simonmurphy.infosimonmurphy.info/images/uytterhoeven_et_al_2011.pdf · a&a 534, a125 (2011)...

70
A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368 c ESO 2011 Astronomy & Astrophysics The Kepler characterization of the variability among A- and F-type stars I. General overview K. Uytterhoeven 1,2,3 , A. Moya 4 , A. Grigahcène 5 , J. A. Guzik 6 , J. Gutiérrez-Soto 7,8,9 , B. Smalley 10 , G. Handler 11,12 , L. A. Balona 13 , E. Niemczura 14 , L. Fox Machado 15 , S. Benatti 16,17 , E. Chapellier 18 , A. Tkachenko 19 , R. Szabó 20 , J. C. Suárez 7 , V. Ripepi 21 , J. Pascual 7 , P. Mathias 22 , S. Martín-Ruíz 7 , H. Lehmann 23 , J. Jackiewicz 24 , S. Hekker 25,26 , M. Gruberbauer 27,11 , R. A. García 1 , X. Dumusque 5,28 , D. Díaz-Fraile 7 , P. Bradley 29 , V. Antoci 11 , M. Roth 2 , B. Leroy 8 , S. J. Murphy 30 , P. De Cat 31 , J. Cuypers 31 , H. Kjeldsen 32 , J. Christensen-Dalsgaard 32 , M. Breger 11,33 , A. Pigulski 14 , L. L. Kiss 20,34 , M. Still 35 , S. E. Thompson 36 , and J. Van Cleve 36 (Aliations can be found after the references) Received 30 May 2011 / Accepted 29 June 2011 ABSTRACT Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between γ Doradus (γ Dor), δ Scuti (δ Sct), and hybrid stars. Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each star and extract the pulsational frequencies using dierent frequency analysis methods. We construct two new observables, “energy” and “eciency”, related to the driving energy of the pulsation mode and the convective eciency of the outer convective zone, respectively. Results. We propose three main groups to describe the observed variety in pulsating A-F type stars: γ Dor, δ Sct, and hybrid stars. We assign 63% of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of dierent spectral type, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much higher fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the γ Dor and δ Sct range, also between 5 and 10 d -1 , which is a challenge for the current models. We find indications for the existence of δ Sct and γ Dor stars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the δ Sct and γ Dor instability strips and beyond. Non-variable stars seem to exist within the instability strips. The location of γ Dor and δ Sct classes in the (T e, log g)-diagram has been extended. We investigate two newly constructed variables, “eciency” and “energy”, as a means to explore the relation between γ Dor and δ Sct stars. Conclusions. Our results suggest a revision of the current observational instability strips of δ Sct and γ Dor stars and imply an investigation of pulsation mechanisms to supplement the κ mechanism and convective blocking eect to drive hybrid pulsations. Accurate physical parameters for all stars are needed to confirm these findings. Key words. stars: oscillations – stars: fundamental parameters – binaries: general – asteroseismology – stars: variables: δ Scuti – stars: statistics 1. Introduction With the advent of the asteroseismic space missions MOST (Walker et al. 2003), CoRoT (Baglin et al. 2006), and Kepler (Borucki et al. 2010), a new window is opening towards the un- derstanding of the seismic behaviour of A- and F-type pulsators. The main advantages of these space missions are (1) the long- term continuous monitoring of thousands of stars, which enables both the determination of long-period oscillations and the re- solving of beat frequencies; and (2) the photometric precision at the level of milli- to micro-magnitudes, which will provide a more complete frequency spectrum and also allow the detec- tion of low-amplitude variations that are unobservable from the ground and providing a more complete frequency spectrum. The availability of these long-term, very precise light curves makes possible the first comprehensive analysis of the variability of a sample of several hundred candidate A-F type stars that is pre- sented here. The region of variable A- and F-type, including main se- quence (MS), pre-MS, and post-MS stars, with masses be- tween 1.2 and 2.5 M hosts the γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsators. The γ Dor stars were recognized as a new class of pulsating stars less than 20 years ago (Balona et al. 1994). Our current understanding is that they pulsate in high-order grav- ity (g) modes (Kaye et al. 1999a), excited by a flux modulation mechanism induced by the upper convective layer (Guzik et al. 2000; Dupret et al. 2004; Grigahcène 2005). Typical γ Dor peri- ods are between 8 h and 3 d. From the ground, about 70 bona fide and 88 candidate γ Dor pulsators have been detected (Balona et al. 1994; Handler 1999; Henry et al. 2005; De Cat et al. 2006; Henry et al. 2011, among other papers). The δ Sct variables, on the other hand, have been known for decades. They show low-order g and pressure (p) modes with periods between 15 min and 5 h that are self-excited through the κ-mechanism (see reviews by Breger 2000; Handler 2009a). Article published by EDP Sciences A125, page 1 of 70

Upload: others

Post on 24-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)DOI: 10.1051/0004-6361/201117368c! ESO 2011

Astronomy&Astrophysics

The Kepler characterization of the variability amongA- and F-type stars

I. General overviewK. Uytterhoeven1,2,3, A. Moya4, A. Grigahcène5, J. A. Guzik6, J. Gutiérrez-Soto7,8,9, B. Smalley10, G. Handler11,12,L. A. Balona13, E. Niemczura14, L. Fox Machado15, S. Benatti16,17, E. Chapellier18, A. Tkachenko19, R. Szabó20,

J. C. Suárez7, V. Ripepi21, J. Pascual7, P. Mathias22, S. Martín-Ruíz7, H. Lehmann23, J. Jackiewicz24, S. Hekker25,26,M. Gruberbauer27,11, R. A. García1, X. Dumusque5,28, D. Díaz-Fraile7, P. Bradley29, V. Antoci11, M. Roth2, B. Leroy8,

S. J. Murphy30, P. De Cat31, J. Cuypers31, H. Kjeldsen32, J. Christensen-Dalsgaard32 , M. Breger11,33, A. Pigulski14,L. L. Kiss20,34, M. Still35, S. E. Thompson36, and J. Van Cleve36

(A!liations can be found after the references)

Received 30 May 2011 / Accepted 29 June 2011

ABSTRACT

Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars.Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sampleof 750 candidate A-F type stars, and observationally investigate the relation between !Doradus (!Dor), " Scuti ("Sct), and hybrid stars.Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analysethe Kepler light curve of each star and extract the pulsational frequencies using di!erent frequency analysis methods. We construct two newobservables, “energy” and “e!ciency”, related to the driving energy of the pulsation mode and the convective e"ciency of the outer convectivezone, respectively.Results. We propose three main groups to describe the observed variety in pulsating A-F type stars: !Dor, "Sct, and hybrid stars. We assign 63%of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of di!erent spectraltype, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much higher fraction than what hasbeen observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies,frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the !Dorand "Sct range, also between 5 and 10 d"1, which is a challenge for the current models. We find indications for the existence of "Sct and !Dorstars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the "Sct and !Dor instabilitystrips and beyond. Non-variable stars seem to exist within the instability strips. The location of !Dor and "Sct classes in the (Te! , log g)-diagramhas been extended. We investigate two newly constructed variables, “e!ciency” and “energy”, as a means to explore the relation between !Dorand " Sct stars.Conclusions. Our results suggest a revision of the current observational instability strips of "Sct and !Dor stars and imply an investigation ofpulsation mechanisms to supplement the # mechanism and convective blocking e!ect to drive hybrid pulsations. Accurate physical parameters forall stars are needed to confirm these findings.

Key words. stars: oscillations – stars: fundamental parameters – binaries: general – asteroseismology – stars: variables: " Scuti – stars: statistics

1. Introduction

With the advent of the asteroseismic space missions MOST(Walker et al. 2003), CoRoT (Baglin et al. 2006), and Kepler(Borucki et al. 2010), a new window is opening towards the un-derstanding of the seismic behaviour of A- and F-type pulsators.The main advantages of these space missions are (1) the long-term continuous monitoring of thousands of stars, which enablesboth the determination of long-period oscillations and the re-solving of beat frequencies; and (2) the photometric precisionat the level of milli- to micro-magnitudes, which will providea more complete frequency spectrum and also allow the detec-tion of low-amplitude variations that are unobservable from theground and providing a more complete frequency spectrum. Theavailability of these long-term, very precise light curves makespossible the first comprehensive analysis of the variability of asample of several hundred candidate A-F type stars that is pre-sented here.

The region of variable A- and F-type, including main se-quence (MS), pre-MS, and post-MS stars, with masses be-tween 1.2 and 2.5 M# hosts the !Doradus (!Dor) and " Scuti("Sct) pulsators. The !Dor stars were recognized as a new classof pulsating stars less than 20 years ago (Balona et al. 1994).Our current understanding is that they pulsate in high-order grav-ity (g) modes (Kaye et al. 1999a), excited by a flux modulationmechanism induced by the upper convective layer (Guzik et al.2000; Dupret et al. 2004; Grigahcène 2005). Typical !Dor peri-ods are between 8 h and 3 d. From the ground, about 70 bona fideand 88 candidate !Dor pulsators have been detected (Balonaet al. 1994; Handler 1999; Henry et al. 2005; De Cat et al. 2006;Henry et al. 2011, among other papers).

The "Sct variables, on the other hand, have been known fordecades. They show low-order g and pressure (p) modes withperiods between 15 min and 5 h that are self-excited throughthe #-mechanism (see reviews by Breger 2000; Handler 2009a).

Article published by EDP Sciences A125, page 1 of 70

Page 2: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Several hundreds of " Sct stars have been observed from theground (e.g. catalogue by Rodríguez & Breger 2001).

Because the instability strips of both classes overlap, the ex-istence of hybrid stars, i.e. stars showing pulsations excited bydi!erent excitation mechanisms, is expected, and a few candi-date hybrid stars have indeed been detected from the ground(Henry & Fekel 2005; Uytterhoeven et al. 2008; Handler 2009b).

The main open question in seismic studies of A- and F-typestars concerns the excitation and mode selection mechanism of pand g modes. The only way to understand and find out sys-tematics in the mode-selection mechanism is a determinationof pulsation frequencies and pulsation mode parameters for alarge number of individual class members for each of the pulsa-tion classes, and a comparison of the properties of the di!erentcase-studies. So far, a systematic study of a su"ciently substan-tial sample was hampered by two factors. First, the number ofdetected well-defined pulsation modes is too small to constructunique seismic models, which is caused by ground-based obser-vational constraints, such as bad time-sampling and a high noise-level. Second, only a small number of well-studied cases ex-ist, because a proper seismic study requires a long-term project,involving ground-based multi-site campaigns spanning severalseasons, or a dedicated space mission.

First demonstrations of the strength and innovative characterof space data with respect to seismic studies of A-F type stars arethe detection of two hybrid !Dor-"Sct stars by the MOST satel-lite (HD 114839, King et al. 2006; BD+18-4914, Rowe et al.2006), and the detection of an impressive number of frequenciesat low amplitudes, including high-degree modes as confirmedby ground-based spectroscopy, in the precise space CoRoT pho-tometry of the "Sct stars HD 50844 (Poretti et al. 2009) andHD 174936 (García Hernández et al. 2009), and the !Dor starHD 49434 (Chapellier et al. 2011). The first indications that hy-brid behaviour might be common in A-F type stars were foundfrom a pilot study of a larger sample of Kepler and CoRoT stars(Grigahcène et al. 2010; Hareter et al. 2010). Recently, Balonaet al. (2011a) announced the detection of " Sct and !Dor typepulsations in the Kepler light curves of Ap stars. Hence, a break-through is expected in a currently poorly-understood field ofseismic studies of A-F type pulsators through a systematic andcareful investigation of the pulsational behaviour in a large sam-ple of stars.

The goals of the current paper are (1) to present a first generalcharacterization of the pulsational behaviour of main-sequenceA-F type stars as observed in the Kepler light curves of a largesample; and (2) to observationally investigate the relation be-tween !Dor and " Sct stars and the role of hybrids. In forthcom-ing papers, detailed seismic studies and modelling of selectedstars will be presented.

2. The Kepler sample of A-F type stars

2.1. The Kepler data

The NASA space mission Kepler was launched in March 2009and is designed to search for Earth-size planets in the extendedsolar neighbourhood (Borucki et al. 2010; Koch et al. 2010).To this end, the spacecraft continuously monitors the brightnessof $150 000 stars in a fixed area of 105 deg2 in the constellationsCygnus, Lyra, and Draco, at Galactic latitudes from 6 to 20 deg.The nearly uninterrupted time series with micromagnitude preci-sion also opens up opportunities for detailed and in-depth aster-oseismic studies with unprecedented precision (Gilliland et al.2010a). Of all Kepler targets, more than 5000 stars have been

selected as potential targets for seismic studies by the KeplerAsteroseismic Science Consortium, KASC1.

The Kepler Mission o!ers two observing modes: long ca-dence (LC) and short cadence (SC). The former monitors se-lected stars with a time resolution of $30 min (Jenkins et al.2010a), the latter provides a 1-min sampling (Gilliland et al.2010b). The LC data are well-suited to search for long-periodg-mode variations in A-F type stars (periods from a few hours toa few days), while the SC data are needed to unravel the p-modeoscillations (periods of the order of minutes to hours).

The Kepler asteroseismic data are made available tothe KASC quarterly. In this paper we consider data fromthe first year of Kepler operations: the 9.7 d Q0 com-missioning period (1"11 May 2009), the 33.5 d Q1 phasedata (12 May"14 June 2009), the 88.9 d Q2 phase data(19 June"15 September 2009), the 89.3 d time string of Q3(18 September"16 December 2009), and 89.8 d of Q4 data(19 December 2009"19 March 2010). The SC data are subdi-vided into three-monthly cycles, labelled, for example, Q3.1,Q3.2 and Q3.3.

Not all quarters Q0–Q4 are available for all stars. The firstyear of Kepler operations was dedicated to the survey phase ofthe mission. During this phase as many di!erent stars as possiblewere monitored with the aim to identify the best potential can-didates for seismic studies. From the survey sample, the KASCworking groups selected subsamples of the best seismic candi-dates for long-term follow-up with Kepler. From quarter Q5 on-wards, only a limited number of selected KASC stars are beingobserved with Kepler. The results of the selection process of themost promising !Dor, " Sct, and hybrid candidates are presentedin this work.

2.2. Selection of the A-F type star sample

We selected all stars in the Kepler Asteroseismic ScienceOperations Center (KASOC) database initially labelled as !Doror " Sct candidates. The stars were sorted into these KASOCcatagories either because the Kepler Input Catalogue (KIC;Latham et al. 2005; Brown et al. 2011) value of their e!ectivetemperature Te! and gravity log g suggested that they lie in orclose to the instability strips of !Dor and "Sct stars, or be-cause they where proposed as potential variable A-F type can-didates in pre-launch asteroseismic Kepler observing propos-als. To avoid sampling bias and to aim at completeness of thesample, we analysed all stars listed in the KASOC catalogueas "Sct or !Dor candidates. Our analysis results provide feed-back on the initial guess on variable class assigment by KASOC.As will be seen (Sect. 6.2), several of these stars actually be-long to other pulsation classes, many of which are cool stars.Because there are much fewer B-type stars in the Kepler field ofview than cooler stars, there is a natural selection e!ect towardscooler stars. We also included stars initially assigned to otherpulsation types that showed periodicities typical for "Sct and/or!Dor stars. We are aware that many more " Sct and !Dor candi-date stars are being discovered among the KASC targets, but wecannot include all in this study.

The total sample we considered consists of 750 stars.For 517 stars both LC and SC data are available, while 65and 168 stars were only observed in SC and LC mode, respec-tively. An overview of the A-F type star sample is given inTable 1, available in the on-line version of the paper. The firstthree columns indicate the KIC identifier of the star (KIC ID),

1 http://astro.phys.au.dk/KASC

A125, page 2 of 70

Page 3: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

right ascension (RA), declination (Dec), and Kepler magni-tude (Kp). The Kepler bandpass is wider than the typicalbroad-band filters that are commonly used in optical astronomy(e.g. Johnson UBVRI), and can be described as “white” light.The next three columns provide information on the spectral type(Spectral Type), alternative name of the target (Name), and acomment on its variability (Variable). Information on binaritycomes from the Washington Double Star Catalog (Worley &Douglass 1997; Mason et al. 2001), unless mentioned otherwise.For binary stars labelled with “$”, the double star was suspectedby inspecting Digitized Sky Survey and 2MASS images by eye.The next set of columns provides information on the Kepler timeseries. For each star, the number of datapoints (N datapoints), thetotal time span of the dataset (#T ) expressed in d, the longesttime gap in the Kepler light curves ("T ) expressed in d, andthe available (range of) quarters in LC (Quarters LC) and SC(Quarters SC) mode are given.

2.3. Sample stars in the literature

Most of the 750 sample stars were previously unstudied. Wesearched the catalogue by Ski! (2007) and found informationon spectral types for only 212 stars. Besides 198 confirmed A-or F-type stars, among which are fourteen chemically peculiarstars, we discovered that stars with a di!erent spectral type alsoended up in the sample. There are six known B stars, one M star,three K stars, and six G-type stars in the sample. The G starKIC 7548061 (V1154 Cyg) is a known and well-studied Cepheid(e.g. Pigulski et al. 2009) and is the subject of a dedicated paperbased on Kepler data by Szabó et al. (2011). Sixty-two stars areknown to belong to multiple systems, including at least four-teen eclipsing binaries (EB; KIC 1432149, Hartman et al. 2004;KIC 10206340, Malkov et al. 2006; catalogues by Pr!a et al.2011; and Slawson et al. 2011). Seven stars are only known as“(pulsating) variable stars”. The star KIC 2987660 (HD 182634)is reported as a "Sct star by Henry et al. (2001). Our samplealso includes a candidate %2 Canum Venaticorum star, namelyKIC 9851142 or V2094 Cyg (Carrier et al. 2002; Otero 2007).The Kepler field hosts four open clusters. In our sample at leastsix known members of NGC 6819 are included. Also one, eight,and nine members of NGC 6791, NGC 6811, and NGC 6866,respectively, are in our sample. All 750 stars are included inthe analysis.

3. Physical parameters of the sample stars

Seismic models require accurate values of physical parameterssuch as log g, Te! , metallicity [M/H], and projected rotationalvelocity v sin i. We compiled an overview of all Te! , log g, andv sin i values available for the sample stars in Table 2 in theon-line version of the paper. The di!erent sources include lit-erature and KIC, along with values derived from new ground-based data. A description of the di!erent sources is given be-low. The columns of Table 2 are (1) KIC identifier (KIC ID);(2) Te! value from KIC; (3)"(5) Te! values taken from theliterature or derived from new ground-based data (Literature);(6) adopted Te! value (Adopted); (7) log g value from KIC;(8)"(9) log g values taken from the literature or derived fromnew ground-based data (Literature); (10) adopted log g value(Adopted); (11)"(12) v sin i values derived from spectroscopicdata (Spectra). Stars that are known to be spectroscopic binariesare flagged % behind its KIC identifier (KIC ID). The derivedphysical parameters of the binary stars have to be considered

Fig. 1. 750 sample stars in the (Te! , log g)-diagram. The cross at the lefttop corner represents the typical error bars on the values: 290 K for Te!and 0.3 dex for log g.

with caution because the contribution of the binary componentsmight not have been correctly separated.

KIC-independent values of log g and Te! are only avail-able for 110 stars. The values used for the subsequent analy-sis are (in order of priority, depending on availability and ac-curacy) the spectroscopically derived values, or the most recentphotometrically derived values. For all other stars we use theonly source: the KIC values. The corresponding adopted Te!(in K), and log g (in dex) values are given in boldface in the sixthand tenth column of Table 2, respectively (column “Adopted”).For 65 and 71 stars no value of Te! and log g, respectively,is available. Figure 1 shows the sample of 750 stars in the(Te!, log g)-diagram. We estimated the error bars on the KIC val-ues by comparing them with the adopted values taken fromthe literature or ground-based data. The average di!erence was290 K for Te! and 0.3 dex for log g. v sin i values are only avail-able for 52 of the sample stars.

3.1. Literature

Besides papers dedicated to specific targets of our sample,the on-line catalogues by Soubiran et al. (2010), Lafrasseet al. (2010), Kharchenko et al. (2009), Masana et al. (2006),Nordström et al. (2004), Glebocki & Stawikowski (2000),Allende Prieto & Lambert (1999), and Wright et al. (2003) werevery helpful in the search for values of Te!, log g, and v sin i.Also, photometric indices by Hauck & Mermilliod (1998) wereused to estimate values of Te! and log g. We took care not toinclude Te! values that are derived from the spectral type ratherthan directly from data. The literature values of Te! and log g canbe found in Cols. 3"5 and 8, 9 of Table 2, respectively (“lit”).We note that the given errors on Te! and log g, which sometimesseem unrealistic small, are taken from the quoted paper and arenot rounded to the number of significant digits. Values of v sin i,expressed in km s"1, are given in the last two columns of Table 2.The source of each value is indicated by the label.

3.2. Kepler Input Catalogue

The KIC provides an estimate of Te! and log g for most Keplertargets derived from Sloan photometry (see the second and

A125, page 3 of 70

Page 4: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

seventh column, “KIC”, of Table 2, respectively). Unfortunately,the KIC values of log g are known to have large errorbars (Molenda-Zakowicz et al. 2011; Lehmann et al. 2011).Moreover, a comparison between KIC estimates of the stellarradius and the radius derived from evolutionary models indicatethat the KIC values of log g might be shifted towards lower val-ues by about 0.1 dex. The temperature values, on the other hand,are fairly good for A-F type stars, and become less reliable formore massive or peculiar stars, because for higher temperaturesthe interstellar reddening is apparently not properly taken intoaccount. The stars in our sample are reddened up to 0.3 magin (B " V), with an average reddening of E(B " V) = 0.04 mag.The 85 stars for which no KIC Te! value is available, which aregenerally faint stars (Kp > 11 mag), are not considered in anyanalysis related to temperature, unless values of Te! exist in theliterature or are available from the analysis of new ground-basedobservations (see below).

3.3. New ground-based observations of sample stars

In the framework of the ground-based observational project forthe characterization of KASC targets (see Uytterhoeven et al.2010a,b, for an overview), targets of the A-F type sample arebeing observed using multi-colour photometry and/or high-to-mid-resolution spectroscopy. The goal is to obtain precise valuesof physical parameters that are needed for the seismic modellingof the stars. A detailed analysis of a first subsample of A-F typestars has been presented by Catanzaro et al. (2011). Several otherpapers are in preparation. We include the available results to datein this paper, because the precise values of Te! and log g areneeded for the interpretations in Sects. 7 and 8.

