

.108016

SLturV .

11801275

1.2*181.388

1.169SP*

.102O l*

SinuousDiffusing

11251268

1.2521.229

1.232 .115.125•132

.0975

.10*

.110

SL3LTur*.

113012001260

1.181.2011.20

1.232 •1233.119.125.130.1365.1*3

.0915

.09750035.110.1205.12*5

SLSLSinuousSinuousSinuousfur* .

101511001170122513501*10

1.351.221.211.181.131.18

1.232 .125.139.1%

.1016

.112

.1205

.1225

SLSLSLTurb.

11221196129013*0

1.231.2U1.22

Page 113: A Visual Investigation of the Appearance of Turbulence in

99

Attnnlut Ho, 1 (Coat*)

XU___________ & __________» > <*>_____________ S H

1.232 .1319 .108 81 1165.1*0 .1185 s i B t o a 1260.1*1 .1205 Turb, 13*0

l.*9 5 .1309 .108 91* 1190.135 .11* f a rS . 1260

1.295 .120* .108 81* 1170.137 .116 SL 12*0.139 .1825 SL 1320.139 .1265 Sinuott* 1370

1*28.1*9 .1305 Turb.

1.320 .108 .1205 SlTOOttt X325.129 .1265 SiUEflWIMI 1S00.13* .1305 Turb. XH55

1.325 .125 ao6 SL 1130—— .118 D iffu sin g 1260

1.360 .0975•0926

.0875 SL 950

.0975 SL xoSo.099 .108 Sindou* 117X

I .360 .1x1 .11* SL 1190.0965 .0975 SL 1110.09* .108 Sinuout 1225.103 .1180 Slnuoxui X275

.1185 Ixa*. 136a

1.381 .0*2 .0915 SL 1025•062 .1016 SL 1130.08* a 06 D i«turb«4 1180

i.*oo .0*35 .o n SL 920.0585 .0875 SL logo.0715 .0975 D iffua ing 11&5

1 . 1(00 .0826 .096 SL 1060.08*7 .10* SL 1150

.110

.11*DiffusingTurb,

12201270

1.1)22 .01)0 .060 SL 730.01(03 .077 SL 930.oU6s .0975 SL 1170------ .108 T u rk u 129s

Lii1,2851.1881,178

i . a1.181}

1,1191.181.1351.101 .1*

9.81(81.081.0851.18

l» o6.951.917

.976

.990

.907

.919

.73*

.861

.819

.667

.522M

Page 114: A Visual Investigation of the Appearance of Turbulence in

9t9’Sol*

i\r-91"

<191' i\i' L£V£69*OOi*ooi*T89*Mi*969*o»l'pi'pi'ki'269*szr00i* £01' £zl'Siprd’ BOi*9ti*

SO S6g'ini’869’igl*ii*

Sni;

3£i9i4 S9I’909' T»*£SZ’WMB*sli'

*X*A **»«

£101 ifizi 0021 o£u oi£t098TS&jXoi£t 09U tin it 2901OOOTZT6Ll9££60001OfiOToon0921Oi£x09TInniT8901OOOTZx6Us£660001GfiOXooxxnpmi Sin090Xsn£098T88ITofisx 96TX 88 TX 898T S&TI 89£T ttiST n88T80XTOi£Xonei8iTT

•9X6*8*H*BU2S

A Too x*a wmtjwm *1 ATMt*i go tftti

MW|«PXO«A!»h

•nxnctay

00 T

Page 115: A Visual Investigation of the Appearance of Turbulence in

1D1

Annul us No. 1

ftatle of &***&«• Tolocitgr to Umxissm Tolooltgr

ftopaoldo f?flt M »Max. v o l .l o i t a r

u o o n t e 1825

« .732i055 .W

135®1275112511921272103311251192

.677

.70U

.690

•7701190 *7921 2® .79®1180 .75®

331277 .59711*> -7351237 *77|130013*3 **?g1180 *75?1279 *7®3S 3 -7W1260 .79i3 « o - a1325 *Iz5

1® .705i S - g1210 .739

.71

.73** • 7 5 •73^ .731 .709 .75 .735

1272 -7581352 • £ *

993 'S f9xi 2 -b3

967 .7351081 .7891152 *JM51216 *701

Page 116: A Visual Investigation of the Appearance of Turbulence in

n£2*ooo’t898* Xset*83X*X08* Xnfe*891* T8£i*xm*281*1520* X1*08*960*tUXO'Xnra*&6*856*