3.3.1. Strömgren photometry from the ObservatorioSan Pedro Mártir

Multi-colour observations were obtained for 48 sample starsover the period 2010 June 13"17 with the six-channeluvby " & Strömgren spectrophotometer attached to the 1.5-mtelescope at the Observatorio Astrónomico Nacional-San PedroMártir (OAN-SPM), Baja California, Mexico. Each night, a setof standard stars was observed to transform instrumental obser-vations into the standard system using the well known trans-formation relations given by Strömgren (1966), and to correctfor atmospheric extinction. Next, the photometric data were de-reddeded using Moon’s UVBYBETA programme (Moon 1985),and Te! and log g values were obtained using the uvby grid pre-sented by Smalley & Kupka (1997). A detailed description ofthe data will be given by Fox Machado et al. (in prep.). The re-sulting stellar atmospheric parameters are presented in Table 2under label “b”.

3.3.2. SOPHIE spectra from the Observatoirede Haute Provence

We also analysed spectra of two sample stars, KIC 11253226and KIC 11447883, obtained during the nights of 2009 July 31,August 1, and August 5 with the high-resolution (R $ 70 000)spectrograph SOPHIE, which is attached to the 1.93-m telescopeat the Observatoire de Haute Provence (OHP), France. The spec-tra were reduced using a software package directly adapted fromHARPS, subsequently corrected to the heliocentric frame, andmanually normalized by fitting a cubic spline.

To derive stellar atmospheric parameters, the observed spec-tra, which covers the wavelength range 3870"6940 Å, werecompared with synthetic spectra. The synthetic spectra werecomputed with the SYNTHE code (Kurucz 1993), using atmo-spheric models computed with the line-blanketed LTE ATLAS9code (Kurucz 1993). The parameters were derived using themethodology presented in Niemczura et al. (2009) which relieson an e"cient spectral synthesis based on a least-squares opti-misation algorithm. The resulting values of Te!, log g and v sin iare presented in Table 2, under label “h”. The detailed analysisresults, including element abundances and microturbulence, willbe presented in a dedicated paper (Niemczura et al., in prep.),including several other Kepler stars.

3.3.3. Spectra from the Tautenburg Observatory

Spectra of 26 sample stars were obtained from May toAugust 2010 with the Coude-Échelle spectrograph attached tothe 2-m telescope of the Thüringer Landessternwarte Tautenburg(TLS), Germany. The spectra cover 4700 to 7400 Å in wave-length range, with a resolution of R = 32 000. The spectra werereduced using standard ESO-MIDAS packages. We obtained be-tween two and seven spectra per star, which were radial velocitycorrected and co-added. The resulting signal-to-noise in the con-tinua is between 150 and 250.

Stellar parameters such as Te!, log g, [M/H], and v sin i havebeen determined by a comparison of the observed spectra withsynthetic ones, where we used the spectral range 4740 to 5800 Å,which is almost free of telluric contributions. The synthetic spec-tra have been computed with the SynthV programme (Tsymbal1996) based on atmosphere models computed with LLmodels(Shulyak et al. 2004). Scaled solar abundances have been usedfor di!erent values of [M/H]. A detailed description of the ap-plied method can be found in Lehmann et al. (2011). The result-ing values of Te! , log g and v sin i are presented in Table 2, underlabel “g”. Errors are determined from '2 statistics and representa 1-( confidence level. Detailed analysis results, including alsovalues of [M/H] and microturbulent velocity, will be publishedin a dedicated paper (Tkachenko et al., in prep.).

4. Characterization of the sample

Figure 2 shows the distribution of the 750 sample stars in Te!(top left), log g (top right), Kepler magnitude Kp (bottom left),and total length of the Kepler light curve #T , expressed in d(bottom right). For the analysis we used Te! and log g valuesgiven in boldface in Table 2. Note that seven stars in our sampleare hotter than Te! = 9000 K, and fall o! the diagram.

The following typical global parameters have been observedfor "Sct and !Dor stars (e.g. Rodríguez & Breger 2001; Handler& Shobbrook 2002): log g = 3.2"4.3 and Te! = 6300"8600 Kfor " Sct stars, and log g = 3.9"4.3 and Te! = 6900"7500 K for!Dor stars. While !Dor stars are generally MS stars, severalmore evolved "Sct stars have been observed.

The distributions in Fig. 2 show that about 70% of thetotal sample does indeed have Te! values between 6300 Kand 8600 K. However, a significant number (about 20%) arecooler stars. The log g values of our sample are concentratedon 3.5"4.5, which represents about 76% of the total sample.

The sample consists of stars with magnitudes in the range6 < Kp < 15 mag. The majority (about 55%) is located in theinterval Kp = [10, 12] mag. Given that stars with magnitudesfainter than V = 9 are di"cult to monitor spectroscopically from

A125, page 4 of 70

Page 5: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 2. Distribution in Te! (top left), log g (top right), Kepler magni-tude Kp (bottom left), and total time span #T of the Kepler light curves,expressed in d (bottom right) of the 750 sample stars. The number ofstars belonging to each bin (N) is indicated on the Y-axis. We used theadopted values of Te! and log g, as given in boldface in Table 2.

the ground with 2 m-class telescopes, the fact that about 92% ofthe stars are fainter than V = 9 has implications for the feasibilityof possible spectroscopic ground-based follow-up observations(see Uytterhoeven et al. 2010a,b).

Finally, the total length of the Kepler dataset (not takinginto account possible gaps of several tens of days) is spread be-tween 9.5 and 322 d. For a considerable fraction (19%) of thesample only Q0 and Q1 data are available, with a total lengthof 44 d, implying a frequency resolution slightly worse than0.02 d"1. On the other hand, 351 stars, or 47% of the total sam-ple, have a time span of more than 200 d (resulting in a frequencyresolution better than 0.005 d"1). Of these 351 stars, 46% have amaximum time gap in the light curve of less than 10 d, and 23%have a gap of over 200 d and up to 325 d.

In the following sections we will describe the variabilityanalysis results of all 750 stars. At this stage we did not excludeany of the stars from the sample on grounds of non-compatibilityof physical parameters with the current expectations for A- andF-type pulsators, to present a homogenous analysis and to inves-tigate if Kepler confirms the current understanding of " Sct and!Dor stars.

5. Frequency analysis

5.1. Treatment of the Kepler light curves

In this paper we used the “non-corrected” light curves avail-able to KASC for asteroseismic investigations through theKASOC database. A description of the Kepler data reductionpipeline is given by Jenkins et al. (2010a,b). However, these rawtime series su!er from some instrumental perturbations that needto be corrected for, e.g. perturbations caused by the heating andcooling down of the Kepler CCDs, variations caused by changesin the aperture size of the source mask, etc. Some of the e!ectsare well known, and the corresponding non-stellar frequenciesare tabulated by the Kepler team (e.g. frequencies near 32, 400,430, and 690 d"1). Other perturbations are not documented, andare harder to evaluate and correct for.

We subjected the light curves of all sample stars to an auto-mated procedure that involves fitting a cubic spline to the timeseries, and correcting the residuals for discontinuities and out-liers. To investigate if and to what extent artificial periodicities

at the same timescale as the expected pulsations in !Dor and"Sct stars are introduced by the correction, we also correcteda subsample of stars by a di!erent procedure that takes threetypes of e!ects into account, namely outliers, jumps, and drifts(see García et al. 2011). Both correction methods gave the samefrequency analysis results within the accuracy of the dataset.

Next, the Kepler flux (FKp(t)) was converted to parts-per-million (ppm) (Fppm(t)), using the following formula:

Fppm(t) = 106 &!

FKp(t)f(t)

" 1", (1)

with f (t) a polynomial fit to the light curve. A test on the ef-fect of the use of di!erent polynomial orders (2 to 10) on thedetected frequencies in the time series showed that, in general,a third or fourth order polynomial fits the overall curvature bet-ter than a linear fit. The choice of the polynomial did not changeperiodicities with frequencies higher than 0.2 d"1. The obtainederror for frequencies between 0.01 and 0.2 d"1 was of the or-der of 1/#T d"1, with #T the total time span of the light curveexpressed in d.

5.2. Frequency analysis

The Kepler time series of the 750 sample stars were analysedin a homogenous way, using a programme based on the Lomb-Scargle analysis method (Scargle 1982). Frequencies were ex-tracted in an iterative way until the Scargle false alarm proba-bility (fap; Scargle 1982), a measure for the significance of apeak with respect to the underlying noise level, reached 0.001.In view of the almost uninterrupted and equidistant sampling ofthe Kepler data, this estimate of the fap is a fast and reliable ap-proximation of the true fap, because the number of independentfrequencies can be estimated precisely (see also the discussionin Sect. 4 of Balona et al. 2011b). Frequencies were calculatedwith an oversampling factor of 10. Time series consisting of onlyLC data were not searched for periods shorter than 1 h, becausethe corresponding Nyquist frequency is 24 d"1. For SC data, witha time sampling of about 1 min, frequencies up to 720 d"1 couldbe detected.

As a comparison, subsamples of the stars were analysedusing di!erent analysis methods, such as SigSpec (Reegen2007, 2011), Period04 (Lenz & Breger 2005), the general-ized Lomb-Scargle periodogram (Zechmeister & Kürster 2009),and the non-interactive code, freqfind (Leroy & Gutiérrez-Soto,in prep.). The latter code is based on the non-uniform fast Fouriertransform by Keiner et al. (2009), and significantly decreases thecomputation time for unevenly spaced data. The results obtainedwith the di!erent methods were consistent.

6. Classification

6.1. "Sct, !Dor, and hybrid stars

We performed a careful inspection (one-by-one, and by eye) ofthe 750 light curves, the extracted frequency spectra, and list ofdetected frequencies, and tried to identify candidate " Sct, !Dor,and hybrid stars. We used a conservative approach and omittedfrequencies with amplitudes lower than 20 ppm for the classi-fication. We also filtered out obvious combination frequenciesand harmonics2 in an automatic way, and only considered appar-ent independent frequencies for the analysis. We suspect that the2 As obvious combination frequencies and harmonics we consid-ered n fi or k fi ± l f j, with fi and f j di!erent frequencies, n ' [2, 3, 4, 5],and k, l ' [1, 2, 3, 4, 5].

A125, page 5 of 70

Page 6: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

variable signal of a few stars is contaminated by the light varia-tions of a brighter neighbouring star on the CCD. We flagged allstars with a high contamination factor (>0.15), as given by theKIC. If the light curves of the neighbouring stars on the CCDwere available through KASOC3, we carefully checked the lightcurves of these stars with their neighbours. Stars that show an ob-vious contamination e!ect were omitted from classification. Weused information on Te! (Table 2) to distinguish between "Sctand !Dor stars versus &Cep and SPB stars. To be conservative,low frequencies (<0.5 d"1) (see, for instance, the frequency spec-tra in Fig. 4) are currently not taken into account in the analysis,because in this frequency range real stellar frequencies are con-taminated with frequencies resulting from instrumental e!ects(see Sect. 5.1), and the separation of the di!erent origins requiresa dedicated study, which is beyond the scope of this paper.

We encountered a variety of light curve behaviour. Basedon a small number of stars and using only the first quarterof Kepler data, Grigahcène et al. (2010) already proposed asubdivision of the A-F type pulsators into pure "Sct stars,pure !Dor stars, "Sct/!Dor hybrids and !Dor/"Sct hybrids,using the fact that frequencies are only detected in the "Sct(i.e. >5 d"1, or >58 µHz) or !Dor (i.e. <5 d"1 or <58 µHz)domain, or in both domains with dominant frequencies in ei-ther the "Sct star or !Dor star region, respectively. Among the750 sample stars we see di!erent manifestations of hybrid vari-ability. There are stars that show frequencies with amplitudes ofsimilar height in both regimes, and stars with dominant frequen-cies in the !Dor ("Sct) domain and low amplitude frequenciesin the "Sct (!Dor) domain. The light curves show diversity aswell. Balona et al. (2011d) already commented on the di!erentshapes of light curves of pure !Dor stars.

In this work, we focus on stars that show at least threeindependent frequencies. We classified the stars in threegroups: "Sct stars, !Dor stars, and hybrid stars. Because theunderlying physics that causes the di!erent types of hybridbehaviour is currently not clear, all types of hybridity (both"Sct/!Dor hybrids and !Dor/"Sct hybrids) are included in thegroup of hybrids. A star was classified as a hybrid star only if itsatisfied all of the following criteria:

– frequencies are detected in the " Sct (i.e. >5 d"1 or >58 µHz)and !Dor domain (i.e. <5 d"1 or <58 µHz);

– the amplitudes in the two domains are either comparable,or the amplitudes do not di!er more than a factor of 5"7(case-to-case judgement);

– at least two independent frequencies are detected in bothregimes with amplitudes higher than 100 ppm.

By using these criteria, we should reduce the number of falsepositive detections. In particular, we tried to avoid a hybrid starclassification of “pure” "Sct stars that show a prominent long-term variability signal caused by rotation. We also tried to takecare of more evolved "Sct stars that are expected to pulsate withfrequencies lower than 5 d"1. Stars that exhibited only or mainlyfrequencies in the "Sct domain (i.e. >5 d"1) and did not sat-isfy all of the above given criteria were assigned to the pure"Sct group. Likewise, the group of pure !Dor stars consists ofstars that do not comply with the hybrid star criteria, and that

3 Unfortunately, only 40 stars of the sample could be checked in thisway. We saw a clear contamination for the stars KIC 4048488 andKIC 4048494, KIC 5724810 and KIC 5724811, and KIC 3457431 andKIC 3457434. Less clear contamination is seen for KIC 4937255 andKIC 4937257, and KIC 10035772 and KIC 10035775, which are starsthat show no obvious periodic variable signals.

have only or mainly frequencies lower than 5 d"1. However, theclassification of pure !Dor stars is not as straightforward, be-cause several other physical processes and phenomena can giverise to variability on similar timescales, such as binarity androtational modulation caused by migrating star spots. We triedour best to select only !Dor stars, but are aware that nonethe-less, and most likely, our selection is contaminated with a fewnon-bona fide !Dor stars. For stars that were observed in non-consecutive Kepler quarters, we tried to beware of frequenciesintroduced by the spectral window. For instance, frequently apeak near 48 d"1 (555 µHz) is detected (e.g. KIC 2166218 andKIC 7798339), which for a !Dor pulsator can result in an incor-rect classification as hybrid star.

In Figs. 3"5 a portion of the light curve with a time spanof 2 d ("Sct stars) or 5 d (!Dor and hybrid stars) and a schematicoverview of the detected independent frequencies (i.e. combina-tion frequencies are filtered out in an automated way, see above)are given for a few representative stars of each group. The am-plitudes and Kepler flux are expressed in ppm, and the frequen-cies are given in both d"1 (bottom X-axis) and µHz (top X-axis).The dotted grey line in the amplitude spectra separates the "Sctand !Dor regime. The dates are in the Heliocentric Julian Date(HJD) format HJD0 = 2 454 950.0. The figures illustrate the va-riety of pulsational behaviour within the groups. The "Sct stars(Fig. 3) display an impressive variety of amplitude heights. Thevariability of the stars in panels (d) and (e), KIC 9845907 andKIC 9306095, respectively, is dominated by one high-amplitudefrequency. Several lower amplitude variations are also present.The chance of confusing a high amplitude "Sct star (HADS)and binarity is high for KIC 9306095. The stars in panels (a)"(c)show multiperiodic variations with frequency amplitudes of sim-ilar size. The rotational frequency near 1.2 d"1 and its first har-monic of the star KIC 10717871 (panel c) could be mistaken for!Dor-like frequencies. Because there are no other longer-termperiodicities, there is no evidence for the possible hybrid statusof this star.

The light curves of !Dor stars (Fig. 4) vary from obvi-ous beat patterns to less recognizable variable signals. Balonaet al. (2011d) already pointed out that there are symmetric(e.g. panel d) and asymmetric (e.g. panel e) light curves amongthe stars that show obvious beating, and that most likely in thesecases the pulsation frequencies are comparable to the rotationfrequency. Balona et al. (2011d) also suggested that the moreirregular light curves likely stem from slowly rotating stars.

Examples of hybrid stars are given in Fig. 5. The greydotted line in the right panels guide the eye to separatethe "Sct and !Dor regimes. The stars KIC 3119604 andKIC 2853280 (panels a and b, respectively) are clearly dom-inated by "Sct frequencies, while the !Dor frequencies havelower amplitudes. The star KIC 9664869 (panel c) is an ex-ample of a star that exhibits frequencies with amplitudes ofcomparable height in the two regimes. The highest peak in the!Dor region is most likely related to the stellar rotation pe-riod, however, because several harmonics are also observed. Thebottom two panels are examples of hybrid stars dominated by!Dor periodicities.

Table 3, available in the on-line version of the paper, presentsan overview of the stars assigned to the three groups. For eachstar (KIC ID) we provide the classification (Class), the to-tal number of independent frequencies (N) detected above thesignificance level (fap = 0.001) and with amplitudes higherthan 20 ppm, and the number of independent frequencies de-tected in the !Dor and " Sct regime (N!Dor and N"Sct, respec-tively). The next column gives as a reference the total number

A125, page 6 of 70

Page 7: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 3. Light curve and frequency spectrum of five stars assigned to the "Sct group, illustrating the variety of pulsational behaviour within thegroup. The left panel shows a portion of the Kepler light curves. The Kepler flux is expressed in ppm, HJD is given in d with respect to HJD0 =2 454 950.0. The right panel gives a schematic representation of the detected independent frequencies, expressed in d"1 (bottom X-axis) or µHz(top X-axis). Amplitudes are given in ppm. The dotted grey line separates the " Sct and !Dor regime. Note the di!erent Y-axis scales for each star.a) KIC 8415752; b) KIC 8103917; c) KIC10717871; d) KIC 9845907; e) KIC 9306095.

of frequencies detected above the significance level, includingcombination frequencies and harmonics (Ntotal). The next fourcolumns denote the frequency range of peaks in the !Dor and"Sct regimes ((Freq Range)!Dor and (Freq Range)"Sct, expressedin d"1), the highest amplitude (Amplitudehigh, expressed in ppm)and associated frequency (Freqhigh, in d"1). In the last column aflag (•) indicates if the risk on light contamination with a neigh-bouring star on the CCD is high (contamination factor >0.15).A typical error on the frequency associated with the highest am-plitude is 0.0001 d"1. The error on the amplitude ranges froma few ppm up to about 30 ppm. We note that for stars identi-fied as !Dor or " Sct stars we report on frequencies up to 6 d"1

or from 4 d"1, respectively, to account for, for instance, the fre-quency spectrum of more evolved stars.

We note that for several stars classified as !Dor star onlyLC data are available. This may create a selection e!ect, be-cause short-term " Sct periods are more di"cult to detect in theshort timestring of LC data owing to sampling restrictions. Also,as mentioned above, even though we carefully checked the starsone by one, we expect to have a few false positive detections ofhybrid and !Dor stars because the typical !Dor frequencies canbe easily confused with variations of the order of a day caused

by rotation or binarity. A more careful analysis and interpreta-tion of the full frequency spectrum of all individual stars of thesample will clarify this matter, but this is beyond the scope ofthis paper.

We compared our classification with the automated super-vised classification results presented by Debosscher et al. (2011).Because these authors studied public Kepler Q1 data, only479 objects of our sample appear in their catalogue. We point outthat the classifier by Debosscher et al. (2009) only takes three in-dependent frequencies with the highest amplitudes into account.Hence, the recognition and classification of hybrid behaviouris currently not implemented. Moreover, because the classifierdoes not take external information into account that can distin-guish between B-type stars and A-F type stars (e.g. colour infor-mation, spectral classification based on spectra), there is oftena confusion between "Sct and &Cep stars, and between !Dorand SPB stars. In general, there is good agreement (>87%, clas-sified in terms of " Sct or &Cep stars) with the classification byDebosscher et al. (2011) for stars that we classified as " Sct stars.The !Dor stars, as we classified them, are in general less eas-ily recognized by the automated classifier. Often they appearas “miscellaneous” in their list. This is not surprising, because

A125, page 7 of 70

Page 8: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Fig. 4. Similar figure as Fig. 3, but for five candidate !Dor stars. Note the di!erent X-axis scale with respect to Fig. 3. a) KIC 1432149;b) KIC 5180796; c) KIC 7106648; d) KIC 8330056; e) KIC 7304385.

so far only a few high-quality light curves of well-recognized!Dor stars were available that could be used as a template tofeed the classifier. Stars that we identified as hybrid stars appearin the catalogue by Debosscher et al. (2011) as “miscellaneous”or as " Sct, !Dor, &Cep, or SPB stars. The work presented in thispaper will provide valuable feedback and information to refinethe automated supervised classification procedure developed byDebosscher et al. (2009).

6.2. Other classes

About 63% of our sample is recognized as " Sct, !Dor, or hy-brid star. Table 4, in the on-line version of the paper, gives anoverview of the “classification” of the remaining 37% of thestars. For each star (KIC ID) the associated classification (Class)and a flag (Flag) indicating a high risk on light contamination bya neighbouring star (• if there is a contamination factor >0.15),are given. Table 4 includes stars that show no clear periodic vari-ability on timescales typical for "Sct and !Dor pulsators (“. . . ”,or “solar-like”), stars that exhibit stellar activity and show a ro-tationally modulated signal (“rotation/activity”), binaries (“bi-nary” or eclipsing binary “EB”), B-type stars (“Bstar”), can-didate red giant stars (“red giant”), Cepheids (“Cepheid”), andstars whose light is contaminated by another star (“contami-nated”). Although the observed ranges in Te! and log g includetypical values for RR Lyr stars (see Fig. 2), we did not find any

in our sample, but there are $40 such stars observed by Kepler,which are studied separately (Kolenberg et al. 2010; Benko et al.2010). Unclear cases mostly show a behaviour that might be re-lated to rotation and are hence also labelled “rotation/activity”.We also assigned the candidate !Dor stars for which less thanthree significant peaks were detected to this category. The lightcurve and frequency spectra of a few examples of these otherclassifications are given in Figs. 6 and 7.

One hundred and twenty-one stars do not show an obvi-ous periodicity in the expected range for !Dor and "Sct stars,or have an unresolved frequency spectrum within the availabledataset. The star KIC 9386259 (Fig. 6, panel a) is an example ofa star showing no clear periodicity. Furthermore, we used the la-bel “. . . ” for some stars for which less than three significant fre-quencies were detected (e.g. KIC 11509728 and KIC 11910256).We investigated the stars for signatures of solar-like oscillationsand identified 75 candidate solar-like oscillators (“solar-like”,see Table 4).

We identified seven B-type stars and 44 red giant stars in thesample. The giant stars show an envelope of frequencies withamplitudes up to 100"200 ppm in the region 0.5"5 d"1, as il-lustrated by KIC 2584202 (Fig. 6, panel b). Among the B-typestars, we recognized five SPB stars and one candidate &Cep star.

Within the sample we identified at least 39 binaries, includ-ing 28 EBs. In Table 4 the binary stars are labelled “binary”,or “EB” for an EB. If the variability of one of the components

A125, page 8 of 70

Page 9: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 5. Similar figure as Fig. 3, but for five candidate hybrid stars. a) KIC 3119604; b) KIC 2853280; c) KIC 9664869; d) KIC 9970568;e) KIC 3337002. The two top panel a)"b) are "Sct frequency-dominated stars, and the two bottom panels d)"e) are !Dor frequency-dominatedstars.

is identified as typical for one of the three groups outlinedin Sect. 6.1, we also indicated this in Table 4. Panels (c)"(e)of Fig. 6 show examples of EBs. An interesting target isKIC 11973705, because it most likely is a binary with a "Sctand SPB component (see also Balona et al. 2011b). For threestars reported in the literature as EBs (Pr!a et al. 2011; Slawsonet al. 2011; Hartman et al. 2004), KIC 2557115, KIC 5810113,and KIC 1432149, we find no clear evidence of their eclipsingnature in the Kepler lightcurves. In case of KIC 1432149, pre-sented by Hartman et al. (2004) as an EB with period 9.3562 d,we cannot confirm its eclipsing nature or its orbital period, andwe suspect that this target has been misidentified as an EB.

Several stars show an irregular light curve typical of stellaractivity, or a clearly rotationally modified signal (panels (a)"(c)of Fig. 7). It is also not impossible that low-amplitude pulsat-ing !Dor star candidates are hidden among the stars labelledas “rotation/activity” in Table 4. Namely, when only one or twoof their pulsation frequencies reach the current detection thresh-old, they are not yet assigned to a pulsation group. A possible!Dor candidate is given in panel (d) of Fig. 7.

In some cases the light curves look very peculiar, andthe origin of the variability is not clear. This is the casefor KIC 3348390 (panel (e) of Fig. 7) and KIC 4857678,for instance.

We discovered several interesting targets among the 750 starsof the sample. Dedicated studies of groups of individual starswill be presented in forthcoming papers. Below, we will sort thestars into di!erent classes.

7. Characterization of the different classes

The classification described in the previous section results inthe following distribution. A total of 63% of the sample can beidentified as !Dor, "Sct or hybrid stars: 27% are classified as"Sct stars (206 stars), 23% as hybrid stars (171 stars; of which115 stars are "Sct-dominated and 56 stars are !Dor-dominated),and 13% as !Dor stars (100 stars). A striking result is that al-most a quarter of the sample, i.e. 171 stars, shows hybrid be-haviour. This is in sharp contrast with the results obtained fromground-based observations, where so far only three candidate!Dor-"Sct hybrid stars have been discovered. The far superiorprecision of the space data opens a new window in detectinglow amplitude variations. This result was already hinted at byGrigahcène et al. (2010) and Hareter et al. (2010), but the quan-tification by means of this sample is remarkable.

Of the remaining 37% of the sample, a considerable number(121 stars, 16%) do not show clear variability with periods in theexpected range for !Dor and "Sct stars. Among this group are

A125, page 9 of 70

Page 10: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Fig. 6. Similar figure as Fig. 3, but for stars that were not assigned to the groups of " Sct, !Dor or hybrid stars. a) KIC 9386259, no clear periodicsignal detected; b) KIC 2584202, red giant star; c) KIC 5197256, EB or ellipsoidal variable with a "Sct component; d) KIC 3230227, EB with a!Dor component; e) KIC 9851142, EB with most likely a !Dor component.

75 candidate solar-like oscillators. Our sample has seven B-typestars (1%) and 44 stars (6%) are identified as red giant stars.One Cepheid turned out to be among the sample. About 8% ofthe sample shows stellar activity, often manifesting itself by arotationally modulated signal.

At least 5% of the sample stars are identified through theanalysis of their light curve as binary or multiple systems, ofwhich 3.5% show eclipses. When we also consider the knownbinaries from the literature (Table 1), we arrive at a binary rateof 12% within the sample. The number of binary detectionsis only a fraction of what is expected. The binary rate amongA-F type stars in general and "Sct stars in particular is estimatedto be at least 30% (Breger & Rodríguez 2000; Lampens & Bo"n2000). Several additional stars are expected to be part of multi-ple systems with possibly much longer periods than the availableKepler time span. The percentage of EBs in our sample is high.Pr!a et al. (2011) reported a 1.2% occurence rate of EBs amongthe Kepler targets.

Figure 8 shows the stars that are not assigned to one of the"Sct, !Dor or hybrid star groups in a (Te!, log g)-diagram. Thesolid thick black and light grey lines mark the blue and red edgeof the observed instability strip of " Sct and !Dor stars, respec-tively (Rodríguez & Breger 2001; Handler & Shobbrook 2002).Owing to the possibly incorrect separation of the binary com-ponent’s contribution, we considered the physical parameters of

the binaries as insu"ciently constrained and omitted them. Thesame holds for the B-type stars, which are much hotter than theTe! region shown here. The stars that show no clear periodicvariability on timescales typical for "Sct and !Dor pulsators(open triangles) and stars that exhibit stellar activity (bullets)are found along the MS and in more evolved stars. The loca-tion of the only Cepheid in our sample is marked by a cross.The candidate red giants (open squares) are all but one found inthe expected region of the (Te!, log g)-diagram. This implies thatthe KIC photometry separates giant from MS stars well.

7.1. Characterization of stars that show no clear periodicvariability

We now focus on the properties of the 121 stars that show noclear periodic variability in the !Dor and "Sct range of frequen-cies to understand why no oscillations are detected. Figure 9presents the distribution in Te! (top left), log g (top right),Kp (bottom left), and total time span #T , expressed in d, of theKepler light curves (bottom right).

The cool boundary of the observational instability strip for!Dor stars is located around Te! = 6900 K. At least4 78% ofthe 121 stars have cooler temperatures, and hence no A-F typevariability is expected. About 75 stars are identified as candidate4 For 11% of the 121 stars we have no information on Te! or log g.

A125, page 10 of 70

Page 11: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 7. Similar figure as Fig. 3, but for stars that were not assigned to the groups of "Sct, !Dor or hybrid stars. Stellar activity/rotational modula-tion: a) KIC 8748251; b) KIC 8703413 and c) KIC 11498538; no clear classification: d) KIC 12062443; and e) KIC 3348390.

solar-like oscillators. However, 10% of the 121 stars that showno clear periodicity are located inside the instability strip of!Dor or "Sct stars5 (see also Fig. 8). Additional investigation isneeded to confirm that these stars do not show variability, whichwould imply that non-variable stars exist in the instability strip.

Sixty percent (71 stars) of our non-variable stars are fainterthan Kp = 12 mag, and 18% are fainter than Kp = 14 mag.The faintness of the star most likely has an impact on the(non-)detection of periodicities. To quantify this, we countedthe fraction of apparently non-periodic stars per magnitude binfor the full sample of 750 stars. The number of stars thatshow no clear peridodicity increases dramatically towards faintstars: the fraction is only 2% for magnitude Kp = 9 mag, 5% forKp = 10 mag, 12% for Kp = 11 mag, 15% for Kp = 12 mag,41% for Kp = 13 mag, and 68% for Kp > 14 mag. The fainterthe star, the more di"cult it becomes to detect periodicities. Ouranalysis results, which were obtained by only considering am-plitudes above 20 ppm, lead us to suspect that the Kepler detec-tion limit of A-F type low-amplitude oscillations ((20 ppm) liesaround Kp = 14 mag (see also Sect. 7.2).

We find no evidence for a selection e!ect towards stars witha short time span in the available Kepler time series. The rightpanel of Fig. 9 shows that also several time series with long time

5 As demonstrated in Sect. 7.2, a revision of the current instability stripis required.

spans do not show clear variability. Also, the observing modehas no obvious influence on the (non-)detection of oscillations.Fifty-four percent of the 121 stars have only LC data, while 46%have only SC data.

To summarize, stars that show no clear periodic variationsare generally the cooler and fainter stars of the sample. We donot find evidence for a bias towards the total time span of theavailable light curve or towards the observing mode (LC ver-sus SC).

7.2. Characterization of "Sct, !Dor, and hybrid stars

7.2.1. The (Teff, log g)-diagram

The current ground-based (GB) view on the positions of the"Sct and !Dor classes in the (Te!, log g)-diagram (parame-ters are taken from the literature6) is presented in panel (a) ofFig. 10. A comparison of log g values derived from Geneva pho-tometry and from other sources (photometry and spectroscopy)

6 Rodríguez & Breger (2001); Rodríguez et al. (2000); Henry & Fekel(2005); Poretti et al. (1997); Breger et al. (1997); Zerbi et al. (1997,1999); Aerts et al. (1998); Kaye et al. (1999b); Gray & Kaye (1999);Eyer & Aerts (2000); Guinan et al. (2001); Aerts (2001); Martín et al.(2003); Mathias et al. (2004); Rowe et al. (2006); Bruntt et al. (2008);Cuypers et al. (2009); Uytterhoeven et al. (2008); Catanzaro et al.(2010, 2011).

A125, page 11 of 70

Page 12: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Fig. 8. (Te! , log g)-diagram with stars that show no clear periodic vari-ability on timescales typical for "Sct and !Dor pulsators (open trian-gles), stars identified as red giants (open squares), stars that exhibit stel-lar activity (bullet), and a Cepheid (cross). The cross at the right topcorner represents the typical error bars on the values: 290 K for Te!and 0.3 dex for log g. The solid thick black and light grey lines markthe blue and red edge of the observed instability strips of " Sct and!Dor stars, as described by Rodríguez & Breger (2001) and Handler &Shobbrook (2002), respectively. In the on-line version of the paper theopen squares, open triangles, bullets, and crosses, are red, blue, black,and black, respectively.

Fig. 9. Distribution in Te! (top left), log g (top right), Kepler magni-tude Kp (bottom left), and total time span #T of the Kepler light curves(bottom right) of the 121 stars that show no clear periodic varibility. Thenumber of stars belonging to each bin is given on the Y-axis.

indicates a systematic di!erence of about 0.4 dex for log g val-ues above 4.35 dex as calculated from the Geneva photometry(Cuypers & Hendrix, priv. comm.). Therefore we have correctedthe values based on Geneva photometry. Evidently, the "Sct and!Dor stars occupy distinct locations in the (Te!, log g)-diagram,with a small overlap region.

Panel (b) of Fig. 10 shows a di!erent picture. Here the "Sct,!Dor, and hybrid stars from the Kepler sample are plotted. Weused the adopted values of Te! and log g, as given in Table 2. Thecross in the top right corner of the figure shows typical errors onthe values. The stars are scattered in the (Te!, log g)-diagram: the"Sct and !Dor stars are not confined anymore to the two re-gions that were clearly seen for the ground-based stars. Evenwhen considering the large error bars on the values, the scatter is

present. Kepler "Sct stars exist beyond the red edge of the insta-bility strip, while Kepler !Dor pulsations appear in both hotterand cooler stars than previously observed from the ground. TheKepler hybrid stars occupy the entire region between the blueedge of the "Sct instability strip and the red edge of the !Dor in-stability strip, and beyond. The position of the Kepler " Sct and!Dor stars suggests that the edges of the so far accepted observa-tional instability strips need to be revised. However, we need ac-curate values of Te! and log g for all stars to confirm this finding.

Because for most stars in our sample only KIC-based es-timates of Te! and log g are available, we selected the stars thathave reliable estimates of these parameters derived from ground-based spectra or multi-colour photometry (see Sect. 3). Fromthis selection, 69 are classified as belonging to one of the threegroups. The subsample of 69 stars is plotted in panel (c) ofFig. 10. The position of the stars in the (Te!, log g)-diagramconfirms the general findings described for the full sample.However, the scatter across the diagram of !Dor stars is lesspresent, but almost all !Dor candidates lie outside the obser-vational instability strip for !Dor stars. Ground-based observa-tions for the derivation of more precise values of Te! and log gare needed for all other stars to confirm the exact locations ofthe stars.

Panel (d) of Fig. 10 shows the Kepler stars assigned tothe three groups that have amplitudes higher than 1000 ppm(see Table 3), which approximately corresponds to amplitudeshigher than 1 mmag and hence might be observable from theground. We notice that the Kepler stars with ground-based ob-servable amplitudes also do not fit within the observational in-stability strips.

The left column of Fig. 11 presents an overview of the dis-tribution in Te! for the three groups of A-F type stars. The his-tograms related to " Sct, hybrid, and !Dor stars are colouredin dark grey, middle grey, and light grey respectively. The dis-tribution in Te! peaks around 7400 K, 7200 K, and 7000 Kfor "Sct, hybrid, and !Dor pulsators, respectively. Comparingthese values with the center of the observed instability strips byRodríguez & Breger (2001) and Handler & Shobbrook (2002),we find that a large part of the Kepler stars are concentrated nearthe overlap of the two instability strips, and that many mem-bers of the three groups coincide in the same region in the(Te!, log g)-diagram. It will be interesting to investigate whystars with similar values of Te! and log g in some cases pulsateas a " Sct star, and in others as a !Dor star, or as both. Anotherinteresting and puzzling result is that !Dor and "Sct pulsationsseem to be excited in a far wider range of temperatures then pre-viously expected.

The distribution in log g is similar for all classes. Most starshave log g values between 3.5 dex and 4.3 dex, with a peakaround log g = 3.9 dex. We point out that the log g values de-rived from the KIC for A-F type stars are known to have largeuncertainties, and only few stars have measurements from othersources. Without more stars with accurate values derived fromground-based observations we cannot draw any conclusions.

The distribution in Kepler magnitude Kp (bottom left,Fig. 2) is representative for the distribution in Kp for !Dor and"Sct stars. It illustrates that the cut-o! magnitude for the detec-tion of !Dor and "Sct type of variations with Kepler lies aroundKp = 14 mag. The majority of the sample stars have magnitudesin the range Kp = 10"12 mag.v sin i values are available for 41 stars of the subsam-

ple consisting of "Sct, !Dor and hybrid stars (see Table 2).Of the five !Dor stars, four have v sin i values above 90 km s"1,and one has v sin i = 15 km s"1. Of the sixteen " Sct stars,

A125, page 12 of 70

Page 13: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 10. a) (Te! , log g)-diagram of the "Sct, !Dor, and hybrid stars detected from the ground (parameters taken from the literature).b) (Te! , log g)-diagram of the Kepler stars we classified as " Sct, !Dor, and hybrid stars in this paper. Open squares represent "Sct stars, as-terisks indicate !Dor stars, and hybrid stars are marked by bullets. The black cross in the right top corner shows typical errors on the values.c) (Te! , log g)-diagram of the subsample of 69 Kepler stars for which accurate Te! and log g values are available. The colour-codes are the sameas for panel b). d) (Te! , log g)-diagram of the subsample of Kepler stars that show pulsations with amplitudes higher than 1000 ppm (>1 mmag).Evolutionary tracks for MS stars with masses 1.4 M#, 1.7 M#, and 2.0 M# are plotted with grey dotted lines. The evolutionary tracks have beencomputed using the Code Liégeois d’Évolution Stellaire (CLES, Scuflaire et al. 2008). The input physics included is similar to the one used inDupret et al. (2005) with the following values for the modelling parameters %MLT = 1.8, %ov = 0.2 and Z = 0.02. The solid thick black and lightgrey lines mark the blue and red edge of the observed instability strips of "Sct and !Dor stars, as described by Rodríguez & Breger (2001) andHandler & Shobbrook (2002), respectively. In the on-line version of the paper the symbols representing the " Sct, !Dor, and hybrid stars are red,blue, and black, respectively.

eight stars have high v sin i values, six have moderate val-ues (40 < v sin i < 90 km s"1), and two low values(v sin i < 40 km s"1). Of the 20 hybrid stars almost allhave high v sin i values, with six stars having v sin i valuesabove 200 km s"1. Extrapolating these numbers to the full sam-ple, we expect that many stars in the sample are moderate-to-fastrotators.

7.2.2. Frequencies and amplitudes

Up to 500 non-combination frequencies are detected in theKepler time series of a single star (see Table 3). These largenumbers of frequencies are in sharp contrast with the small num-ber of frequencies observed from the ground, e.g. up to 79 pul-sation and combination frequencies for the "Sct star FG Vir(e.g. Breger et al. 2005) and up to 10 frequencies in the !Dor hy-brid candidate HD 49434 (Uytterhoeven et al. 2008), but are

commonly seen in space observations because of their higherprecision and sensitivity to low-amplitude variations (e.g. Porettiet al. 2009; García Hernández et al. 2009; Chapellier et al. 2011).However, it needs to be carefully checked whether all of the ap-parent individual frequencies are of pulsational origin.

For the majority of stars (66%), less than 100 frequencieswere found, and 10% of the stars show variations with more than200 frequencies. If we look at the extreme cases we find that for29 stars (6%) fewer than 10 frequencies were detected, while for5 stars (1%) more than 400 frequencies were found. The middlepanel of Fig. 11 shows the distribution of the number of detectedfrequencies for the "Sct (top, dark grey), hybrid (middle, middlegrey), and !Dor (bottom, light grey) stars. The highest numberof frequencies are found for hybrid stars. It is worth mentioningthat the number of detected frequencies versus Te! follows a dis-tribution that peaks near 7700 K, 7500 K, and 7000 K for "Sct,hybrid, and !Dor stars, respectively. More modes are excited

A125, page 13 of 70

Page 14: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Fig. 11. Distribution in Te! (left column), number of detected (independent) frequencies (middle column) and highest amplitude (ppm, in logarith-mic scale) (right column), for the three groups of A-F type stars: " Sct stars (top; dark grey), hybrid stars (middle; middle grey), and !Dor stars(bottom; light grey). The number of stars belonging to each bin (N) is indicated on the Y-axis.

near the centre of the "Sct instability strip. For the hybrid and!Dor stars most detected frequencies are found towards the rededge of the (overlap in the) instability strip.

The right panel of Fig. 11 shows the distribution ofthe highest measured amplitude in ppm logarithmic scale(log(Amplitude)) for the di!erent groups using the same colour-code as before. The range in highest amplitude measured is 40 to155 000 ppm. For about 59% of the stars the highest amplitudeis lower than 2000 ppm. Only 16 stars (3.5%) show variabilitywith highest amplitudes below 100 ppm, while 26 stars (5%)have amplitudes above 10 000 ppm. In general, higher ampli-tudes are detected in "Sct pulsators than in !Dor stars. We pointout that the origin of high peaks detected in !Dor stars, e.g. theamplitude of 23 000 ppm in the star KIC 7304385, is most likelyrelated to the rotation of the star. It is worth mentioning thatamplitudes above 10 000 ppm are also detected in faint targets.The highest amplitudes are found for stars within the tempera-ture range Te! = 6600"7100 K, which is the cool part of theinstability strips.

We detected "Sct frequencies between 4 and 80 d"1. Wefound indications that a handful of stars vary with even shorterperiods. However, these short periods need to be confirmed bymeans of a careful investigation of the specific frequency spec-tra, which is beyond the scope of this paper.

When considering the " Sct stars and hybrid classes, whichamount to atotal of 375 stars, we find that 56% shows an upperfrequency limit between 40 and 70 d"1. Only 10% of the "Sct

and hybrid stars have frequencies up to 80 d"1, and 9% onlyshow variations with frequencies lower than 20 d"1. We note that!Dor-dominated hybrids that show variations with frequencieshigher than 60 d"1 are rare (three stars in our sample).

The majority of the hybrid stars detected in the Kepler datashow all kinds of periodicities within the !Dor and "Sct range(see Cols. 6 and 7 in Table 3 which give the frequency range ofthe detected frequencies in the !Dor and "Sct domains). Thisobservational fact is interesting because from a theoretical pointof view no excited modes are expected between about 5 and10 d"1, i.e. the so-called “frequency gap” (see, e.g. Grigahcèneet al. 2010). Only for five hybrid stars a “frequency gap” is ob-served7. Possible explanations for the absence of gaps, within thepresent non-adiabatic theories, are that the frequencies withinthe gap are high-degree and/or rotationally split modes (Bouabidet al. 2009).

8. A first step towards understanding the relationbetween !Sct, "Dor, and hybrid stars

As presented in the previous section, it is not trivial to distin-guish between the three groups of variable A-F type stars de-fined in Sect. 6.1. The relation between the three groups is cur-rently unclear as well because "Sct, !Dor, and hybrid stars

7 The six hybrid stars that show a “frequency gap” are: KIC 3851151,KIC 4556345, KIC 7770282, KIC 9052363, and KIC 9775454.

A125, page 14 of 70

Page 15: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

coincide in the (Te!, log g)-diagram (Fig. 10). Driven by the ideato find observables based on physical concepts that allow insightin the di!erent internal physics of the three types of stars, weconstructed two new observables that can provide an alterna-tive way to improve our understanding of the relation betweenthe three groups. We point out that several observational pa-rameters can be found that reflect the di!erent inherent prop-erties of the three groups in one way or another. For instance,"Sct stars pulsate with shorter periods, and are generally hot-ter than !Dor stars. A combination of these parameters willlead to a di!erentiation of the groups, such as for instancea (Te!, fmax)-diagram, with fmax the frequency associated to thehighest amplitude mode. However, we emphasize that our aimis to find observables that can be directly related to the internalphysics of the stars.

According to the current instability theories, which need tobe revised following the results presented in this work, the maindriving process of the oscillations in "Sct stars is related to theopacity variations in the ionization zones (Unno et al. 1989).These zones are located in the region where the main energytransport mechanism is convection and where a small quantity ofenergy is transported by radiation. The total amount of drivingenergy going into the mode is directly related to the radiative lu-minosity in this zone, and this latter quantity is a function of theconvective e"ciency. Therefore, we expect a relation betweenthe energy of the observed modes and the convective e"ciencyof the outer convective zone. We searched for this relation andconstructed two observables, energy and e!ciency, that are es-timates of the energy and the convective e"ciency, using theavailable observational data.

8.1. Energy

The kinetic energy of a wave is given by

Ekin =12

f ()))(A*)2, (2)

where f is a function of the stellar density )), A is the ampli-tude of the oscillation, and * is the pulsation frequency. Usingthe available observational data, we construct the following ob-servable that we call energy, which is a first approximation andestimate of the kinetic energy of the wave:

energy * (Amax*max)2, (3)

where Amax and *max refer to the highest amplitude mode of thestar (in ppm), and associated frequency (in d"1). The pulsationamplitude is a function of the observed amplitude and the rela-tive variation of the flux, and is given by the expression (Moya& Rodríguez-López 2010):

#R/R = " #mln(5 + 10dT )

, (4)

where #RR is the relative pulsational amplitude, #m the observed

magnitude variation of the mode, and dT is given by

dT ="Te!