<»■»** —o6s*i$V288*828*9»t*86*X86*092’6£0*t886*£58*39X*Xfino*x606*8fe*XXXX* X628*02 *Ts£x*x*6t*8X8* X2x*xiie6*9B*X8£8*X652*2tO*X568*1882*qgo'tfe£*X<W5X6*09|*XGQ3?#£9£*0

X&1*0SS£*X

o?£*on*x

nsrnfir9*6*000*1ttt6*016*288**89*209**08*288*206*s£6*966*966*966*^26**ts6*W«3*£fir1ST*

80*

2To£**: 88*2fOS*

££6*28*

£60*02*1jS*12*o£*of*o£***:

£S£x*rax*izr

fe*xnft*xS2x*xfen66o*xCfiO'T000*1S»«6*o226*0£26*o000"T feO’I 620*I OTt*Ifex’tftlT'X52x*xno8‘i

jg:s£*t

’XWftd

•&ur•SAT,

088 • *4V#H8

X •©$ txox^0«s u| ciioxiTMU^fita X*T«>T«A

SOI

Page 117: A Visual Investigation of the Appearance of Turbulence in

lo j

Ml.0 .97

0 .97

0 .97

0 .9 7

0.91

o.7«

1 .5 9

1 .2*5

1.22

1.165

DATA

AHHQLOS SO. 2

SSL ______ (M ( 5) (6)

.0445 at, *50 1.199,0 l« 5 s i 93* 1.200.051*0 31 1030 1.31*1*.0590 tfurb. burs in 1130 1 . 36*

.OHfiO SL *60 1 .36

.0510 5limou« 937 I .47.ojjto $ w b # 1015 l.W*

.0605 SL 1131* 1.293

.0825 * w b . 1162 1.295

.0605 31 1102 1.312

.067 SL 1221* 1.21*3

.0703 t u r b . 127* 1.315

.0525 3L 964 1.205

.0575 SI 1070 1.21

. 0S05 SI 113* 1 . 2*3

.1111 Turb. 1230

.0805 SL, 113* 1.312

.0655 Turb. 1230 1.27

.0625 SL 1165 0.735

.067 SI 1260 .779

.0705 31 1320 .*07

. 07U5 31 13*5 .82*

.07*5 SI 1460 .751

.0220 Tarb. 1530

.075 SI 13*0 .£62

. 0*1*0 SI 1510 .739

.090 SL 161*0 .7*3

.0965 Turb. 1770 .*77

.067 SI 1230 .927

.074 31 13IW .*79

.07*5 SI 1439 .951

. 0*1*0 SI 1530 .*5

. 0*85 SI 1620 1.025

.093 Ttatb . 1715 .804

.0965 T arb. 1770 .927

.0605 31 1110 1 . 211*

.0655 3L 1205 1.20

.0705 SI 12*5 1 . 11*1*

.071*0 31 13110 1.073

.0532

.0595

.0725

.0*06

.Ofe5

.07^7

.0775

•075«.0*07

•079U. 0*35.0928

.0777

.079*•0*33

.01*59

.05a

•05*9

!o?05. 0*1*7

.0625

.065

.0747

.0715

.0905

.071*6

.O09U

-0735*0788.0806-0795

Page 118: A Visual Investigation of the Appearance of Turbulence in

- J i l

1 .1 (9

1 .0 *

0 .9*

0 .9 *

o . t f

0.86

S a te

la a n l t e So. 2 (O ont.)

10*

J&L m i 5J i£ l.oao6.0*33.0861.0909

.0715

.0*07

.0*33

.0*9*

.0*77

. o n *

.096

.061

.07*

.0795

.0*33

.0909

.102

.0*2

.075*

.0*25

.091

.09!

.0*78

.0901

.0925

.0715

.0725

.07*7.01*0

.0*77

.09*5

.100

.0770.0*20

.0*70

.090

.0609

.066

.0725

.0770.0*20

.0*55

.090

.o **9

.0*95

* o i §

.0S05

.0 6 ®

.0709

.0795

.07*9

.0609

.067

.0705

.067

.0709

.07*0

.0770

.0805

.08*0

.0*70

.0605

.0655

.0705-

.0770.0**0

.090

.095

3131SinuousT urb.

SLSLSLSLSLSLT u rt.

SLSLSLTurb.

SLSLSLSL

SLSLSL

SLSLSLSLSLSL •lnuou® Turb.