Te!/+rr, (r = R), (5)

with +r the variation in radius of the mode, and dT is evaluatedat the surface of the star (r = R).

Non-adiabatic calculations of a representative model of a hy-brid pulsating A-F type star including time dependent convec-tion (Grigahcène et al. 2005) show that the di!erence between

Fig. 12. Distribution in log(energy) (right), and log(e!ciency) (left) forthe "Sct (top, dark grey), hybrid (middle, middle grey), and !Dor (bot-tom, light grey) stars. The number of stars belonging to each bin (N) isindicated on the Y-axis.

the predicted dT value of asymptotic g-modes (!Dor stars) andlow-order p-modes ("Sct stars) is around one order of magni-tude or less, where the "Sct stars have higher values. Therefore,we can directly use the observed magnitude variation as a mea-surement of the radial amplitude variation. That we are using anapproximation does not change the conclusions of the presentstudy, because the observed di!erences are larger than two or-ders of magnitude (see Figs. 12 and 13).

The right column of Fig. 12 shows the distribution inlog(energy) for the "Sct (top, dark grey), hybrid (middle, middlegrey), and !Dor (bottom, light grey) stars. Clearly, the weight ofthe distribution is located in the region log(energy) > 8 for starsdominated by frequencies in the " Sct domain, and in the regionlog(energy) < 8 for stars with dominant !Dor pulsations.

8.2. Efficiency

In the introduction of this section we pointed out that a relationbetween the convective e"ciency and mode excitation can exist.Recent studies on convective e"ciency of the outer convectivezone of F-G-K stars using 3D models show that the convectivee"ciency is related to the position of the star in the Hertzsprung-Russell (HR-) diagram (Trampedach & Stein 2011). To constructan observable related to the convective e"ciency that can bedescribed with only variables related with the position in theHR-diagram, we found inspiration in the analytic descriptionof the convective energy given by the mixing length theory8

8 In analogy to the mean free parameter in gas kinetic theory, the mix-ing length is defined as the mean distance over which a fluid bulb con-serves its properties. Generally, the mixing-length is assumed to be pro-portional to the pressure-scale height by a factor % that is usually calledmixing-length parameter.

A125, page 15 of 70

Page 16: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Fig. 13. Observable log(energy) plotted versus log(e!ciency) for "Sct (open squares) and !Dor (asterisks) stars only (top), and for hybrid starsas well (bullets) (bottom). The left panels include all 480 Kepler stars that are assigned to one of the three groups. The right panels show the49 stars for which reliable values of Te! and log g are available. In the on-line version of the paper the symbols representing the "Sct, !Dor andhybrid stars are red, blue, and black, respectively. The cross in the right bottom corner of the top left panel represents the typical error bars on thevalues: 0.04 dex and 0.12 dex for log(energy) and log(e!ciency), respectively.

(Böhm-Vitense 1958). There, the convective e"ciency,$, isdefined as

$ =

#A2

a0(+rad " +)

$1/3, (6)

with a0 a constant, +rad and + the radiative and real temperaturegradient, respectively, and

A $ cp#p)cs%2

9(T 3g,

2$1(7)

(see Cox & Giuli 1968).This quantity, which measures the ratio between the convec-

tive and radiative conductivity, depends on a large number ofphysical variables: the specific heat capacity at constant pres-sure cp, the opacity #, the pressure p, the stellar density ), thesound velocity cs, the mixing length parameter %, the Stephan-Boltzmann constant (, the temperature T , the gravity g, and thefirst adiabatic coe"cient $1. Because we only have informationon a limited number of observational variables, our estimate of

the quantity is only an approximation. Inspired by these equa-tions, we searched for the combination of temperature and grav-ity that empirically provided the best means to separate between!Dor and "Sct stars (see statistical test below), and define theobservable e!ciency as

e!ciency * (T 3e! log g)"2/3 $ $. (8)

Because the e"ciency of the convective zone is expected to behigher for !Dor stars than for "Sct stars, the observable e!-ciency should have a higher value for !Dor stars than "Sct stars.This behaviour is indeed observed, as illustrated in the left panelof Fig. 12, where the distribution in log(e!ciency) is given. Themajority of "Sct stars have values log(e!ciency) < "8.1 dex,while the histograms for !Dor pulsators peak in the regionlog(e!ciency) > "8.1 dex.

8.3. Efficiency versus energy

When we plot the two new observables, log(energy) versuslog(e!ciency), the groups of "Sct and !Dor stars are fairlywell separated (see top panels Fig. 13). A log(energy) value

A125, page 16 of 70

Page 17: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

of 8 leaves 90% of the " Sct and !Dor stars separated. Thebottom panel of Fig. 13 shows the same diagram with valuesfor the hybrid stars included, using the same colours and sym-bols as before. Typical errors on the values are 0.04 dex and0.12 dex for log(energy) and log(e!ciency), respectively. Thehybrid stars are placed in the intermediate region. We observedthat "Sct (!Dor) dominated hybrids fall in the same region asthe " Sct (!Dor) stars.

We performed a Mann-Whitney U test with an adaptedp-value (p = 0.0166) according to the closed-test principle de-scribed in Horn & Vollandt (1995), to statistically investigate ifthe mean of the distribution in log(energy) and log(e!ciency) isdi!erent for the three di!erent groups. The test shows that thedi!erence in the mean of the distributions in both log(energy)and log(e!ciency) is statistically significant for all groups.However, the apparent separation in log(e!ciency) becomes lessevident when we take the considerable error bars into account.We also performed a '2 test (as described by Press et al. 1992) todetermine if the distributions themselves were di!erent. All dis-tributions are statistically significant, save for the !Dor versushybrid star e!ciencies, where they are marginally similar. Thisconclusion holds even if we vary the Te! and log g values withinthe error ranges and recompute the e!ciencies or vary the inputsinto the energies. We point out once again that the definitionof e!ciency is only a rough estimate of the theoretical expres-sion for the convective e"ciency, and might – at this stage – notbe refined enough to display the separating power between thegroups we expect the convective e"ciency to have. In a follow-up investigation we will assess the goodness of approximationof our definition of e!ciency by comparison with values of theconvective e"ciency as given by Eq. (6), calculated for severalmodel stars, and finetune its definition.

The two new approximate observables energy and e!ciencyreflect the di!erent internal physics of oscillators with dominant"Sct pulsations and oscillators dominated by !Dor pulsations,and seem to allow us to distinguish between them. However,it needs to be further investigated if the two observables canbe considered as independent parameters. This, together with anexploration of the physical mechanisms behind the instabilityof these stars, is the topic of a forthcoming paper. The observ-ables energy and e!ciency are promising starting points to ex-plore the relation between "Sct, !Dor and hybrid stars, but needto be refined.

9. Summary, discussion, and future prospects

We analysed the Kepler light curves based on survey phasedata with time spans between 9 d and 322 d available throughKASOC and associated frequency spectra of 750 candidateA-F type stars in search for "Sct, !Dor, and hybrid pulsators.The main results are:

– The Kepler light curves of the sample of 750 candidateA-F type stars show a variety in variability behaviour.

– Observationally, we propose three main groups to describethe observed variety: !Dor, " Sct, and hybrid stars. The lattergroup includes both "Sct-dominated and !Dor-dominatedhybrid stars. About 63% of the sample are unambiguouslyassigned to one of the three groups.

– About 23% of the sample are hybrid candidates (171 stars,or 36% of the stars assigned to the three groups). Thisis in strong contrast with the number of hybrid candi-dates so far observed from the ground, but compatiblewith the first Kepler study of !Dor and "Sct variables by

Grigahcène et al. (2010). The far superior precision of theKepler space data opens a new window in detecting low-amplitude variations. Kepler will be ideal to study hybrid be-haviour in di!erent types of stars, such as roAp stars (Balonaet al. 2011a), sdB stars (Østensen et al. 2010), and B stars(Balona et al. 2011b).

– We presented a characterization of the stars in terms of num-ber of detected frequencies, frequency range, and typicalpulsation amplitudes, which provides valuable feedback formodels and instability studies. This is the first time that thiskind of information is available for a substantial sample ofstars. Up to 500 non-combination frequencies are detected inthe Kepler time series of a single star. The highest pulsationamplitude measured is 58 000 ppm. The shortest detected" Sct periods are about 18 min. We find that hybrid starsshow all kinds of periodicities within the !Dor and "Sctrange. In particular, the majority of hybrid stars shows fre-quencies between 5 and 10 d"1. From a theoretical point ofview, this result presents a number of challenges, because thecurrently accepted over-stability mechanisms cannot explainthe presence of pulsational modes in the wide frequencyranges observed with Kepler. It needs to be investigated ifand to what extent the presence of stochastic modes, high-degree, and/or rotationally split modes with high amplitudes,granulation and e!ects of convection can explain part of theunexpected observed modes.

– The location of !Dor and " Sct classes in the (Te!, log g)-diagram has been extended (Fig. 10). We find indications thatKepler " Sct stars exist beyond the red edge of the observa-tional instability strip, while Kepler !Dor pulsations seem toappear in both hotter and cooler stars than observed so far.The Kepler hybrid stars occupy the entire region betweenthe blue edge of the " Sct instability strip and the red edge ofthe !Dor instability strip and beyond. These results, if con-firmed by verification of the temperature and log g valuesin a more comprehensive sample, imply that the observa-tional instability strips need to be extended to accommodatethe Kepler " Sct and !Dor stars. From a theoretical pointof view, the overall presence of hybrid stars implies an in-vestigation of other pulsation mechanisms to supplement the# mechanism and convective blocking e!ect to drive hybridpulsations.

– Two new “observables” that reflect the di!erent internalphysics of " Sct and !Dor pulsators are introduced to in-vestigate the relation between the two types of pulsations(Fig. 13): (1) e!ciency, related to the convective e"ciencyof the outer convective zone, and a function of Te! and log g;and (2) energy, the driving energy of a mode, and a functionof the highest observed frequency amplitude and the associ-ated frequency. Both observables are empirical and are con-structed using only available measured variables. The im-pact and physical significance of the group separation in the(log(e!ciency), log(energy))-diagram needs to be investi-gated in more detail. The two new observables are a promis-ing starting point for further investigations of the relation be-tween " Sct, !Dor and hybrid stars.

– Our study indicates that Kp = 14 mag is a cut-o!magnitudefor detection of variations with amplitudes below 20 ppm inA-F type stars with Kepler.

– Sixteen percent of the sample stars show no clear variabil-ity within the expected range of frequencies for " Sct and!Dor stars. Faint and cool stars predominate this sample.Among the stars, we identified 75 candidate solar-like stars.No correlation between non-variability and the length of the

A125, page 17 of 70

Page 18: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

available dataset or the available cadence mode is found. Wefind indications for the presence of constant stars inside theinstability strips of A-F type pulsators.

– The remaining 21% of sample stars are identified as aCepheid, B-type stars, red giant stars, stars that show stellaractivity, or binaries. At least 12% of the sample are identi-fied as a binary or multiple system, based on investigationof the Kepler light curve or on input from the literature.Many long-period binaries are expected to be among the re-maining stars of the sample. 3.5% of the sample stars showseclipses. Several of the EBs have variable components, in-cluding " Sct, !Dor, and hybrid stars.

Clearly, space missions are changing the landscape of !Dor and"Sct pulsators. We aimed at a global analysis of the samplestars. A careful seismic analysis of individual stars is neededto confirm their classification, clarify the observed variety inpulsational behaviour, fully characterize the properties of the"Sct, !Dor, and hybrid groups, understand their relationship,clarify the driving mechanism(s) for each group, and elaborateon the variables energy and e!ciency. The observational re-sults with Kepler presented here open up several new questionsand theoretical challenges for the current models related to pul-sational instability, thermodynamics, and stellar structure. Wemention here some topics for further investigation.

To be able to place the stars confidently in the (Te!, log g)-diagram, estimate the projected rotational velocity, and deriveaccurate abundances, at least one high-resolution spectrum isneeded for each star. To this end, an observational campaignis ongoing (Uytterhoeven et al. 2010a,b). Most stars of the"Sct, !Dor, and hybrid stars in our sample with magnitudeKp ( 10.5 mag have recently been observed or are scheduled tobe observed in the coming months. However, 70% of the stars inTable 3 are fainter than magnitude Kp = 10.5 mag, for which itis time-consuming and less practical to observe them with theavailable 2-m class telescopes that are equipped with a high-resolution spectrograph.

Because the oscillation modes in A-F type stars do not pro-duce evident frequency patterns in their mode spectra, as is thecase for solar-like oscillators, the identification of pulsationmodes benefits from high-resolution spectral or multi-colourtime series. Here we encounter limitations owing to the relativefaintness of the Kepler sample too. For instance, it is only fea-sible to e"ciently spectroscopically monitor the few brightest(Kp ( 9 mag) stars from the ground, while multi-colour pho-tometry can go a few magnitudes fainter. Moreover, it will beimpossible with the current instrumentation to detect the pulsa-tion amplitudes of the order of a few µmag from the ground.Therefore, only for a limited selection of the stars in Table 3,i.e. bright stars exhibiting high-amplitude variations, will it befeasible to organize ground-based follow-up campaigns.

For all other stars, we will have to rely on extractinginformation on the pulsation modes directly from frequencypatterns observed in the Kepler data. Quasi-periodic patternshave been observed before in "Sct stars (Handler et al. 1997;García Hernández et al. 2009). But in fast rotating stars therotation destroys regular frequency and period patterns ofp- and g-modes, which complicates the mode identification(e.g. Lignières et al. 2006; Ballot et al. 2010). For slowly rotat-ing g-mode pulsators (Vrot < 70 km s"1), a mode-identificationtechnique has been developed that relies only on accurate valuesof at least three frequencies (Frequency Ratio Method, Moyaet al. 2005; Suárez et al. 2005), which is ideal to apply tothe information extracted from the Kepler white light, without

colour or spectral information. Unfortunately, many of our starsare moderate-to-fast rotators (see Sect. 7.2). Hence, the modeidentification will be very challenging and will require moreinvestigation.

An individual analysis of the candidate hybrid stars is neededto confirm their hybrid status and to firmly characterize their pul-sation properties. The current theoretical instability models forhybrid stars need to be revised to be able to accommodate allstars that have been proposed as hybrid candidates in this pa-per. This includes a revision of the mechanisms that allow driv-ing of p- and g-modes in A-F type stars with a broad range oftemperatures. Additional processes that can be investigated withpossible e!ect on the driving are stochastic excitation (Houdeket al. 1999; Samadi et al. 2002), a convective driving mecha-nism similar to g-mode pulsations in white dwarfs (Goldreich &Wu 1999), a # mechanism-related e!ect presented by Gautschy& Lö%er (1996) and Lö%er (2000), and radiative levitation(Turcotte et al. 2000). Asteroseismic diagnostics have been stud-ied to find signatures of stochastic mechanisms at the origin ofthe instability of !Dor oscillators (Pereira et al. 2007). In thatwork, this possibility was not discarded, but continuous and pre-cise space data were not yet available. The Kepler time series ofthe sample of stars studied here will be an ideal new testbed forthis method.

The long, continuous time series that Kepler will deliver dur-ing its lifetime will unveil a large number of amplitudes at µmaglevel. This precision will open up opportunities to search forsignatures of granulation in the variable star light (Kallinger &Matthews 2010). Spectroscopically, convective signatures havebeen detected in the microturbulence and line broadening ofA-F type stars cooler than Te! = 10 000 K (Landstreet et al.2009).

Also the theoretical instability strips of the !Dor and"Sct pulsators need revision. As shown in Fig. 1, stars exhibitingpurely !Dor or "Sct pulsations seem to exist beyond the currentblue and red edge of the respective instability strips. Moreover, itis worth investigating if the evolutionary phase of !Dor stars canbe derived from properties in their frequency spectra, as is re-cently suggested by Bouabid et al. (2011), based on a theoreticalstudy of seismic properties of MS and pre-MS !Dor pulsators.

Another open question is the existence of non-variableA-F type stars inside the instability strips. So far, it is suggested(Poretti et al. 2003; Breger 2004) that all seemingly constantstars in the instability strip are low-amplitude pulsators. In thisstudy we find indications that non-variability exists within the in-stability strip, but a more in-depth investigation based on a morecomprehensive sample of stars with precise values of Te! andlog g is needed to confirm this.

Furthermore, candidate !Dor stars with only a few exciteddominant modes deserve to be looked at in more detail. The re-lation between rotation and pulsations is not yet clear. Moreover,the di!erentiation between pulsations and rotational variabilityproves to be very di"cult (Breger 2011; Monnier et al. 2010).In the pilot study by Balona et al. (2011d) it was suggestedthat pulsation and rotation periods might be very closely related.It needs to be investigated to which extent the rotation influencesthe excitation of the observed modes. To help this investigation,v sin i values are needed.

Constraints on important physical parameters that are cru-cial for seismic modelling, such as stellar radius and mass, canbe derived directly for pulsators in binary systems (e.g. Tangoet al. 2006; Desmet et al. 2010). Our sample consists of sev-eral binaries and eclipsing systems with (a) pulsating compo-nent(s) (see Table 4). Hence, these targets in particular are very

A125, page 18 of 70

Page 19: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

promising for dedicated ground-based follow-up observations,and a seismic analysis. Moreover, it will be interesting to in-vestigate the e!ect of tidal interactions on pulsation frequencies(e.g. Uytterhoeven et al. 2004; Derekas et al. 2011).

Four of the EBs with a candidate !Dor, "Sct, or hybrid com-ponent in our sample are known as chemically peculiar stars(see Table 1). Three candidate hybrid stars (out of 61 stars withknown spectral type), four candidate "Sct stars (out of 67 stars),and one candidate !Dor star (out of 25 stars) are also Ap orAm stars. So far, we detected both p- and g-mode pulsatorsamong the chemically peculiar stars. Balona et al. (2011c) statedthat the instability strip of pulsating Am type stars and "Sct starsdo not di!er much. With the current small number statistics, it isnot clear whether Ap/Am stars are indeed rare among !Dor stars(Handler & Shobbrook 2002). One of the open questions is ifchemical peculiarity is related to hybridity. The first discoveredhybrid HD 8801 (Henry & Fekel 2005) intruigingly turned outto be an Am star. In a recent abundance study by Hareter et al.(2011) one of the two studied hybrid stars is also confirmed asbeing a chemically peculiar star. Together with the results of thisstudy, this brings the total of known chemically peculiar hybridstars to five. There is currently no evidence for a direct link be-tween chemical peculiarity and hybrid behaviour, but a carefulabundance analysis of a representative sample of hybrid stars isneeded to confirm this.

Many more (candidate) " Sct, !Dor, and hybrid stars are ex-pected to be among the stars observed by Kepler. Debosscheret al. (2011) reported the discovery of many additional "Sctand !Dor candidates in the public Kepler Q1 data. Also, a con-siderable fraction of the host stars of the recently published1235 Kepler planet candidates (Borucki et al. 2011) turn outto be A-F type stars. Hence, we have promising prospects instudying and understanding the A-F type star variable behaviourin detail through a much larger and more complete sample ofA-F stars in the Kepler field when longer timestrings of Keplerdata will become publicly available. Kepler is definitely openingthe window towards the accurate characterization of pulsatingA-F stars.

Acknowledgements. We are grateful to Joanna Molenda-Zakowicz, JamesNemec and the anonymous referee for their suggestions and comments toimprove this paper. Funding for the Kepler mission is provided by NASA’sScience Mission Directorate. We thank the entire Kepler team for the devel-opment and operations of this outstanding mission. K.U. acknowledges finan-cial support by the Deutsche Forschungsgemeinschaft (DFG) in the frame-work of project UY 52/1-1, and by the Spanish National Plan of R&D for2010, project AYA2010-17803. A.M. acknowledges the funding of AstroMadrid(CAM S2009/ESP-1496). E.N. and A.P. acknowledge the financial supportof the NN 203 405139 and NN 203 302635 grant, respectively, from theMNiSW. The work by G.H. and V.A. was supported by the Austrian Fonds zurFörderung der wissenschaftlichen Forschung under grant P20526-N16. L.F.M.acknowledge financial support from the UNAM under grant PAPIIT IN114309.R.Sz. and L.L.K. have been supported by the “Lendület” program of theHungarian Academy of Sciences and the Hungarian OTKA grants K83790 andMB08C 81013. RSz was supported by the János Bolyai Research Scholarship ofthe Hungarian Academy of Sciences. SH acknowledges financial support fromthe Netherlands Organisation for Scientific Research (NWO). This research hasbeen funded by the Spanish grants ESP2007-65475-C02-02, AYA 2010-21161-C02-02 and CSD2006-00070. The research leading to these results has receivedfunding from the European Community’s Seventh Framework Programme(FP7/2007-2013) under grant agreement No. 269194. This research has madeuse of the SIMBAD database, operated at CDS, Strasbourg, France, and is partlybased on observations obtained at the Observatorio Astrónomico Nacional-SanPedro Mártir (OAN-SPM), Baja California, Mexico, at the Observatoire deHaute Provence, France, and at the Thüringer Landessternwarte Tautenburg,Germany. We acknowledge with thanks the variable star observations from theAAVSO International Database contributed by observers worldwide and used inthis research.

References

Abt, H. A. 1984, ApJ, 285, 247Abt, H. A. 2004, ApJS, 155, 175Abt, H. A., & Cardona, O. 1984, ApJ, 285, 190Aerts, C. 2001, ApJ, 553, 814Aerts, C., Eyer, L., & Kestens, E. 1998, A&A, 337, 790Allende Prieto, C., & Lambert, D. L. 1999, A&A, 352, 555Antoci, V., Handler, G., Campante, T. L., et al. 2011, Nature, acceptedBaglin, A., Auvergne, M., Barge, P., et al. 2006, in The CoRoT Mission, Pre-

Launch Status, Stellar Seismology and Planet Finding, ed. M. Fridlund, A.Baglin, J. Lochard, & L. Conroy, ESA Publications Division, Nordwijk,Netherlands, ESA SP-1306, 33

Ballot, J., Lignières, F., Reese, D. R., & Rieutord, M. 2010, A&A, 518, A30Balona, L. A., Krisciunas, K., & Cousins, A. W. J. 1994, MNRAS, 270, 905Balona, L. A., Cunha, M. S., Kurtz, D. W., et al. 2011a, MNRAS, 410, 517Balona, L. A., Pigulski, A., De Cat, P., et al. 2011b, MNRAS, 413, 2403Balona, L. A., Ripepi, V., Catanzaro, G., et al. 2011c, MNRAS, 414, 792Balona, L. A., Guzik, J., Uytterhoeven, K., et al. 2011d, MNRAS, in pressBenko, J. M., Kolenberg, K., Szabó, R., et al. 2010, MNRAS, 409, 1585Bidelman, W. P., Ratcli!, S. J., & Svolopoulos, S. 1988, PASP, 100, 828Böhm-Vitense, E. 1958, Zeitschrift für Astrophysik, 46, 108Borucki, W. J., Koch, D. G., Brown, T. M., et al. 2010, Science, 327, 977Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 728, 117Bouabid, M.-P., Montalbán, J., Miglio, A., et al. 2009, in Stellar Pulsation:

Challenges for Theory and Observation, ed. J. A. Guzik, P. A. Bradley(Melville, NY: AIP), AIP Conf. Proc., 1170, 477

Bouabid, M.-P., Montalbán, J., Miglio, A., et al. 2011, A&A, 531, A145Breger, M. 2000, in Delta Scuti and Related Stars, ed. M. Breger, & M. H.