SL3L3LSLSLSLTurb*

1*15151016051650

11201229

152015*0i 860

9*810761176

1120121513201*101*70

1102122*127*

12*9130013601*251*7513*51600

1120121513101*2215*5i 8601750

1.0*81.0160 .991.01

1 . 1* 1 .22 1 .13 1.1®* 1.06 1.0* 1.1

1 .37I . 3I 31 .2

1 .221.211 .1*1.201.30

1.2151 . 1*2

1.1321 .171.291 .21 .091 .071.062

1.1*21.1081.1151 . 0*1.0*51 .051.052

Page 119: A Visual Investigation of the Appearance of Turbulence in

105

A&zralttt Ro. 2

R atio of ATora&e Y alooity to Maximum V elocity

H«r»»l*» M j ,„ T r t t Rejmold. * * . T « l.Max. V a t. umber Mm . V ia.

.646 1230 . 6fl413*t2 .711

A 1433.71*.757.73* 1715.716 1110.§91 1303.*35 1363

13401415

0•199if37 131.667 1603.667 1650.689 1130. 0 4 1335.686 1•fi2. 6b M b•6i ;

v19201§S01660

. 6 f m oM B 1215•T0U 1320

S3 m o5 1470

.33 1130

.666 1215

.666 1310

.616 1432

.675 1345

.657 1660

.647 1750

.627 1102,636 1224.672 1278.71 .705 .755.723.704.740.818.765

.7041770 .715

Page 120: A Visual Investigation of the Appearance of Turbulence in

106

Taloeity D l»triV ation in Annul ax SM tlon Vo. 2

= 850

Position*08.

TJp'E m .

1 . 3* .578 13791.32 .848 •557

.6881.30 I .031.27 1.215 .7991.21

1.48?.900

1.14 .9771.08 1.487 .9771.023 1.52 1.0000.97 1.325

1.40.870

0.91 .9210.84 1.20 .7*70 .7* 1.086 .J230.73 .921 .6050.68 .902 .392O.65 .81 .5320.62 .757 .5970.60 .709

.472.463

0.5* •310

P o o ltlo n

1 .3 41.3X31 .M 31.251.22I.1 S 51.1051.040.3*0 .920.860.800 .7 40 .68O.650.6150.57

> ...**»«.

.967

l . i1 .50*1.341.23*1 .2 31.12

m

V

Mas,

73

*34S 3oc32352530*

Page 121: A Visual Investigation of the Appearance of Turbulence in

107

i l l i s i

D m

AMTJLDS iro, 3

<*> M . 121 m

,4*5

:3 p i

.1073

‘ l f K

.* 5 .08.0526.0*77

.0995

.1190

.1305

.4*5:SS

.0900

.IO75

.1135

.18%

.545: £

.1055

.0980

.1090.610 .0888

.1000.0915•0995

.635 .0986.0768

.0795

.0745

.670 .0557.9708•OT58.07*3

.0960

.o ft?

.0794

.0745

.735 .uoe.121

.098O

.1055

.795 .1041.181

.0900

.09SO

.795 .100.111.114

.0825

.0900

.0980

.795 .100.0944.1032.1101

.075

.0825

.0870

.0900

al»ax,D iffusing

SLSL

SLSLSLDiffusing

D iffu sin gSLD iffu sin g

SLD iffu sin g

D iffu sin g3L

SLSLDiffusingSL

SinuousDiffusing

SLDiffusing

SLWigglesDiffusing

SLSLWigglesTufb.

$09022§©2970

1790207$2390

16; 19

133517901970

16551790

1403

105811105

1405

179818§0

16951840

134516151 8 4 |

«

1I 30

51*

3®7431

.654

. m1 .

L.1.

,9$21.005X.02J

1.1351 . 1*5

1.1591.235

1.211.255l . l B I

1.3341.1451.1881.225

Page 122: A Visual Investigation of the Appearance of Turbulence in

108

.*60

.960

.860

.915

.915

.920

.9**

Jaim lw i Ho. 3 (C oat.)

iS J--------------- m --------------- Uti_________15L .... (6)

.1135 wiggle* a 30 1.335•1*15 Wiggle* 2880 1 . 28J•U J5 V iw iM 2000 1.278. 1 * 5 Wiggle* 2l»K> 1.285.1290 *Wb. 8300 1.270

.108 .o lto Slouou* 1560 i.« 86

.U 72 .0500 Simon* 1672 1.303

.U 7 .OJBO ta r t . 1820 1 .19ft

•U55 .0985 Siaoana 1730 1.198.m .101 Wiggles l f t 5 i.so o.IJ15 .1075 tu r t. 1930 1.222

.119 .0170 a i«So 1.388

.1206 .0933 a lS tfe 1 . 29^

.130 .0999 a 1800 1.308

.133 .1055 a 1918 1.260

.137 .1103 a 2000 1 . 21+

.1 4 . .1150 Wiggle* 2080 1.225.1182 Wiggles 2150 1.21*2. m g Wiggle* 2200 1.221+.1895 D iffu s in g 2260 I . 29I+

.0970 a 1232 1,261+

.105S a 1970 1.272

.1135 a 2 1 a 1.285

.1210 a a w 1.295

.1260 a 231*0 1 .