Montgomery, ASP Conf. Ser., 210, 3Breger, M. 2004, in The A-Star Puzzle, ed. J. Zverko, J. "i#novsk$, S. J.

Adelman, & W. W. Weiss (Cambridge University Press), Proc. IAU Symp.,224, 335

Breger, M. 2011, Carnegie Observatories Astrophysics Series, 5, in press[arXiv:1104.4392]

Breger, M., Handler, G., Garrido, R., et al. 1997, A&A, 324, 566Breger, M., Lenz, P., Antoci, V., et al. 2005, A&A, 435, 955Breger, M., Balona, L., Lenz, P., et al. 2011, MNRAS, 414, 1721Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A. 2011, AJ,

in press [arXiv:1102.0342]Bruntt, H., De Cat, P., & Aerts, C. 2008, A&A, 478, 487Cannon, A. J. 1925, Ann. Astron. Obs. Harvard Coll., 100, 17Carrier, F., North, P., Udry, S., & Babel, J. 2002, A&A, 394, 151Catanzaro, G., Frasca, A., Molenda-Zakowicz, J., & Marilli, E. 2010, A&A, 517,

A3Catanzaro, G., Ripepi, V., Bernabei, S., et al. 2011, MNRAS, 411, 1167Chapellier, E., Rodríguez, E., Auvergne, M., et al. 2011, A&A, 525, A23Cox, J. P., & Giuli, R. T. 1968, Principles of stellar structure (New York: Gordon

and Breach)Cuypers, J., Aerts, C., De Cat, P., et al. 2009, A&A, 499, 967Debosscher, J., Sarro, L. M., López, M., et al. 2009, A&A, 506, 519Debosscher, J., Blomme, J., Aerts, C., & De Ridder, J. 2011, A&A, 529, A89Derekas, A., Kiss, L. L., Borkovits, T., et al. 2011, Science, 332, 216De Cat, P., Eyer, L., Cuypers, J., et al. 2006, A&A, 449, 281Desmet, M., Frémat, Y., Baudin, F., et al. 2010, MNRAS, 401, 418Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2004,

A&A, 414, L17Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2005,

A&A, 435, 927Eyer, L., & Aerts, C. 2000, A&A, 361, 201Floquet, M. 1970, A&AS, 1, 1Floquet, M. 1975, A&AS, 21, 25García, R. A., Hekker, S., Stello, D., et al. 2011, MNRAS, 414, 6García Hernández, A., Moya, A., Michel, E., et al. 2009, A&A, 506, 79Gautschy, A., & Lö%er, W. 1996, DSSN, 10, 13Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 2010a, PASP,

122, 131Gilliland, R. L., Jenkins, J. M., Borucki, W. J., et al. 2010b, ApJ, 713, 160Glebocki, R., & Stawikowski, A. 2000, AcA, 50, 509Goldreich, P., & Wu, Y. 1999, ApJ, 511, 904Grenier, S., Baylac, M.-O., Rolland, L., et al. 1999, A&AS, 137, 451Grigahcène, A., Dupret, M.-A., Gabriel, M., Garrido, R., & Scuflaire, R. 2005,

A&A, 434, 1055Grigahcène, A., Antoci, V., Balona, L., et al. 2010, ApJ, 713, L192Gray, R. O., & Kaye, A. B. 1999, AJ, 118, 2993Guetter, H. H. 1968, PASP, 80, 197Guinan, E. F., Bochanski, J. J., Depasquale, J. M., Ribas, I., & McCook, G. P.

2001, IAU Inform. Bull. Var. Stars, 5062, 1

A125, page 19 of 70

Page 20: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Guzik, J. A., Kaye, A. B., Bradley, P. A., Cox, A. N., & Neuforge, C. 2000, AJ,542, 57

Handler, G. 1999, MNRAS, 309, L19Handler, G. 2009a, AIPC, 1170, 403Handler, G. 2009b, MNRAS, 398, 1339Handler, G., & Shobbrook, R. R. 2002, MNRAS, 333, 251Handler, G., Pikall, H., O’Donoghue, D., et al. 1997, MNRAS, 286, 303Hareter, M., Reegen, P., Miglio, A., et al. 2010, AN, P49 [arXiv:1007.3176]Hareter, M., Fossati, L., Weiss, W., et al. 2011, ApJ, submittedHartman, J. D., Bakos, G., Stanek, K. Z., & Noyes, R. W. 2004, AJ, 128, 1761Hauck, B., & Mermilliod, M. 1998, A&AS, 129, 431Henry, G. W., & Fekel, F. C. 2005, AJ, 129, 2026Henry, G. W., Fekel, F. C., Kaye, A. B., & Kaul, A. 2001, AJ, 122, 3383Henry, G. W., Fekel, F. C., & Henry, S. M. 2005, AJ, 129, 2815Henry, G. W., Fekel, F. C., & Henry, S. M. 2011, AJ, 142, 39Hill, P. W., & Lynas-Gray, A. E. 1977, MNRAS, 180, 691Hill, S. J., & Schilt, J. 1952, Contributions from the Rutherford Observatory of

Columbia University New York, 32, 1Ho%eit, D. 1951, Harvard College Observatory Bulletin, 920, 32Horn, M., & Vollandt, R. 1995, in Multiple Tests und Auswahlverfahren

(Stuttgart: Gustav Fischer Verlag)Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough, D. O. 1999,

A&A, 351, 582Jenkins, J. M., Caldwell, D. A., Chandrasekaran, H., et al. 2010a, ApJ, 713, L120Jenkins, J. M., Caldwell, D. A., Chandrasekaran, H., et al. 2010b, ApJ, 713, L87Kallinger, T., & Matthews, J. M. 2010, ApJ, 711, L35Kaye, A. B., Handler, G., Krisciunas, K., Poretti, E., & Zerbi, F. M. 1999a, PASP,

111, 840Kaye, A. B., Henry, G. W., Fekel, F. C., & Hall, D. S. 1999b, MNRAS, 308,

1081Keiner, J., Kunis, S., & Potts, D. 2009, in Using NFFT 3 – a software library for

various nonequispaced fast Fourier transforms ACM Trans. Math. Software,36, 4

Kharchenko, N. V., & Roeser, S. 2009, VizieR On-line Data Catalog: I/280BKing, H., Matthews, J. M., Rowe, J. F., et al. 2006, CoAst, 148, 28Koch, D. J., Borucki, W. J., Basri, G., et al. 2010, ApJ, 713, L79Kolenberg, K., Szabó, R., Kurtz, D., et al. 2010, ApJ, 713, L198Kurucz, R. L. 1993, Kurucz CD-ROM 13 (Cambridge, USA: Smithonian

Astrophysical Observatory)Lafrasse, S., Mella, G., Bonneau, D., et al. 2010, in Optical and Infrared

Interferometry II., ed. W. C. Danchi, F. Delplancke, & J. K. Rajagopal, Proc.SPIE, 7734, 140

Lampens, P., & Bo"n, H. M. J. 2000, in Delta Scuti and Related Stars, ed. M.Breger, & M. H. Montgomery, ASP Conf. Ser., 210, 309

Landstreet, J. D., Kupka, F., Ford, H. A., et al. 2009, A&A, 503, 973Latham, D. W., Brown, T. M., Monet, D. G., et al. 2005, BAAS, 37, 1340Lehmann, H., Tkachenko, A., Semaan, T., et al. 2011, A&A, 526, A124Lenz, P., & Breger, M. 2005, CoAst, 146, 53Lignières, F., Rieutord, M., & Reese, D. 2006, A&A, 455, 607Lindo!, U. 1972, A&A, 16, 315Lö%er, W. 2000, in The Impact of Large-Scale Surveys on Pulsating Star

Research, ed. L. Szabados, & D. Kurtz, ASP Conf. Ser., 203, 447Macrae, D. A. 1952, ApJ, 116, 592Magalashvili, N. L., & Kumishvili, J. I. 1976, IAU Inform. Bull. Var. Stars, 1167,

1Malkov, O. Y., Oblak, E., Snegireva, E. A., & Torra, J. 2006, A&A, 446, 785Martín, S., Bossi, M., & Zerbi, F. M. 2003, A&A, 401, 1077Masana, E., Jordi, C., & Ribas, I. 2006, A&A, 450, 735Mason, B. D., Wyco!, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E.

2001, AJ, 122, 3466Mathias, P., Le Contel, J.-M., Chapellier, E., et al. 2004, A&A, 417, 189Molenda-Zakowicz, J., Frasca, A., & Latham, D. W. 2008, AcA, 58, 419Molenda-Zakowicz, J., Latham, D. W., Catanzaro, G., Frasca, A., & Quinn, S. N.

2011, MNRAS, 412, 1210Monnier, J. D., Townsend, R. H. D., Che, X., et al. 2010, ApJ, 725, 1192Moon, T. T. 1985, Comm. from the Univ. of London Obs., 78Moore, J. H. & Paddock, G. F. 1950, ApJ, 112, 48Moya, A., & Rodríguez-López, C. 2010, ApJ, 710, L7Moya, A., Suárez, J. C., Amado, P. J., et al. 2005, A&A, 432, 289Niemczura, E., Morel, T., & Aerts, C. 2009, A&A, 506, 213Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989Otero, S. 2007, Open European Journal on Variable stars, 72, 10Østensen, R. H., Silvotti, R., Charpinet, S., et al. 2010, MNRAS, 409, 1470Pereira, T. M. D., Suárez, J. C., Lopes, I., et al. 2007, A&A, 464, 659Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49Pigulski, A., Pojmanski, G., Pilecki, B., & Szczygie%, D. M. 2009, AcA, 59, 33Poretti, E., Koen, C., Martinez, P., et al. 1997, MNRAS, 292, 621Poretti, E., Garido, R., Amado, P. J., et al. 2003, A&A, 406, 203

Poretti, E., Michel, E., Garrido, R., et al. 2009, A&A, 506, 85Press, W. H., Teukolsky, S. A., Vettering, W. T., & Flannery, B. P. 1992,

Numerical Recipes, 2nd edn. (New York: Cambridge University Press)Pr!a, A., Batalha, N. M., Slawson, R. W., et al. 2011, AJ, 141, 83Reegen, P. 2007, A&A, 467, 1353Reegen, P. 2011, CoAst, in press [arXiv:1006.5081]Rodríguez, E., & Breger, M. 2001, A&A, 366, 178Rodríguez, E., López-González, M. J., & López de Coca, P. 2000, A&AS, 144,

469Rowe, J. F., Matthews, J. M., Cameron, C., et al. 2006, CoAst, 148, 34Samadi, R., Goupil, M.-J., & Houdek, G. 2002, A&A, 395, 563Sato, K., & Kuji, S. 1990, A&AS, 85, 1069Scargle, J. D. 1982, ApJ, 263, 835Scuflaire, R., Théado, S., Montalbán, J., et al. 2008, A&AS, 316, 83Shulyak, D., Tsymbal, V., Ryabchikova, T., Stütz, Ch., & Weiss, W. W. 2004,

A&A, 428, 993Ski!, B. A. 2007, Vizier On-line Data Catalog, 1, 2023Slawson, R. W., Pr!a, A., Welsh, W. F., et al. 2011, AJ, in press

[arXiv:1103.1659]Smalley, B., & Kupka, F. 1997, A&A, 328, 349Soubiran, C., Le Campion, J.-F., Cayrel de Strobel, G., & Caillo, A. 2010, A&A,

515, A111Stephenson, C. B. 1986, ApJ, 301, 927Strömgren, B. 1966, ARA&A, 4, 433Suárez, J. C., Moya, A., Martín-Ruíz, S., et al. 2005, A&A, 443, 271Szabó, R., Szabados, L., Ngeow, C.-C., et al. 2011, MNRAS, 413, 2709Tango, W. J., Davis, J., Ireland, M., et al. 2006, MNRAS, 370, 884Trampedach, R., & Stein, R. F. 2011, ApJ, 731, A78Tsymbal, V. 1996, ASPC, 108, 198Turcotte, S., Richer, J., Michaud, G., & Christensen-Dalsgaard, J. 2000, A&A,

360, 603Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial os-

cillations of stars (Tokyo: University of Tokyo Press)Uytterhoeven, K., Telting, J. H., Aerts, C., & Willems, B. 2004, A&A, 427, 593Uytterhoeven, K., Mathias, P., Poretti, E., et al. 2008, A&A, 489, 2213Uytterhoeven, K., Szabo, R., Southworth, J., et al. 2010a, AN, 331, P30

[arXiv:1003.6089]Uytterhoeven, K., Briquet, M., Bruntt, H., et al. 2010b, AN, 331, 993Vyssotsky, A. N. 1958, Publications of the Leander Mc Cormik Observatory of

the University of Virginia, Charlottesville, 13, VWalker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 1023Watson, C. L. 2006, SASS, 25, 47, AAVSO International Variable Star Index

VSX, Watson+, 2006"2010Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523Wright, C. O., Egan, M. P., Kraemer, K. E., & Price, S. D. 2003, AJ, 125, 359Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577Zerbi, F. M., Rodríguez, E., Garrido, R., et al. 1997, MNRAS, 292, 43Zerbi, F. M., Rodríguez, E., Garrido, R., et al. 1999, MNRAS, 303, 275

1 Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot;CEA, IRFU, SAp, Centre de Saclay, 91191, Gif-sur-Yvette, France

2 Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, 79104Freiburg im Breisgau, Germany

3 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife,Spain; Departamento de Astrofísica, Universidad de La Laguna,38205 La Laguna, Tenerife, Spaine-mail: [email protected]

4 Laboratorio de Astrofísica Estelar y Exoplanetas, LAEX-CAB(INTA-CSIC), PO BOX 78, 28691 Villanueva de la Cañada, Madrid,Spain

5 Centro de Astrofísica, Faculdade de Ciências, Universidade doPorto, Rua das Estrelas, 4150-762 Porto, Portugal

6 Los Alamos National Laboratory, XTD-2, Los Alamos, NM 87545-2345, USA

7 Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, 18080Granada, Spain

8 LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, 92195 Meudon, France

9 Valentian International University, Prolongación C/ José PradasGallen, s/n 12006 Castellón de la Plana, Spain

10 Astrophysics Group, Keele University, Sta!ordshire, ST5 5BG, UK11 Institut für Astronomie, Türkenschanzstraße 17, 1180 Wien, Austria12 Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716

Warsaw, Poland

A125, page 20 of 70

Page 21: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

13 South African Astronomical Observatory, PO Box 9, Observatory7935, South Africa

14 Instytut Astronomiczny, Uniwersytet Wroc%awski, Kopernika 11,51-622 Wroc%aw, Poland

15 Observatorio Astronómico Nacional, Instituto de Astronomía,UNAM, Ensenada B.C., Apdo. Postal 877, Mexico

16 CISAS, Padova University, via Venezia 15, 35131 Padova, Italy17 INAF - Astronomical Observatory of Padova, Vicolo Osservatorio

5, 35122 Padova, Italy18 UMR 6525 H. Fizeau, UNS, CNRS, OCA, Campus Valrose, 06108

Nice Cedex 2, France19 Instituut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200D,

3001 Leuven, Belgium20 Konkoly Observatory of the Hungarian Academy of Sciences, 1525

Budapest PO Box 67, Hungary21 INAF - Osservatorio Astronomico di Capodimonte, via Moiariello

16, 80131 Napoli, Italy22 Lab. d’Astrophysique de Toulouse-Tarbes, Université de Toulouse,

CNRS, 57 avenue d’Azereix, 65000 Tarbes, France23 Thüringer Landessternwarte Tautenburg, 07778 Tautenburg,

Germany24 Department of Astronomy, New Mexico State University, Las

Cruces, NM 88001, USA25 Astronomical Institute “Anton Pannekoek”, University of

Amsterdam, Science Park 904, 1098 XH Amsterdam, TheNetherlands

26 University of Birmingham, School of Physics and Astronomy,Edgbaston, Birmingham B15 2TT, UK

27 Department of Astronomy and Physics, Saint Marys University,Halifax, NS B3H 3C3, Canada

28 Observatoire de Genève, Université de Genève, 51 Ch. desMaillettes, 1290 Sauverny, Switzerland

29 Los Alamos National Laboratory, XCP-6, MS T-087, Los Alamos,NM 87545-2345, USA

30 Jeremiah Horrocks Institute of Astrophysics, University of CentralLancashire, Preston PR1 2HE, UK

31 Royal Observatory of Belgium, Ringlaan 3, 1180 Brussel, Belgium32 Department of Physics and Astronomy, University of Aarhus, bygn.

1520, Ny Munkegade, 8000 Aarhus C., Denmark33 Department of Astronomy, University of Texas, Austin, TX 78712,

USA34 Sydney Institute for Astronomy, School of Physics, A28, The

University of Sydney, NSW, 2006, Australia35 Bay Area Environmental Research Inst./NASA Ames Research

Center, Mo!ett Field, CA 94035, USA36 SETI Institute/NASA Ames Research Center, Mo!ett Field, CA

94035, USA

A125, page 21 of 70

Page 22: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e1.

Dat

abas

eof

750

Kep

ler

A-F

type

star

s.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0116

2150

1924

53.7

6+

3653

13.6

11.2

...

...

bina

ry44

232

321.

524

8.4

Q0–

Q1

Q4.

301

2947

5619

2541

.35+

3658

16.6

9.1

A235

BD+

3635

54bi

nary

1585

644

.41.

2Q

1Q

001

4321

4919

2529

.23+

3705

57.0

11.2

...

TY

C26

66-3

52-1

bina

ry1

4131

879

.64.

5Q

0–Q

1Q

2.1

0157

1152

1923

40.5

6+

3709

54.8

9.3

F035

BD+

3635

35bi

nary

4305

779

.65.

1Q

0–Q

1Q

2.1

0157

1717

1924

10.5

4+

3706

34.5

11.2

...

TY

C26

66-5

79-1

...

4441

832

1.5

248.

3Q

0–Q

1Q

4.3

0157

3064

1925

24.0

7+

3706

21.2

12.8

...

...

...

460

9.5

0.0

Q0

...

0171

8594

1923

19.3

7+

3716

21.3

10.4

...

TY

C26

66-7

51-1

...

4006

213

7.7

66.5

Q0–

Q1

Q2.

301

9954

8919

0433

.82+

3729

48.7

12.2

...

...

...

461

9.5

0.0

Q0–

Q1

...

0202

0966

1931

26.6

4+

3727

26.9

12.1

...

...

...

457

9.5

0.0

Q0–

Q1

...

0216

2283

1927

34.0

3+

3733

24.6

9.6

F235

BD+

3734

64bi

nary

3843

716

79.6

4.5

Q0–

Q1

Q2.

102

1634

3419

2833

.84+

3734

46.3

13.4

...

...

...

461

9.5

0.0

Q0

...

0216

6218

1930

57.0

5+

3730

35.8

9.5

F035

BD+

3734

90..

.39

459

137.

766

.5Q

0–Q

1Q

2.3

0216

8333

1932

44.5

9+

3735

36.2

10.1

...

TY

C31

35-2

03-1

...

1585

744

.41.

2Q

1Q

002

3001

6519

2316

.78+

3739

59.5

11.1

...

TY

C31

34-1

646-

1..

.49

244

44.2

1.2

Q0

Q1

0230

3365

1926

08.7

6+

3741

00.0

11.1

...

TY

C31

34-2

05-1

...

4394

679

.64.

5Q

0–Q

1Q

2.1

0230

6469

1928

52.0

6+

3736

41.4

12.6

...

...

...

462

9.5

0.0

Q0

...

0230

6716

1929

03.7

9+

3741

19.2

12.0

...

...

...

461

9.5

0.0

Q0

...

0231

0479

1932

24.5

8+

3740

21.6

10.8

...

...

...

460

9.5

0.0

Q0

...

0231

1130

1933

00.0

7+

3739

41.6

11.9

...

...

...

461

9.5

0.0

Q0

...

0242

3932

1905

59.6

9+

3746

42.6

13.0

...

...

...

462

9.5

0.0

Q0–

Q1

...

0243

9660

1922

17.7

6+

3743

23.2

11.6

...

...

...

4004

622

8.8

158.

5Q

0–Q

1Q

3.3

0244

3055

1925

31.0

8+

3746

05.9

13.4

...

...

...

462

9.5

0.0

Q0

...

0244

4598

1926

53.8

3+

3744

14.9

12.3

...

...

...

207

044

.21.

6Q

0–Q

1..

.02

5562

9719

0553

.09+

3750

27.9

12.5

...

...

...

460

9.5

0.0

Q0

...

0255

6387

1906

01.3

0+

3753

10.6

11.1

...

...

...

208

644

.21.

2Q

0–Q

1..

.02

5571

1519

0659

.52+

3749

16.3

12.6

...

...

bina

ry38

460

9.5

0.0

Q0

...

0255

7430

1907

22.8

7+

3748

57.2

11.5

...

...

bina

ry36

3857

379

.64.

5Q

0–Q

1Q

2.1

0255

8273

1908

24.8

4+

3753

38.9

11.3

...

...

...

3846

429

2.5

219.

4Q

0–Q

1Q

4.2

0256

8519

1920

03.9

4+

3752

27.4

11.3

...

BD+

3734

18a

...

5980

432

1.4

4.9

Q0–

Q4

Q4.

102

5696

3919

2046

.80+

3750

13.8

10.6

...

Cl*

NG

C67

91SB

G59

86N

GC

6791

3984

722

8.8

158.

6Q

0–Q

1Q

3.3

0257

1868

1922

17.6

2+

3753

08.4

8.7

A035

HD

1822

71..

.40

134

228.

815

8.5

Q0–

Q1

Q3.

302

5723

8619

2245

.89+

3753

02.9

13.3

...

...

...

207

344

.21.

2Q

0–Q

1..

.02

5751

6119

2517

.66+

3749

25.2

10.9

F035

BD+

3734

52bi

nary

199

944

.22.

7Q

0–Q

1..

.02

5782

5119

2751

.65+

3749

54.1

11.7

...

...

...

202

144

.22.

3Q

0–Q

1..

.02

5836

5819

3234

.58+

3751

32.0

12.6

...

...

...

463

9.5

0.0

Q0

...

0258

4202

1933

03.1

9+

3748

57.9

11.8

...

...

...

206

544

.21.

2Q

0–Q

1..

.02

5849

0819

3341

.47+

3750

41.7

10.8

...

...

bina

ry38

3809

829

2.5

219.

3Q

0–Q

1Q

4.2

0269

4337

1905

08.6

2+

3754

34.8

10.4

...

TY

C31

20-1

608-

1..

.40

233

137.

766

.4Q

0–Q

1Q

2.3

0270

7479

1920

33.1

0+

3759

54.0

11.2

...

TY

C31

34-8

33-1

...

4392

179

.64.

5Q

0–Q

1Q

2.1

0271

8596

1930

35.7

8+

3755

51.5

13.4

...

...

...

464

9.5

0.0

Q0

...

0272

0582

1932

21.1

9+

3759

09.0

11.4

...

...

...

4418

332

1.5

248.

4Q

0–Q

1Q

4.3

0283

4796

1906

47.6

2+

3804

32.4

12.5

...

...

...

461

9.5

0.0

Q0

...

0283

5795

1908

06.5

3+

3800

26.4

12.6

...

...

...

207

044

.21.

4Q

0–Q

1..

.02

8532

8019

2627

.98+

3802

05.2

11.0

...

TY

C31

34-9

2-1

...

4440

032

1.5

248.

3Q

0–Q

1Q

4.3

0285

5687

1928

31.2

0+

3801

40.7

10.3

...

TY

C31

34-1

0-1

...

462

9.5

0.0

Q0

...

0286

0123

1932

16.4

2+

3803

36.6

13.7

...

...

...

463

9.5

0.0

Q0

...

0296

9151

1902

17.7

6+

3811

27.8

11.9

...

...

...

460

9.5

0.0

Q0

...

A125, page 22 of 70

Page 23: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0297

0244

1903

42.3

4+

3808

14.2

12.5

...

...

...

463

9.5

0.0

Q0

...

0297

2401

1906

35.8

6+

3808

59.3

13.5

...

...

...

460

9.5

0.0

Q0

...

0297

5832

1911

01.9

9+

3808

56.6

12.6

...

...

...

209

044

.21.

2Q

0–Q

1..

.02

9876

6019

2357

.46+

3806

51.7

8.0

F216

,A335

HD

1826

34"

Sct2

4519

616

9.8

95.2

Q0–

Q1

Q3.

102

9897

4619

2549

.34+

3809

13.6

13.2

...

...

...

207

844

.21.

2Q

0–Q

1..

.02

9955

2519

3050

.23+

3811

41.6

13.2

...

...

...

464

9.5

0.0

Q0

...

0299

7802

1932

48.1

4+

3808

35.9

13.2

...

...

...

206

244

.21.

2Q

0–Q

1..

.03

0979

1219

0336

.72+

3812

08.2

9.4

A535

BD+

3733

24bi

nary

4537

810

9.5

35.3

Q0–

Q1

Q2.

203

1114

5119

2037

.54+

3815

08.2

13.5

...

...

...

463

9.5

0.0

Q0

...

0311

9604

1928

30.5

0+

3816

09.4

10.7

...

TY

C31

34-7

0-1

...

4754

726

2.8

187.

3Q

0–Q

1Q

4.1

0311

9825

1928

42.1

9+

3816

47.1

11.0

...

...

...

209

044

.21.

2Q

0–Q

1..

.03

2158

0019

0103

.65+

3818

24.3

13.2

...

...

...

207

044

.21.

6Q

0–Q

1..

.03

2175

5419

0351

.02+

3821

28.8

9.6

A535

BD+

3834

15bi

nary%

4042

613

7.7

66.3

Q0–

Q1

Q2.

303

2186

3719

0531

.68+

3820

07.4

10.6

...

TY

C31

20-5

64-1

...

4007

222

8.8

158.

5Q

0–Q

1Q

3.3

0321

9256

1906

27.5

3+

3821

13.9

8.3

A335

HD

1783

06..

.58

430

321.

432

.9Q

0–Q

4Q

3.2

0322

0783

1908

43.4

9+

3819

32.8

13.6

...

...

...

460

9.5

0.0

Q0

...

0322

2364

1910

59.5

4+

3821

19.9

11.1

...

TY

C31

21-1

831-

1..

.2

063

44.2

1.2

Q0–

Q1

...

0323

0227

1920

27.0

2+

3823

59.5

9.0

A535

HD

1818

50bi

nary

3848

466

44.2

1.2

Q0

Q1

0323

1406

1921

43.7

3+

3818

53.3

10.5

...

TY

C31

34-1

188-

1..

.45

158

169.

895

.2Q

0–Q

1Q

3.1

0324

0556

1931

15.9

8+

3818

46.4

10.3

...

TY

C31

35-6

07-1

...

4539

410

9.5

35.3

Q0–

Q1

Q2.

203

2454

2019

3558

.61+

3818

21.2

10.6

...

TY

C31

35-3

96-1

...

4013

522

8.8

158.

5Q

0–Q

1Q

3.3

0324

8627

1938

54.2

9+

3821

04.1

12.3

...

...

...

463

9.5

0.0

Q0

...

0332

7681

1908

12.4

8+

3829

02.3

11.3

...

TY

C31

20-1

051-

1bi

nary$

4439

932

1.5

248.

3Q

0–Q

1Q

4.3

0333

1147

1913

07.7

5+

3827

34.3

10.1

...

TY

C31

21-1

178-

1..

.15

791

44.4

1.2

Q1

Q0

0333

7002

1920

04.2

5+

3824

41.0

10.8

...

TY

C31

34-2

162-

1bi

nary

3868

129

2.5

219.

3Q

0–Q

1Q

4.2

0334

7643

1931

16.2

2+

3824

02.9

8.0

A235

HD

1841

05..

.45

121

109.

035

.4Q

0–Q

1Q

2.2

0334

8390

1932

00.6

2+

3824

18.0

11.4

...

TY

C31

35-1

35-1

puls

atin

g340

286

137.

766

.3Q

0–Q

1Q

2.3

0335

4022

1937

33.1

0+

3827

51.8

12.1

...

...

...

461

9.5

0.0

Q0

...

0335

5066

1938

29.6

6+

3825

24.9

13.6

...

...

...

464

9.5

0.0

Q0

...

0342

4493

1900

37.5

4+

3830

20.2

9.6

A535

BD+

3833

91..

.40

427

137.

766

.3Q

0–Q

1Q

2.3

0342

5802

1902

50.2

6+

3834

04.0

11.2

...

TY

C31

20-1

011-

1..

.43

321

79.6

4.5

Q0–

Q1

Q2.

103

4271

4419

0453

.21+

3835

24.4

13.4

...

...

...

460

9.5

0.0

Q0

...

0342

7365

1905

12.8

6+

3832

46.6

13.6

...

...

...

462

9.5

0.0

Q0

...

0342

9637

1908

38.0

4+

3830

31.8

7.7

kF2h

A9m

F318

HD

1788

75bi

nary

,Am

star

1400

631

0.5

4.5

Q1–

Q4

...

0343

7940

1919

22.0

1+

3831

49.4

8.5

F035

HD

1815

69..

.58

013

321.

432

.9Q

0–Q

4Q

3.2

0344

0495

1922

12.3

6+

3830

32.6

10.5

...

TY

C31

34-6

32-1

...

4514

016

9.8

95.2

Q0–

Q1

Q3.

103

4493

7319

3135

.98+

3830

34.6

12.7

...

...

...

206

244

.21.

2Q

0–Q

1..

.03

4496

2519

3149

.30+

3834

50.6

13.4

...

...

...

203

444

.21.

9Q

0–Q

1..

.03

4534

9419

3531

.73+

3834

54.4

9.6

A535

BD+

3836

66..

.40

408

137.

766

.3Q

0–Q

1Q

2.3

0345

7434

1939

18.8

6+

3832

18.4

12.4

...

...

...

462

9.5

0.0

Q0

...

0345

8097

1939

53.3

3+

3833

25.9

11.7

...

...

...

208

644

.21.

2Q

0–Q

1..

.03

4583

1819

4003

.91+

3835

51.6

12.8

...

...

...

209

044

.21.

2Q

0–Q

1..

.03

5259

5119

0034

.73+

3840

26.4

12.9

...

...

...

462

9.5

0.0

Q0

...

0352

8578

1904

56.7

8+

3838

56.5

13.5

...

...

...

461

9.5

0.0

Q0

...

0353

9153

1919

32.7

1+

3839

04.9

11.4

...

TY

C31

21-3

79-1

...

3988

913

7.7

66.3

Q0–

Q1

Q2.

303

5460

6119

2713

.94+

3838

19.2

10.9

...

...

...

462

9.5

0.0

Q0

...

0355

8145

1939

13.0

6+

3838

05.1

11.3

...

TY

C31

35-1

89-1

...

4395

831

0.5

248.

3Q

1Q

4.3

A125, page 23 of 70

Page 24: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0362

9080

1904

07.2

2+

3842

20.2

13.5

...

...

...

459

9.5

0.0

Q0

...

0363

3693

1911

21.6

5+

3843

48.4

12.6

...

...

...

463

9.5

0.0

Q0

...

0363

4384

1912

20.2

8+

3843

34.1

11.2

...

...

...

4385

479

.64.

5Q

0–Q

1Q

2.1

0364

3717

1923

43.7

5+

3847

30.2

12.9

...

...

...

463

9.5

0.0

Q0

...

0364

4116

1924

10.7

3+

3843

01.1

10.9

...

TY

C31

34-1

328-

1..

.38

681

292.

521

9.3

Q0–

Q1

Q4.

203

6555

1319

3553

.30+

3847

03.7

10.5

...

TY

C31

35-1

42-1

...

209

044

.21.

2Q

0–Q

1..

.03

6556

0819

3559

.16+

3844

45.3

11.4

...

...

...

4380

732

1.5

248.

3Q

0–Q

1Q

4.3

0366

3141

1942

39.1

7+

3843

05.7

13.2

...

...

bina

ry$

206

744

.21.

6Q

0–Q

1..

.03

7337

3519

0901

.92+

3853

59.6

8.4

F535

HD

1789

71..

.57

376

321.

435

.3Q

0–Q

4Q

2.2

0375

8717

1937

42.1

4+

3851

20.4

11.8

...

TY

C31

35-3

60-1

...

206

144

.21.

6Q

0–Q

1..

.03

7598

1419

3846

.25+

3851

32.5

10.7

G035

TY

C31

35-7

7-1

...

4538

210

9.5

35.3

Q0–

Q1

Q2.

203

7600

0219

3858

.01+

3852

43.6

10.6

...

TY

C31

35-7

08-1

...

4606

820

0.7

126.

4Q

0–Q

1Q

3.2

0376

0826

1939

48.2

2+

3853

47.9

8.8

A1V

17H

D18

5894

...

464

9.5

0.0

Q0

...

0376

1641

1940

30.2

4+

3851

59.9

11.0

A018

HD

2253

41..

.15

851

44.4

1.2

Q1

Q0

0383

6911

1908

30.0

5+

3854

42.7

12.5

...

...

...

208

944

.21.

2Q

0–Q

1..

.03

8508

1019

2624

.72+

3858

32.7

10.0

...

TY

C31

34-3

-1..

.15

860

44.4

1.2

Q1

Q0

0385

1151

1926

47.5

4+

3856

16.7

9.8

A235

BD+

3835

94..

.15

771

44.4

1.4

Q1

Q0

0386

8032

1943

07.5

8+

3856

49.9

10.4

A018

HD

2255

04..

.44

909

169.

895

.3Q

0–Q

1Q

3.1

0394

1283

1909

43.6

8+

3902

45.6

10.3

...

TY

C31

20-8

67-1

...

4544

910

9.5

35.3

Q0–

Q1

Q2.

203

9429

1119

1216

.27+

3904

16.9

10.8

...

TY

C31

21-7

19-1

...

3865

829

2.5

219.

3Q

0–Q

1Q

4.2

0396

6357

1938

24.1

0+

3904

58.9

11.2

...

...

...

4519

610

9.5

35.3

Q0–

Q1

Q2.

203

9707

2919

4218

.60+

3900

46.8

11.5

...

TY

C31

36-1

008-

1..

.45

175

169.

895

.2Q

0–Q

1Q

3.1

0403

5667

1858

29.5

7+

3910

56.7

10.0

...

TY

C31

19-3

47-1

...

1584

244

.41.

2Q

1Q

004

0443

5319

1100

.82+

3910

15.3

9.8

A235

BD+

3834

65..

.15

856

44.4

1.2

Q1

Q0

0404

8488

1916

32.7

8+

3910

30.1

11.6

A535

...

bina

ry39

583

126.

866

.5Q

1Q

2.3

0404

8494

1916

33.0

7+

3910

28.7

9.5

A535

BD+

3835

12bi

nary

4546

510

9.5

35.3

Q0–

Q1

Q2.

204

0694

7719

3838

.52+

3908

25.2

11.2

...

TY

C31

35-4

85-1

...

4411

832

1.5

248.

3Q

0–Q

1Q

4.3

0407

5519

1943

50.0

2+

3908

48.5

12.5

F018

HD

2256

44..

.2

070

44.2

1.6

Q0–

Q1

...

0407

7032

1945

03.1

7+

3911

26.0

9.7

F035

...

...

4390

579

.64.

5Q

0–Q

1Q

2.1

0414

4300

1911

26.1

1+

3912

18.0

12.3

...

...

...

207

544

.21.

2Q

0–Q

1..

.04

1506

1119

1858

.20+

3916

01.4

7.9

A5V

17,A

235H

D18

1469

bina

ry38

4316

010

9.4

35.3

Q0–

Q1

Q2.

204

1608

7619

2929

.16+

3913

17.6

10.2

...

TY

C31

34-8

1-1

...

4523

510

9.5

35.4

Q0–

Q1

Q2.

204

1643

6319

3250

.54+

3914

26.5

11.4

...

...

...

4028

513

7.7

66.3

Q0–

Q1

Q2.

304

1685

7419

3641

.02+

3915

17.9

10.3

...

TY

C31

35-4

37-1

...

4032

113

7.7

66.3

Q0–

Q1

Q2.

304

1706

3119

3833

.07+

3914

18.7

10.8

...

TY

C31

35-6

41-1

...

3862

829

2.5

219.

3Q

0–Q

1Q

4.2

0418

0199

1946

02.3

5+

3912

19.7

10.1

A718

HD

2257

18..

.15

829

44.4

1.2

Q1

Q0

0425

2757

1915

35.2

8+

3920

07.2

10.9

...

TY

C31

21-1

037-

1..

.38

629

292.

521

9.3

Q0–

Q1

Q4.

204

2693

3719

3312

.96+

3922

23.8

10.9

A8I

I35..

.bi

nary

3969

212

6.8

66.3

Q1

Q2.

304

2815

8119

4357

.00+

3920

47.4

9.4

A218

HD

2255

69..

.45

460

109.

535

.3Q

0–Q

1Q

2.2

0438

3117

1943

34.1

0+

3924

24.0

11.0

A318

HD

2255

35..

.49

453

44.2

1.2

Q0

Q1

0447

6836

1939

31.4

2+

3934

57.8

11.5

...

...

...

4543

410

9.5

35.3

Q0–

Q1

Q2.

204

4803

2119

4238

.38+

3933

40.4

10.3

A318

HD

2254

79..

.45

390

109.

535

.3Q

0–Q

1Q

2.2

0448

8840

1949

27.5

8+

3932

15.3

11.4

...

TY

C31

40-5

68-1

...

4033

813

7.7

66.3

Q0–

Q1

Q2.

304

5509

6219

1405

.11+

3936

56.9

10.5

...

TY

C31

25-3

570-

1..

.40

112

228.

815

8.5

Q0–

Q1

Q3.

304

5563

4519

2028

.85+

3936

36.4

10.8

...

TY

C31

38-1

615-

1..

.47

527

262.

818

7.3

Q0–

Q1

Q4.

104

5703

2619

3609

.02+

3937

43.0

9.8

...

BD+

3938

58va

riab

le4,

3814

474

321.

54.

5Q

0–Q

4..

.

A125, page 24 of 70

Page 25: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0458

8487

1951

21.8

2+

3941

37.5

10.9

A018

HD

2261

96..

.43

254

310.

524

8.4

Q1

Q4.

304

6477

6319

1841

.14+

3942

26.7

10.8

...

TY

C31

25-3

07-1

...

4519

610

9.5

35.4

Q0–

Q1

Q2.

204

6494

7619

2035

.90+

3947

01.5

9.4

A235

BD+

3937

32..

.45

459

109.

535

.3Q

0–Q

1Q

2.2

0467

1225

1943

40.0

8+

3945

33.1

10.0

A718

HD

2255

44..

.54

194

137.

966

.3Q

1Q

0,Q

2.3

0467

7684

1948

44.7

1+

3947

32.5

10.2

A018

HD

2259

50..

.40

407

137.

766

.3Q

0–Q

1Q

2.3

0475

8316

1939

41.6

9+

3948

04.6

11.1

...

TY

C31

39-1

185-

1..

.47

354

262.

818

7.3

Q0–

Q1

Q4.

104

7686

7719

4823

.95+

3952

58.0

11.2

A18

HD

2259

06..

.40

676

79.6

5.1

Q0–

Q1

Q2.

104

8406

7519

3257

.94+

3958

45.3

9.6

...

TY

C31

39-1

403-

1..

.40

137

228.

815

8.5

Q0–

Q1

Q3.

304

8508

9919

4304

.49+

3959

49.6

7.0

F0IV

19,A

535H

D18

6505

...

451

9.5

0.0

Q0

...

0485

6630

1947

46.5

8+

3958

56.3

11.4

...

...

...

4031

713

7.7

66.3

Q0–

Q1

Q2.

304

8576

7819

4844

.06+

3954

60.0

7.0

F035

HD

1875

23..

.14

420

321.

54.

7Q

0–Q

4..

.04

8630

7719

5313

.85+

3956

48.3

11.1

A018

HD

2263

81..

.49

510

44.2

1.2

Q0

Q1

0490

9697

1908

48.0

0+

4004

06.0

10.7

...

TY

C31

24-2

306-

1bi

nary

4757

926

2.8

187.

3Q

0–Q

1Q

4.1

0491

9818

1922

10.6

6+

4003

17.1

10.7

...

TY

C31

38-3

6-1

...

4737

026

2.8

187.

3Q

0–Q

1Q

4.1

0492

0125

1922

35.0

4+

4003

47.2

11.1

F035

BD+

3937

45..

.49

479

44.2

1.2

Q0

Q1

0493

6524

1940

48.3

1+

4002

28.9

13.1

...

...

...

4950

444

.21.

2Q

0Q

104

9372

5719

4127

.31+

4004

54.8

13.5

...

...

...

1018

822

8.7

4.9

Q0–

Q3

...

0498

9900

1855

25.6

6+

4010

37.7

6.9

A235

HD

1758

41..

.37

933

25.9

0.0

...

Q3.

305

0241

5019

4106

.58+

4010

19.6

13.2

...

...

...

4893

533

.40.

0..

.Q

105

0244

5419

4117

.02+

4010

34.8

13.7

...

NG

C68

1960

9N

GC

6819

4897

033

.40.

0..

.Q

105

0244

5519

4117

.02+

4006

04.0

14.8

...

NG

C68

1996

0N

GC

6819

4895

533

.40.

0..

.Q

105

0244

5619

4117

.04+

4010

51.9

11.1

...

NG

C68

1955

0N

GC

6819

1383

530

9.7

4.9

Q1–

Q4

...

0502

4750

1941

26.5

9+

4011

41.8

11.2

...

NG

C68

1997

5N

GC

6819

1032

722

8.7

4.5

Q0–

Q3

...

0503

8228

1952

43.8

5+

4010

56.0

11.4

...

...

...

4440

732

1.5

248.

3Q

0–Q

1Q

4.3

0508

0290

1859

19.1

0+

4012

54.8

9.5

F835

BD+

4035

47..

.41

935

79.6

5.0

Q0–

Q1

Q2.

105

0883

0819

1327

.19+

4014

32.1

8.7

F535

HD

1800

99bi

nary

3840

304

137.

766

.3Q

0–Q

1Q

2.3

0510

5754

1934

31.1

5+

4017

36.6

11.4

...

TY

C31

39-2

577-

1..

.40

240

137.

766

.3Q

0–Q

1Q

2.3

0511

2786

1941

23.6

9+

4012

35.5

11.5

...

NG

C68

1997

2N

GC

6819

1446

132

1.5

4.5

Q0–

Q4

...

0511

2932

1941

28.9

9+

4013

15.5

13.2

...

NG

C68

1999

5N

GC

6819

4892

533

.40.

0..

.Q

105

1137

9719

4212

.62+

4017

46.0

9.1

A318

HD

2254

47..

.43

613

79.6

4.5

Q0–

Q1

Q2.

105

1647

6718

5354

.19+

4019

25.6

7.8

F2IV

20H

D17

5537

...

1442

232

1.5

4.6

Q0–

Q4

...

0518

0796

1919

49.5

8+

4019

18.7

10.2

...

TY

C31

25-2

69-1

...

4485

510

9.5

35.4

Q0–

Q1

Q2.

205

1972

5619

3833

.82+

4019

25.7

11.0

...

TY

C31

39-1

882-

1bi

nary

4443

032

1.5

248.

3Q

0–Q

1Q

4.3

0519

9464

1940

45.4

8+

4022

03.1

14.8

...

...

...

4892

733

.40.

0..

.Q

105

2000

8419

4120

.66+

4023

31.7

9.2

A039

HD

2254

10bi

nary$

4130

279

.65.

1Q

0–Q

1Q

2.1

0520

1088

1942

12.0

5+

4018

02.8

13.6

A335

...

...

4895

033

.40.

0..

.Q

105

2097

1219

4921

.98+

4021

13.2

11.3

A239

HD

2260

09..

.45

346

109.

535

.3Q

0–Q

1Q

2.2

0521

7733

1955

44.7

6+

4023

30.3

7.4

B1V

22,B

2II21

HD

1888

91bi

nary

4226

128

.90.

0..

.Q

4.3

0521

9533

1957

09.9

1+

4022

50.5

9.2

A239

,kA

2hA

8mA

823H

D22

6766

bina

ry49

385

44.2

1.2

Q0

Q1

0527

2673

1924

19.8

7+

4024

27.6

10.4

...

TY

C31

38-9

94-1

...

4517

516

9.8

95.2

Q0–

Q1

Q3.

105

2945

7119

4712

.53+

4028

02.4

10.5

F239

HD

2258

08..

.47

206

262.

818

7.3

Q0–

Q1

Q4.