.1305 B ifftw in s 21*25 1 .

.U 65 a 18H5 1.195,123 Wiggle* 1990 1.2S.129 D iffu sin g 2100 I . 19U

.0695 .0531 a 1062 1.31

.0735 .0605 Siiraou* 1222 1.21*+

.O U .0670 31iraou» 1350 1.228

.0953 .0730 Wiggle* ijtffi 1 . 3M

.1062 .0822 Wiggles 1660 1 .295

.1268 .0985 Wiggle* 2000 1.288

.1370 .1072 t a f t . " 2160 1 .28

Page 123: A Visual Investigation of the Appearance of Turbulence in

.9«**

1 .0 3

1 . 0*5

1.101

1.110

X .U 0

1 .192

1.192

109

£*%*

Maaitotm 3 (G o& O

—121------------ U2-----------iiSL______ (s) (6>.134 .09* D iffusing 1*43 1 . 36*.1022 .092$ Sinuous 1J45 X.aU.119 .0900 SiMMNW I 69. 1.322.122 .0990 D iffu s in g 1*00 1 .8*4

.135 .1139 v im * . 2120 1.19

.1 .3 .1210 V lo lM 2220 1.122

.1903 .1230 viceiM 24io 1.163

.184 .1366 T ort. 2369 1.202

.119 Wiggi*# 2l l o 1.22

.1213 n a n — 2213 i . a

.1379 .112 D iffu s in g 2033 1.222

.123 .0963 31 1762 1.2981.242.1292 .1090 SL 1910 ____

.139 .1090 SL 1980 1 ,23

.190 .1200 D iffu s in g 2110 1 .23

. U 62 .097. SL 1842

.120 .IO5S Wiggles 138O

.119 Wiggles 2135

.123 .1210 Wiggles 2290

.130 .1*75 Wiggins 2390

.141 .15*9 D iffu s in g 2803

.1035 SL 1920 1 .090

.1135 SL 2033 1 .U 9.133 .1213 SL 2200 1.110.149 .1290 Wiggles 2340 1.112.1993 .1370 Wiggins 2900 1.098.139 .1413 W iggles 2600 1 .12.15* .1455 D iffu s in g 2685 I .09

0.931.943

.095 .1025 SL

.1042 .1104 SL

.110 .11* SL 2205 .933

.1162 .126 SL 2355 .924

.110 .132 SL 247° .833

.113 .1366 D iffu s in g 2565 .843

.128 .1494 T u rt. 2705 .8*5

.1162 , i a g SL *210 . 95*

.1028 .1290 SL 238O .795

.115 .1370 SL 2520 .*41

.133 .1445 SL 2670 .9*0

.127 .1525 D iffu s in g 2MLQ .833

Page 124: A Visual Investigation of the Appearance of Turbulence in

110

i i i ____

1.2)2

1 .2 )2

1.262

1 .3 ^ 0

1 . 3 »

1 . 3ft>

1.360

1.400

D ata

SSL*nnulu* Ho, 3 (G an t.)

t i ) <4> SSL SSL.1124

.0974

.1054

.1042

.124

.103

.1211

.1234

.0806

.0*71

.0994

. l i f t )•143

.1094

.112

.123

:!|

,o6hi•0595.0S5.072.077^

.0550

.0590

.0595

, 05^.o*ao

. 05*2

129011*6310k

105911351279

129013701W*51525

1073 It 1] l g 3

1215

v m

,l6S0

.1192•12L.1366,1 W.1523

.1055

.1135

.1290

.1215

.1290

.1370

.1 %,1525.1609

slftts% « D iffu s in g

SLSLD iffu sin g

SL31D if fw tn g

31SISLSLD iffu*ing

SLSLSLSLSLSLD iffu sin g

SLSLSLSLD iffu sin g

SLSLD iffu sin g

SL3L31SLSLD iffusing

264529692105

193520S02340

2460260027602900

20502290257028703160

2335247026202775292531003240

21602360251026552800

200021452450

23OO2%02585272528753000

.936

1.00.918•972

.800

.75

.71

.774•«55

.901

.901

.948-951ftf! « ?