105

2968

7719

4904

.75+

4024

36.6

12.3

...

HA

T19

9-27

597

vari

able

5,38

2872

232

1.9

75.3

Q0–

Q4

Q0

0535

6349

1919

36.1

0+

4035

07.3

8.1

A035

HD

1816

80bi

nary

4529

218

9.7

126.

4Q

1Q

3.2

0537

1747

1937

43.4

9+

4035

38.4

10.5

F35B

D+

4038

11..

.45

893

200.

712

6.4

Q0–

Q1

Q3.

205

3914

1619

5514

.78+

4033

12.8

10.2

A739

HD

2265

70..

.45

456

109.

535

.3Q

0–Q

1Q

2.2

0542

8254

1856

52.8

0+

4037

47.4

10.5

...

TY

C31

23-1

722-

1..

.46

080

200.

712

6.4

Q0–

Q1

Q3.

2

A125, page 25 of 70

Page 26: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0543

6432

1911

27.9

1+

4041

26.6

9.0

A235

HD

1796

18..

.49

499

44.2

1.2

Q0

Q1

0543

7206

1912

43.5

6+

4037

57.1

8.4

A235

HD

1799

36..

.46

078

200.

712

6.4

Q0–

Q1

Q3.

205

4460

6819

2418

.10+

4038

58.8

9.7

...

BD+

4037

04bi

nary

4393

779

.64.

5Q

0–Q

1Q

2.1

0547

3171

1952

17.8

8+

4041

10.1

9.0

A239

HD

2262

84..

.15

859

44.4

1.2

Q1

Q0

0547

4427

1953

21.1

4+

4039

12.9

11.4

...

TY

C31

41-2

904-

1..

.44

428

321.

524

8.3

Q0–

Q1

Q4.

305

4764

9519

5453

.11+

4036

55.2

10.2

A339

HD

2265

28..

.42

944

79.6

4.6

Q0–

Q1

Q2.

105

4768

6419

5509

.22+

4039

20.7

11.5

...

...

...

4168

268

.65.

1Q

1Q

2.1

0551

3861

1857

24.5

3+

4042

53.0

11.6

...

TY

C31

23-2

012-

1bi

nary

3845

178

109.

511

3.0

Q0–

Q1

Q2.

205

6030

4919

0343

.90+

4048

17.2

11.2

...

TY

C31

24-1

423-

1..

.44

428

321.

524

8.3

Q0–

Q1

Q4.

305

6303

6219

3919

.25+

4053

58.9

10.5

...

TY

C31

39-1

246-

1..

.40

134

228.

815

8.5

Q0–

Q1

Q3.

305

6320

9319

4104

.78+

4053

17.4

10.9

A39

HD

2253

91..

.15

846

44.4

1.2

Q1

Q0

0564

1711

1949

38.3

8+

4053

49.8

10.4

F039

HD

2260

29..

.40

404

137.

766

.3Q

0–Q

1Q

2.3

0570

9664

1932

25.5

8+

4054

03.0

11.3

...

TY

C31

39-8

26-1

...

4545

610

9.5

35.3

Q0–

Q1

Q2.

205

7223

4619

4532

.76+

4056

41.9

11.2

...

TY

C31

40-9

25-1

...

4757

526

2.8

187.

3Q

0–Q

1Q

4.1

0572

4048

1947

00.4

6+

4056

10.0

11.4

...

...

...

4406

732

1.5

248.

4Q

0–Q

1Q

4.3

0572

4440

1947

19.7

8+

4059

39.6

7.9

A535

HD

1872

34..

.57

568

321.

54.

5Q

0–Q

4Q

3.1

0572

4810

1947

39.2

4+

4054

41.5

10.9

A739

HD

2258

42bi

nary$

1585

644

.41.

2Q

1Q

005

7682

0318

5136

.46+

4105

27.7

10.8

...

TY

C31

23-1

9-1

...

4544

810

9.5

35.3

Q0–

Q1

Q2.

205

7724

1118

5959

.59+

4100

54.3

10.6

...

...

bina

ry37

713

292.

521

9.9

Q0–

Q1

Q4.

205

7745

5719

0401

.78+

4101

49.6

11.0

...

TY

C31

24-2

058-

1..

.44

425

321.

524

8.3

Q0–

Q1

Q4.

305

7857

0719

2031

.70+

4104

48.4

9.0

A235

HD

1819

02..

.43

397

79.6

4.5

Q0–

Q1

Q2.

105

8101

1319

4739

.34+

4101

32.5

11.6

...

...

bina

ry38

4538

310

9.5

35.3

Q0–

Q1

Q2.

205

8577

1418

5846

.37+

4109

56.0

11.2

...

TY

C31

23-7

42-1

...

3865

629

2.5

219.

3Q

0–Q

1Q

4.2

0588

0360

1932

23.2

6+

4108

09.2

8.8

A035

HD

1843

80..

.49

507

44.2

1.2

Q0

Q1

0594

0273

1855

48.1

7+

4115

40.5

10.5

F035

BD+

4131

85..

.40

102

228.

815

8.5

Q0–

Q1

Q3.

305

9542

6419

1927

.19+

4113

25.6

8.2

F035

HD

1816

54..

.57

187

321.

535

.3Q

0–Q

4Q

2.2

0596

5837

1934

06.5

0+

4115

03.3

9.2

F235

BD+

4037

86va

riab

le6

2407

922

8.5

4.5

Q0–

Q3

Q0

0598

0337

1948

24.2

9+

4116

51.3

10.1

F039

HD

2259

12bi

nary

4379

679

.05.

0Q

0–Q

1Q

2.1

0598

8140

1955

10.0

3+

4117

10.1

8.9

F037

HD

1887

74..

.10

332

321.

593

.4Q

0–Q

4..

.06

0327

3019

1422

.30+

4118

26.4

8.7

A237

HD

1803

49..

.46

077

200.

712

6.4

Q0–

Q1

Q3.

206

0678

1719

5354

.89+

4123

33.4

10.2

A339

HD

2264

43..

.43

924

79.6

4.5

Q0–

Q1

Q2.

106

1233

2419

2701

.51+

4129

09.1

8.7

F035

HD

1832

81bi

nary

4043

113

7.7

66.3

Q0–

Q1

Q2.

306

1413

7219

4637

.94+

4128

33.6

11.1

...

HA

T19

9-04

866

vari

able

4440

832

1.5

248.

3Q

0–Q

1Q

4.3

0614

2919

1947

55.8

5+

4126

58.9

10.6

...

TY

C31

44-6

08-1

bina

ry$

4002

122

8.8

158.

5Q

0–Q

1Q

3.3

0618

7665

1901

38.0

6+

4130

26.9

11.5

...

TY

C31

28-1

790-

1..

.45

465

109.

535

.3Q

0–Q

1Q

2.2

0619

9731

1920

31.9

4+

4135

19.5

10.9

...

TY

C31

42-1

75-1

...

1582

044

.41.

2Q

1Q

006

2688

9019

0228

.39+

4136

11.4

11.2

...

TY

C31

28-2

125-

1..

.45

464

109.

535

.3Q

0–Q

1Q

2.2

0627

9848

1920

19.4

4+

4139

39.9

8.9

F035

HD

1818

77..

.2

087

44.2

1.2

Q0–

Q1

...

0628

9468

1933

00.6

0+

4139

13.4

9.4

A235

BD+

4133

89..

.45

438

109.

535

.3Q

0–Q

1Q

2.2

0630

1745

1945

51.3

6+

4137

54.0

10.9

...

TY

C31

44-7

87-1

...

4524

810

9.5

35.4

Q0–

Q1

Q2.

206

3813

0619

4636

.34+

4144

16.9

8.7

A035

HD

1871

41..

.39

980

228.

815

8.5

Q0–

Q1

Q3.

306

4320

5419

1209

.53+

4150

15.3

8.2

F035

HD

1798

37..

.46

058

200.

712

6.4

Q0–

Q1

Q3.

206

4409

3019

2433

.79+

4153

24.0

10.6

...

TY

C31

42-1

367-

1..

.45

857

200.

712

6.4

Q0–

Q1

Q3.

206

4431

2219

2736

.34+

4149

39.9

11.2

...

TY

C31

42-1

661-

1..

.45

463

109.

535

.3Q

0–Q

1Q

2.2

0644

6951

1932

35.9

3+

4153

32.3

11.3

...

TY

C31

43-1

362-

1..

.44

431

321.

524

8.3

Q0–

Q1

Q4.

306

4481

1219

3402

.57+

4153

03.1

10.0

A235

BD+

4133

95..

.15

813

44.4

1.2

Q1

Q0

A125, page 26 of 70

Page 27: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

1.co

ntin

ued.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0646

2033

1948

33.7

2+

4149

49.3

10.7

...

TY

C31

44-6

46-1

...

4006

622

8.8

158.

5Q

0–Q

1Q

3.3

0650

0578

1853

24.9

4+

4159

16.9

10.8

...

TY

C31

27-1

666-

1..

.38

671

292.

521

9.3

Q0–

Q1

Q4.

206

5091

7519

0908

.64+

4156

59.8

10.0

A235

BD+

4132

48..

.15

859

44.4

1.2

Q1

Q0

0651

9869

1924

03.2

6+

4156

54.4

10.5

...

TY

C31

42-7

33-1

...

4487

916

9.8

95.2

Q0–

Q1

Q3.

106

5860

5218

5802

.14+

4201

05.7

11.3

...

...

...

4546

510

9.5

35.3

Q0–

Q1

Q2.

206

5875

5119

0054

.70+

4202

23.9

9.8

A035

BD+

4132

07..

.15

844

44.4

1.2

Q1

Q0

0659

0403

1905

53.3

5+

4202

14.5

10.6

...

TY

C31

28-2

036-

1..

.40

133

228.

815

8.5

Q0–

Q1

Q3.

306

6062

2919

2725

.34+

4200

31.0

11.1

...

TY

C31

42-7

17-1

...

4756

926

2.7

187.

3Q

0–Q

1Q

4.1

0661

4168

1936

27.5

0+

4204

26.8

11.4

...

...

...

4040

513

7.7

66.3

Q0–

Q1

Q2.

306

6291

0619

5038

.40+

4201

23.2

10.1

F039

HD

2261

35..

.15

861

44.4

1.2

Q1

Q0

0666

8729

1853

50.6

2+

4210

15.8

8.6

A235

HD

1755

36..

.46

078

200.

712

6.4

Q0–

Q1

Q3.

206

6707

4218

5719

.82+

4207

37.5

9.3

A535

BD+

4131

95..

.43

924

79.6

4.5

Q0–

Q1

Q2.

106

6786

1419

1046

.30+

4206

40.7

10.8

...

TY

C31

29-8

00-1

...

3791

829

2.5

219.

4Q

0–Q

1Q

4.2

0669

4649

1931

01.2

0+

4210

11.2

10.4

...

...

bina

ry45

188

169.

895

.2Q

0–Q

1Q

3.1

0675

6386

1855

54.2

4+

4212

37.9

8.7

A235

HD

1759

39..

.15

860

44.4

1.2

Q1

Q0

0675

6481

1856

01.8

7+

4213

34.7

9.3

F035

BD+

4231

97..

.43

844

79.6

4.5

Q0–

Q1

Q2.

106

7615

3919

0503

.58+

4213

18.7

10.3

...

TY

C31

28-1

341-

1..

.45

451

109.

535

.3Q

0–Q

1Q

2.2

0677

6331

1925

59.4

7+

4216

45.3

10.9

...

TY

C31

42-5

11-1

...

4441

132

1.5

248.

3Q

0–Q

1Q

4.3

0679

0335

1941

30.7

4+

4212

11.1

10.5

...

TY

C31

44-1

756-

1..

.46

068

200.

712

6.4

Q0–

Q1

Q3.

206

8048

2119

5404

.99+

4217

29.9

10.6

A35

HD

2264

54va

riab

le7

4012

122

8.8

158.

5Q

0–Q

1Q

3.3

0686

5077

1929

39.3

8+

4223

25.4

9.8

...

TY

C31

42-1

206-

1..

.15

858

44.4

1.2

Q1

Q0

0692

2690

1846

11.0

6+

4224

02.5

10.4

...

TY

C31

26-7

80-1

...

4516

716

9.8

95.2

Q0–

Q1

Q3.

106

9234

2418

4749

.73+

4226

27.6

11.3

...

TY

C31

26-1

059-

1..

.44

223

321.

524

8.4

Q0–

Q1

Q4.

306

9377

5819

1301

.18+

4229

58.4

9.8

A235

BD+

4232

78..

.15

860

44.4

1.2

Q1

Q0

0693

9291

1915

18.7

9+

4226

19.2

10.1

...

TY

C31

29-2

577-

1..

.42

750

79.6

4.5

Q0–

Q1

Q2.

106

9470

6419

2517

.66+

4225

13.3

11.3

...

TY

C31

42-1

168-

1..

.45

456

109.

535

.3Q

0–Q

1Q

2.2

0695

1642

1931

05.9

3+

4229

53.2

9.7

A535

BD+

4233

70..

.15

807

44.4

1.2

Q1

Q0

0696

5789

1945

41.3

0+

4229

34.4

10.1

A535

BD+

4234

46bi

nary

4392

679

.64.

5Q

0–Q

1Q

2.1

0700

7103

1843

57.1

9+

4231

05.7

11.2

...

TY

C31

26-2

522-

1..

.38

311

292.

521

9.3

Q0–

Q1

Q4.

207

1062

0519

1157

.48+

4240

22.6

11.4

...

TY

C31

29-8

79-1

bina

ry$

4394

579

.64.

5Q

0–Q

1Q

2.1

0710

6648

1912

39.7

9+

4238

40.5

10.5

...

TY

C31

29-2

589-

1..

.44

969

169.

895

.3Q

0–Q

1Q

3.1

0710

9598

1916

56.8

1+

4238

11.7

10.6

...

TY

C31

29-2

517-

1..

.46

064

200.

712

6.4

Q0–

Q1

Q3.

207

1195

3019

2919

.03+

4238

29.1

8.5

A335

HD

1837

87..

.14

473

321.

54.

5Q

0–Q

4..

.07

1227

4619

3310

.10+

4238

26.9

10.9

...

TY

C31

43-1

631-

1..

.15

833

44.4

1.2

Q1

Q0

0720

4237

1932

01.3

4+

4242

21.5

10.8

...

TY

C31

43-2

61-1

...

4758

426

2.8

187.

3Q

0–Q

1Q

4.1

0721

1759

1940

30.7

7+

4247

02.9

11.0

...

TY

C31

44-1

426-

1..

.49

467

44.2

1.2

Q0

Q1

0721

2040

1940

49.0

3+

4247

05.6

10.9

...

TY

C31

44-2

042-

1..

.38

635

292.

521

9.3

Q0–

Q1

Q4.

207

2156

0719

4411

.64+

4245

09.5

10.5

...

TY

C31

44-1

656-

1..

.47

487

262.

818

7.3

Q0–

Q1

Q4.

107

2174

8319

4557

.86+

4245

23.1

10.6

...

TY

C31

44-8

56-1

...

4951

144

.21.

2Q

0Q

107

2203

5619

4828

.15+

4244

36.9

11.5

...

...

...

4419

432

1.5

248.

4Q

0–Q

1Q

4.3

0726

5427

1903

27.8

9+

4249

54.6

11.5

...

...

...

4041

313

7.7

66.3

Q0–

Q1

Q2.

307

2871

1819

3331

.34+

4250

11.3

10.7

...

TY

C31

43-1

359-

1..

.47

575

262.

818

7.3

Q0–

Q1

Q4.

107

3003

8719

4719

.51+

4252

02.0

10.5

...

TY

C31

44-1

600-

1..

.46

064

200.

712

6.4

Q0–

Q1

Q3.

207

3043

8519

5051

.55+

4248

06.0

10.0

...

TY

C31

45-9

01-1

...

1028

922

8.7

4.5

Q0–

Q3

...

0733

8125

1848

49.7

5+

4255

05.4

11.1

...

TY

C31

26-3

094-

1..

.48

494

44.2

1.8

Q0

Q1

0735

0486

1910

48.2

2+

4254

38.6

11.3

...

...

...

4527

910

9.5

35.3

Q0–

Q1

Q2.

2

A125, page 27 of 70

Page 28: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0735

2425

1913

48.7

0+

4257

28.8

10.6

...

TY

C31

29-1

319-

1..

.38

650

292.

521

9.3

Q0–

Q1

Q4.

207

3527

7619

1423

.02+

4255

27.7

11.1

...

TY

C31

29-2

485-

1..

.49

484

44.2

1.2

Q0

Q1

0738

5478

1950

57.8

6+

4259

45.9

11.5

...

TY

C31

45-1

71-1

bina

ry38

4244

210

9.5

35.3

Q0–

Q1

Q2.

207

4362

6619

1634

.20+

4301

26.7

11.4

...

...

...

4040

213

7.7

66.3

Q0–

Q1

Q2.

307

4502

8419

3337

.68+

4305

49.2

10.4

A535

BD+

4233

80..

.45

192

169.

895

.2Q

0–Q

1Q

3.1

0750

2559

1848

17.6

9+

4307

06.6

11.3

...

TY

C31

26-2

023-

1..

.44

216

321.

524

8.3

Q0–

Q1

Q4.

307

5336

9419

3412

.91+

4307

03.5

10.4

...

TY

C31

43-1

179-

1..

.40

429

137.

766

.3Q

0–Q

1Q

2.3

0754

8061

1948

15.4

6+

4307

36.8

8.8

G224

,G2I

b41V

1154

Cyg

Cep

heid

863

501

321.

531

9.7

Q0–

Q4

Q1

0754

8479

1948

36.5

0+

4306

32.0

8.4

A335

HD

1875

47..

.46

077

200.

712

6.4

Q0–

Q1

Q3.

207

5532

3719

5243

.10+

4306

00.1

11.3

...

...

...

4442

832

1.5

248.

3Q

0–Q

1Q

4.3

0758

3939

1847

32.0

6+

4317

04.7

9.7

A035

BD+

4330

78..

.40

086

228.

815

8.5

Q0–

Q1

Q3.

307

5962

5019

1103

.60+

4313

07.8

11.3

...

...

...

4441

932

1.5

248.

3Q

0–Q

1Q

4.3

0766

2076

1850

56.9

3+

4318

13.6

10.0

F035

BD+

4330

97..

.15

812

44.4

1.2

Q1

Q0

0766

8791

1905

23.6

4+

4320

05.6

9.3

A235

HD

1781

20..

.43

532

79.6

4.5

Q0–

Q1

Q2.

107

6698

4819

0719

.99+

4318

55.2

7.4

F2II

I20H

D17

8615

...

1017

522

8.7

4.7

Q0–

Q3

...

0769

4191

1942

09.2

9+

4323

37.4

10.8

...

TY

C31

48-1

126-

1..

.38

456

292.

521

9.4

Q0–

Q1

Q4.

207

6977

9519

4620

.83+

4322

36.0

11.0

...

TY

C31

48-1

808-

1..

.49

510

44.2

1.2

Q0

Q1

0769

9056

1947

39.4

3+

4320

19.4

10.5

...

TY

C31

48-4

31-1

...

4011

322

8.8

158.

5Q

0–Q

1Q

3.3

0770

2705

1950

55.4

2+

4319

03.0

11.4

...

...

...

4036

813

7.7

66.3

Q0–

Q1

Q2.

307

7324

5818

4927

.38+

4328

12.1

10.8

...

TY

C31

30-1

50-1

...

3845

229

2.5

219.

4Q

0–Q

1Q

4.2

0774

2739

1911

16.9

2+

4324

24.8

11.3

...

TY

C31

33-2

367-

1..

.44

582

109.

535

.3Q

0–Q

1Q

2.2

0774

8238

1920

38.2

1+

4329

03.7

9.5

A535

HD

1819

85..

.40

114

137.

766

.5Q

0–Q

1Q

2.3

0775

6853

1932

39.1

2+

4326

11.2

9.0

A035

HD

1844

49..

.49

461

44.2

1.2

Q0

Q1

0776

7565

1945

39.0

0+

4329

43.0

9.3

A535

HD

1869

95bi

nary

206

944

.21.

2Q

0–Q

1..

.07

7702

8219

4833

.12+

4327

04.2

9.7

F035

BD+

4333

70..

.15

796

44.4

1.2

Q1

Q0

0777

1991

1950

06.5

5+

4329

05.9

11.1

...

TY

C31

49-1

784-

1..

.49

327

44.2

1.2

Q0

Q1

0777

3133

1951

13.7

5+

4327

43.0

10.9

...

TY

C31

49-1

852-

1..

.46

078

200.

712

6.4

Q0–

Q1

Q3.

207

7774

3519

5524

.38+

4329

47.9

10.7

...

...

...

4758

326

2.8

187.

3Q

0–Q

1Q

4.1

0779

8339

1841

34.9

9+

4332

58.9

7.9

F035

HD

1731

09..

.57

256

321.

535

.3Q

0–Q

4Q

2.2

0782

7131

1933

47.1

4+

4331

02.2

8.0

A235

HD

1846

95va

riab

le9

4308

830

.30.

7..

.Q

3.1

0783

1302

1939

00.8

6+

4335

03.4

11.3

...

TY

C31

47-9

82-1

...

4456

298

.635

.3Q

1Q

2.2

0783

4612

1943

04.8

7+

4335

32.8

10.3

...

TY

C31

48-2

091-

1..

.40

432

137.

766

.3Q

0–Q

1Q

2.3

0784

2286

1951

14.4

5+

4330

41.8

9.9

A235

BD+

4333

84..

.15

840

44.4

1.2

Q1

Q0

0784

2621

1951

35.6

9+

4331

10.1

11.1

...

TY

C31

49-1

211-

1..

.43

215

79.6

4.9

Q0–

Q1

Q2.

107

8482

8819

5652

.27+

4330

14.8

10.8

...

TY

C31

49-2

143-

1bi

nary$

3803

428

1.5

219.

3Q

1Q

4.2

0789

0526

1926

27.5

3+

4340

53.8

11.3

...

TY

C31

46-1

192-

1..

.45

435

109.

535

.3Q

0–Q

1Q

2.2

0790

0367

1939

44.9

5+

4341

45.3

11.3

...

TY

C31

47-1

2-1

...

3868

129

2.5

219.

3Q

0–Q

1Q

4.2

0790

8633

1949

06.8

9+

4341

22.8

11.2

...

TY

C31

48-6

60-1

...

4516

310

9.5

35.4

Q0–

Q1

Q2.

207

9598

6719

2658

.34+

4344

40.1

9.8

A235

BD+

4332

45..

.15

836

44.4

1.2

Q1

Q0

0797

7996

1949

50.5

0+

4346

28.6

11.5

...

TY

C31

48-5

97-1

...