. E

.476•5®8.507

5

.448

.320

.362

.403

Page 125: A Visual Investigation of the Appearance of Turbulence in

106s1222

18?l|5 52S902N101062122213*101 * 616602000216012*191990210015*45169*41105I ' m

1 « 519*52135213022202000

ktt*Annul u t Ho. 3

off A*«r*c* to Hoacimn& Volooity

Ma*. T O .ReynoldsI M i r

2*430

Page 126: A Visual Investigation of the Appearance of Turbulence in

Ttrt*SnS*®*i9*£89*Otai*sil*

lo6**68*m-9&L'£li*9SS*on£*

9$9'008*266*£00*X£so*x s£x*xOh8*X 868* t £18* X 0££*Xox£‘x6jX*X XXX* X £t|0*X Xg6*

*T*A ***H *X*A **AY"rPpri5 •W lfi"

£96*189*689*

x£i*9X8*898*

6X6*£16*680*1fiiO’Xoxx*xfit|X*Xil08*x898* X 08£*X

ms1

%U%Qtd JO

a T6iitS»S' “

91£' 5sti* 09*f 69s-

&o£a*168*£96’c£$"Us’888*

0S9*86**ssn*£96*

56V£X9*899' 088* £s6* fed* Is6x*x

68*1 l8£*I 66 X* I 868*1 86X*X i£6*

986*

*X*A **m *X»A "8*-T

£x£* £66*6x9*

861*099*186*1*96*0wx 80X*X

Sx*xB*t 66b* x

096* X 001* *x

iW

w*4 8* *X»A *W nnq

*«P4 »Al W*1

0q6 — JOqiBUfl *PIOO,£eH

i *og enxnttuy

SIX

Page 127: A Visual Investigation of the Appearance of Turbulence in

49U^up|QH du pppy

gOO-fib:

;

ZOO ,

800 i23*311

£11

Page 128: A Visual Investigation of the Appearance of Turbulence in

b O : .g ^ .r ; f?E1QLU3JE

B id h f i T i

-Q -.S C

114

Page 129: A Visual Investigation of the Appearance of Turbulence in

VITA

Thomas Anderson Fe&ael wee born Juno 17# 19&% i n D allas#

Teams* Ho moved to West knroe* Louisiana* and a ttended p u b lic

schoo ls in Monroo and West Monroof g raduating from Ou&ehlla

P a r i oh High School in 1940* Ho a tten d od Harvard Oollege on a

sc h o la rsh ip fo r th e 19401941 school year and then en te red

L ouisiana ro ly toohn io I n s t i t u t e in 1941. In 1944 ho wee d ra f te d

In to th e Amy and spen t to o y e a rs in th e serv ice* fo r so re than

a yoar o f t h i s serv ice* ho was assigned to th e ^ n h a t ta n D is tr ic t*

Corps o f Snglneers In Oak ttidge* Tennessee and Los Alamos* 2?ew

Mexico* Following h is discharge* he re -e n te re d L ouisiana Poly**

te e h n ie I n s t i t u t e in 1946 and was graduated in May* 1947 w ith

th e degree o f Bachelor o f Science in Chemical Engineering*

Following g rad u a tio n , he was employed in th e Heseareh Department

o f P h i l l ip s Te tre leua: Company in B & rtlSeville* Oklahoma* u n t i l

February* 1946* a t vhieh tim e he en te red th e Graduate School o f

L ou isiana S ta te M nirersity* Since th a t tim e he has been employed

a s a Graduate A ss is ta n t in th e Department o f Chemical Engineering

and rece ived th e degree o f Master o f Science In August* 1949* At

th e p resen t tim e he I s a cand idate fo r th e degree o f Doctor o f

Philosophy*

1 15

Page 130: A Visual Investigation of the Appearance of Turbulence in

EXAMINATION AND THESIS REPORT

Candidate: Thomas Anderson F eaze l

Major Field: Chemical E ngineering

Title of Thesis: A V isual In v e s tig a tio n of th e Appearance o f Turbulence in AnnularSpaces

Approved:

Major Professor and Chainrfan

Dean ofjttee Graduate School

EXAMINING COMMITTEE:

/ j/

Date of Exam ination:

May lU j 1951