4607

420

0.7

126.

4Q

0–Q

1Q

3.2

0798

5370

1956

59.7

4+

4345

08.3

9.8

G535

HD

1892

10..

.55

936

321.

54.

5Q

0–Q

4Q

2.1

0802

9546

1928

22.4

6+

4352

16.0

11.0

...

TY

C31

46-1

256-

1..

.49

145

44.2

1.2

Q0

Q1

0804

3961

1946

55.4

9+

4350

27.8

10.7

...

TY

C31

48-1

402-

1..

.45

467

109.

511

2.9

Q0–

Q1

Q2.

208

0541

4619

5653

.35+

4349

27.0

11.3

...

...

...

3928

413

7.7

66.5

Q0–

Q1

Q2.

308

1039

1719

3607

.25+

4355

08.0

11.5

...

...

...

4519

216

9.8

95.2

Q0–

Q1

Q3.

108

1045

8919

3700

.82+

4355

56.5

11.5

...

...

...

4421

732

1.5

248.

3Q

0–Q

1Q

4.3

A125, page 28 of 70

Page 29: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

1.co

ntin

ued.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0812

3127

1957

04.1

3+

4355

31.7

11.0

...

TY

C31

49-5

34-1

...

8690

232

1.5

248.

3Q

0–Q

1Q

4.3

0814

3903

1846

15.7

4+

4400

13.4

13.8

...

...

...

1337

331

0.5

6.0

Q1–

Q4

...

0814

4674

1848

20.4

2+

4400

12.4

11.6

...

TY

C31

30-1

700-

1..

.39

858

228.

815

8.6

Q0–

Q1

Q3.

308

1454

7718

5015

.98+

4403

16.7

14.8

...

...

...

1400

731

0.5

325.

1Q

1–Q

4..

.08

1493

4118

5828

.85+

4402

41.5

10.9

...

TY

C31

31-1

906-

1..

.46

057

200.

712

6.4

Q0–

Q1

Q3.

208

1591

3519

1759

.83+

4401

12.6

13.8

...

...

...

1223

831

0.5

7.3

Q1–

Q4

...

0819

7761

2004

09.3

1+

4404

16.0

10.7

F235

BD+

4334

73s

NG

C68

6610

4902

344

.21.

2Q

0Q

108

1977

8820

0411

.18+

4405

33.3

13.0

...

...

...

4524

610

9.5

35.3

Q0–

Q1

Q2.

208

2115

0018

4612

.19+

4408

08.3

8.1

A535

HD

1739

78bi

nary

5686

831

0.5

4.9

Q1–

Q4

Q3.

108

2184

1919

0034

.61+

4408

29.0

11.9

...

...

...

1443

632

1.5

4.5

Q0–

Q4

...

0822

2685

1910

07.4

9+

4408

18.5

8.9

F0V

25,F

235H

D17

9336

...

208

044

.21.

2Q

0–Q

1..

.08

2235

6819

1156

.54+

4408

49.9

11.5

F225

...

...

5227

432

1.5

4.5

Q0–

Q4

Q2.

308

2239

8719

1246

.30+

4406

18.9

14.2

...

...

...

567

831

0.5

187.

5Q

1,Q

4..

.08

2300

2519

2229

.45+

4406

16.2

10.9

F025

TY

C31

46-1

037-

1..

.15

850

44.4

1.2

Q1

Q0

0824

5366

1943

33.9

1+

4406

19.5

11.2

...

TY

C31

48-1

360-

1..

.40

134

228.

815

8.5

Q0–

Q1

Q3.

308

2486

3019

4723

.30+

4407

59.0

11.2

...

TY

C31

48-4

84-1

...

4440

732

1.5

248.

3Q

0–Q

1Q

4.3

0826

4061

2003

27.9

4+

4409

19.2

13.5

...

...

NG

C68

6644

106

98.6

35.3

Q1

Q2.

208

2640

7520

0328

.34+

4407

55.2

13.7

...

...

NG

C68

6639

585

126.

866

.3Q

1Q

2.3

0826

4274

2003

39.6

7+

4409

23.3

13.8

...

...

NG

C68

6639

285

126.

866

.5Q

1Q

2.3

0826

4404

2003

47.1

4+

4409

25.7

12.2

...

...

NG

C68

6645

464

109.

535

.3Q

0–Q

1Q

2.2

0826

4546

2003

54.8

4+

4409

50.3

13.4

...

NG

C68

6617

NG

C68

6649

495

44.2

1.2

Q0

Q1

0826

4583

2003

57.3

6+

4409

33.6

11.3

...

HIP

9879

7N

GC

6866

4527

210

9.5

35.3

Q0–

Q1

Q2.

208

2645

8820

0357

.62+

4408

37.5

10.7

...

...

NG

C68

6649

512

44.2

1.2

Q0

Q1

0826

4617

2003

59.3

5+

4410

25.8

13.9

...

...

NG

C68

6644

828

98.1

35.3

Q1

Q2.

208

2646

7420

0402

.86+

4411

55.4

11.2

...

...

...

4212

079

.65.

1Q

0–Q

1Q

2.1

0826

4698

2004

03.9

6+

4410

20.5

12.4

...

...

...

4493

798

.635

.3Q

1Q

2.2

0828

3796

1858

53.0

9+

4416

40.3

14.5

...

...

...

1396

531

0.5

69.8

Q1–

Q4

...

0829

3302

1918

03.6

7+

4414

36.1

13.4

...

...

...

1372

132

1.3

6.9

Q0–

Q4

...

0832

3104

1955

37.8

2+

4414

32.9

9.7

kA2m

F026

...

...

3914

779

.66.

0Q

0–Q

1Q

2.1

0833

0056

2003

33.0

5+

4412

06.5

13.8

...

...

...

3975

512

6.8

66.3

Q1

Q2.

308

3300

9220

0334

.92+

4414

50.1

13.5

...

...

...

4347

568

.64.

5Q

1Q

2.1

0833

0463

2003

58.6

3+

4414

09.7

14.9

...

...

...

3768

728

1.5

219.

3Q

1Q

4.2

0833

0778

2004

16.1

8+

4412

04.6

13.4

...

...

...

4189

079

.64.

5Q

0–Q

1Q

2.1

0835

2420

1904

11.4

0+

4421

44.7

12.6

...

...

...

4043

313

7.7

66.3

Q0–

Q1

Q2.

308

3551

3019

1001

.61+

4422

29.9

10.3

F0II

I25B

D+

4430

72bi

nary

5739

532

1.5

35.3

Q0–

Q4

Q2.

208

3558

3719

1127

.07+

4422

46.7

13.3

...

...

...

1333

231

0.5

6.2

Q1–

Q4

...

0839

7426

2005

34.3

0+

4420

09.8

11.1

...

...

...

4950

544

.21.

2Q

0Q

108

4157

5219

0000

.02+

4427

48.5

10.7

...

TY

C31

32-1

272-

1..

.46

040

200.

712

6.4

Q0–

Q1

Q3.

208

4297

5619

2543

.13+

4426

26.3

10.5

...

TY

C31

46-1

441-

1..

.46

052

200.

712

6.4

Q0–

Q1

Q3.

208

4467

3819

4849

.37+

4424

12.6

11.1

...

TY

C31

48-6

65-1

...

4950

244

.21.

2Q

0Q

108

4545

5319

5637

.15+

4425

54.7

11.5

...

TY

C31

49-2

13-1

...

4029

813

7.7

66.3

Q0–

Q1

Q2.

308

4593

5420

0137

.63+

4424

51.1

11.1

...

TY

C31

62-1

077-

1..

.43

947

79.6

4.5

Q0–

Q1

Q2.

108

4600

2520

0222

.08+

4429

31.3

13.7

...

...

...

4396

898

.635

.9Q

1Q

2.2

0846

0993

2003

41.3

0+

4424

54.1

11.2

...

...

...

3828

229

2.5

219.

3Q

0–Q

1Q

4.2

0847

9107

1856

30.1

4+

4433

02.1

14.9

...

...

...

1357

031

0.5

324.

9Q

1–Q

4..

.08

4825

4019

0431

.01+

4435

20.1

14.1

...

...

...

1346

731

0.5

5.4

Q1–

Q4

...

A125, page 29 of 70

Page 30: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0848

8065

1916

14.8

3+

4433

57.3

14.2

...

...

...

1316

131

0.5

5.9

Q1–

Q4

...

0848

9712

1918

59.5

0+

4433

43.7

8.6

A225

HD

1815

98..

.46

063

200.

712

6.4

Q0–

Q1

Q3.

208

4996

3919

3414

.23+

4430

13.4

10.5

...

TY

C31

47-8

49-1

...

4754

826

2.7

187.

3Q

0–Q

1Q

4.1

0850

7325

1944

27.1

0+

4433

21.1

10.5

...

TY

C31

48-1

229-

1..

.46

058

200.

712

6.4

Q0–

Q1

Q3.

208

5160

0819

5342

.72+

4435

42.6

10.6

A35

...

bina

ry$

4710

925

1.8

187.

3Q

1Q

4.1

0851

6686

1954

22.5

6+

4434

20.0

10.9

...

TY

C31

49-8

63-1

...

3857

229

2.5

219.

3Q

0–Q

1Q

4.2

0852

5286

2003

36.3

6+

4435

50.4

13.4

...

...

...

4177

768

.65.

1Q

1Q

2.1

0854

5456

1900

22.7

3+

4439

58.5

11.7

...

...

...

1585

944

.41.

2Q

1Q

008

5609

9619

2846

.42+

4440

08.5

10.6

...

TY

C31

46-8

02-1

...

4013

022

8.8

158.

5Q

0–Q

1Q

3.3

0856

5229

1935

28.3

2+

4440

09.6

11.1

...

TY

C31

47-5

09-1

...

4950

944

.21.

2Q

0Q

108

5796

1519

5244

.14+

4436

58.0

11.2

...

TY

C31

49-5

71-1

...

4440

232

1.5

248.

3Q

0–Q

1Q

4.3

0858

3770

1956

58.5

1+

4440

59.2

10.1

B9I

II35

HD

1891

77bi

nary

5530

632

1.5

4.5

Q0–

Q4

Q2.

108

5905

5320

0413

.46+

4440

18.9

11.2

...

...

...

4439

832

1.5

248.

3Q

0–Q

1Q

4.3

0860

8260

1856

07.4

2+

4447

24.9

10.9

...

TY

C31

31-1

633-

1..

.38

676

292.

521

9.3

Q0–

Q1

Q4.

208

6239

5319

2559

.76+

4444

45.3

9.4

A535

BD+

4431

34..

.45

466

109.

535

.3Q

0–Q

1Q

2.2

0865

1452

1959

54.1

9+

4442

18.6

10.8

...

TY

C31

49-3

07-1

...

4527

510

9.5

35.3

Q0–

Q1

Q2.

208

6557

1220

0450

.98+

4444

57.7

11.0

...

...

...

4440

132

1.5

248.

3Q

0–Q

1Q

4.3

0869

5156

1936

27.7

4+

4450

14.8

10.9

...

TY

C31

47-3

95-1

...

1585

744

.41.

2Q

1Q

008

7034

1319

4711

.45+

4450

53.6

8.7

kA2m

F026

HD

1872

54..

.39

574

228.

815

8.6

Q0–

Q1

Q3.

308

7148

8619

5910

.18+

4451

44.9

10.9

F35H

D18

9637

...

1444

232

1.5

4.5

Q0–

Q4

...

0871

7065

2001

40.5

4+

4452

47.4

10.9

...

TY

C31

62-7

1-1

...

1585

044

.41.

2Q

1Q

008

7382

4418

5758

.94+

4459

17.2

8.2

A3V

20H

D17

6390

...

4603

520

0.7

126.

4Q

0–Q

1Q

3.2

0874

2449

1907

33.1

7+

4457

56.3

14.0

...

...

...

1386

231

0.5

4.5

Q1–

Q4

...

0874

6834

1916

37.0

6+

4456

01.4

13.0

...

...

...

1404

332

1.4

6.3

Q0–

Q4

...

0874

7415

1917

39.5

0+

4458

05.0

11.8

...

...

...

1409

332

1.4

5.9

Q0–

Q4

...

0874

8251

1919

07.7

3+

4457

54.0

11.2

F025

...

...

9504

626

2.7

187.

3Q

0–Q

1Q

4.1

0875

0029

1921

54.9

1+

4459

42.0

9.7

A5p

?25B

D+

4431

13..

.15

834

44.4

1.2

Q1

Q0

0876

6619

1946

09.1

9+

4459

09.8

10.8

...

...

bina

ry44

792

98.6

35.3

Q1

Q2.

208

8278

2119

4041

.38+

4505

58.7

11.1

...

TY

C35

56-3

407-

1..

.43

942

79.6

4.5

Q0–

Q1

Q2.

108

8384

5719

5309

.36+

4505

53.6

11.2

...

TY

C35

58-2

497-

1..

.77

120

292.

521

9.3

Q0–

Q1

Q4.

208

8693

0218

5845

.58+

4510

42.0

14.1

...

...

...

1380

331

0.5

4.5

Q1–

Q4

...

0886

9892

1900

00.7

4+

4508

03.5

12.6

...

...

...

4042

913

7.7

66.3

Q0–

Q1

Q2.

308

8713

0419

0256

.93+

4511

42.2

10.8

...

TY

C35

41-1

172-

1..

.50

616

321.

534

.8Q

0–Q

4Q

4.2

0888

1697

1921

36.0

2+

4507

06.9

10.6

A525

...

...

1585

444

.41.

2Q

1Q

008

9153

3520

0345

.55+

4510

02.9

9.6

A235

HD

1905

66..

.45

192

169.

895

.2Q

0–Q

1Q

3.1

0893

3391

1852

06.4

1+

4513

39.4

8.9

F035

HD

1752

01..

.49

159

44.2

1.2

Q0

Q1

0894

0640

1906

33.8

9+

4514

24.9

12.8

A525

...

...

4519

516

9.8

95.2

Q0–

Q1

Q3.

108

9729

6619

5132

.42+

4515

51.8

11.5

...

...

...

4519

416

9.8

95.2

Q0–

Q1

Q3.

108

9755

1519

5345

.58+

4513

09.3

9.5

A235

HD

1885

38..

.40

206

137.

766

.5Q

0–Q

1Q

2.3

0902

0157

1924

43.6

6+

4521

01.2

10.8

F2II

I25B

D+

4528

92..

.45

344

109.

135

.3Q

0–Q

1Q

2.2

0902

0199

1924

48.4

8+

4520

48.9

8.9

F2C

rEu?

35,F

0V37

HD

1828

95A

pva

riab

le11

1584

544

.41.

2Q

1Q

009

0523

6320

0207

.70+

4522

07.6

10.7

A235

HD

1902

26..

.47

457

262.

818

7.3

Q0–

Q1

Q4.

109

0720

1118

5355

.80+

4528

35.9

10.7

...

TY

C35

40-2

380-

1..

.45

179

169.

895

.2Q

0–Q

1Q

3.1

0907

3007

1856

09.0

7+

4526

59.2

10.6

...

TY

C35

40-2

491-

1..

.40

433

137.

766

.3Q

0–Q

1Q

2.3

0907

3985

1858

15.2

9+

4529

45.6

13.4

...

...

...

1411

232

1.5

5.7

Q0–

Q4

...

0907

7192

1905

34.8

5+

4526

47.0

14.5

...

...

...

1397

531

0.5

4.5

Q1–

Q4

...

A125, page 30 of 70

Page 31: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0910

8615

1951

37.6

1+

4527

04.4

11.4

...

TY

C35

57-2

024-

1..

.42

088

79.6

4.5

Q0–

Q1

Q2.

109

1110

5619

5407

.15+

4524

06.7

10.5

F035

BD+

4530

06..

.38

573

292.

521

9.3

Q0–

Q1

Q4.

209

1178

7520

0146

.73+

4528

35.9

7.5

kA2m

F237

...

...

1582

844

.41.

2Q

1Q

009

1388

7218

5547

.57+

4531

27.5

10.1

...

TY

C35

40-1

966-

1..

.43

944

79.6

4.5

Q0–

Q1

Q2.

109

1437

8519

0642

.17+

4533

12.6

12.1

A525

...

...

1584

744

.41.

2Q

1Q

009

1472

2919

1411

.59+

4534

59.1

10.7

F0V

25T

YC

3542

-122

3-1

...

9434

426

2.8

187.

3Q

0–Q

1Q

4.1

0915

6808

1930

53.1

8+

4533

12.7

11.3

...

TY

C35

56-1

431-

1bi

nary$

4546

410

9.5

35.3

Q0–

Q1

Q2.

209

2016

4418

5258

.58+

4536

43.7

11.0

...

TY

C35

40-3

014-

1..

.46

072

200.

712

6.4

Q0–

Q1

Q3.

209

2046

7218

5958

.82+

4540

35.7

9.8

G35

BD+

4528

12..

.14

392

321.

54.

5Q

0–Q

4..

.09

2047

1819

0003

.36+

4536

27.5

8.8

kA3m

F037

HD

1768

43A

mst

ar40

057

228.

515

8.5

Q0–

Q1

Q3.

309

2100

3719

1207

.37+

4538

11.9

13.5

...

...

...

4013

422

8.8

158.

5Q

0–Q

1Q

3.3

0921

6367

1924

20.8

6+

4539

16.7

12.1

A2p

:25..

...

.15

842

44.4

1.2

Q1

Q0

0922

2942

1934

45.6

5+

4541

22.1

10.5

...

TY

C35

56-9

29-1

...

4503

916

9.8

95.2

Q0–

Q1

Q3.

109

2293

1819

4351

.82+

4541

09.0

9.6

F035

BD+

4529

62..

.40

433

137.

766

.3Q

0–Q

1Q

2.3

0924

6481

2003

33.7

0+

4537

13.7

9.0

A035

HD

1905

48..

.15

840

44.4

1.2

Q1

Q0

0926

4399

1853

05.9

8+

4544

20.3

14.3

...

...

...

1339

331

0.3

7.6

Q1–

Q4

...

0926

4462

1853

13.3

2+

4545

08.3

13.0

...

...

...

1399

232

0.9

5.0

Q0–

Q4

...

0926

7042

1858

52.0

6+

4544

58.2

13.4

...

...

...

4013

222

8.8

158.

5Q

0–Q

1Q

3.3

0926

8087

1901

09.0

7+

4547

36.5

12.1

...

...

...

2865

432

2.0

4.6

Q0–

Q4

Q0

0927

2082

1910

33.7

9+

4545

04.0

9.0

A727

HD

1794

58..

.44

436

109.

535

.4Q

0–Q

1Q

2.2

0927

4000

1914

57.7

9+

4542

32.2

14.2

...

...

...

1324

331

0.5

7.0

Q1–

Q4

...

0929

1618

1943

36.7

4+

4543

57.1

9.7

A535

BD+

4529

61..

.40

135

228.

815

8.5

Q0–

Q1

Q3.

309

3060

9520

0041

.90+

4547

59.3

12.4

...

...

...

4546

710

9.5

35.3

Q0–

Q1

Q2.

209

3243

3418

4926

.86+

4553

38.4

13.7

...

...

...

4711

325

1.8

187.

3Q

1Q

4.1

0932

7993

1857

59.7

6+

4553

29.7

9.8

K035

BD+

4528

05..

.14

398

321.

54.

6Q

0–Q

4..

.09

3362

1919

1636

.91+

4552

16.5

13.3

...

...

...

1391

132

0.7

5.7

Q0–

Q4

...

0935

1622

1941

26.8

6+

4553

53.1

9.1

F035

BD+

4529

55..

.43

586

79.6

4.5

Q0–

Q1

Q2.

109

3535

7219

4358

.61+

4553

54.7

10.6

...

TY

C35

57-1

126-

1..

.40

133

228.

815

8.5

Q0–

Q1

Q3.

309

3682

2020

0118

.62+

4552

05.7

11.3

...

...

...

3868

029

2.5

219.

3Q

0–Q

1Q

4.2

0938

6259

1849

12.5

5+

4554

26.8

13.3

...

J184

9125

5+45

5426

8..

.13

252

320.

47.

7Q

0–Q

4..

.09

3913

9519

0129

.78+

4555

14.4

11.4

...

TY

C35

41-2

014-

1..

.40

405

137.

766

.3Q

0–Q

1Q

2.3

0939

5246

1910

06.4

1+

4558

27.0

11.8

F225

...

...

1585

944

.41.

2Q

1Q

009

4086

9419

3445

.60+

4554

16.3

11.5

...

...

...

1586

044

.447

.9Q

1Q

009

4130

5719

4119

.15+

4557

45.8

9.6

A235

BD+

4529

54..

.40

419

137.

766

.3Q

0–Q

1Q

2.3

0945

0940

1858

53.4

2+

4600

17.7

12.7

...

...

...

4519

416

9.8

95.2

Q0–

Q1

Q3.

109

4515

9819

0028

.58+

4603

02.2

13.6

...

...

...

3966

421

7.8

158.

5Q

1Q

3.3

0945

3075

1903

44.0

9+

4603

46.0

12.4

...

...

...

4391

279

.64.

5Q

0–Q

1Q

2.1

0945

8750

1916

37.4

9+

4602

11.4

13.8

...

...

...

1342

931

0.5

6.5

Q1–

Q4

...

0947

3000

1939

48.6

7+

4601

38.5

10.1

...

TY

C35

56-3

291-

1..

.15

859

44.4

1.2

Q1

Q0

0948

9590

1959

40.4

2+

4601

56.3

10.9

...

TY

C35

58-1

6-1

...

3868

229

2.5

219.

3Q

0–Q

1Q

4.2

0949

0042

2000

11.6

9+

4605

43.3

10.5

...

TY

C35

58-1

852-

1..

.44

756

169.

895

.2Q

0–Q

1Q

3.1

0949

0067

2000

12.8

6+

4603

33.0

10.6

...

TY

C35

58-1

208-

1..

.77

094

292.

521

9.3

Q0–

Q1

Q4.

209

5092

9618

5055

.32+

4606

48.5

9.9

...

TY

C35

40-1

568-

1..

.15

841

44.4

1.2

Q1

Q0

0951

4879

1903

49.5

8+

4606

58.1

10.7

...

TY

C35

41-3

0-1

...

6345

432

1.5

4.9

Q0–

Q4

Q1

0952

0434

1916

48.2

2+

4609

49.7

14.5

...

...

...

1329

031

0.5

6.0

Q1–

Q4

...

0952

0864

1917

41.6

2+

4610

17.4

11.1

...

...

...

1442

832

1.5

4.5

Q0–

Q4

...

A125, page 31 of 70

Page 32: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0953

2644

1937

26.4

7+

4610

07.4

12.7

...

...

...

4944

944

.21.

2Q

0Q

109

5334

4919

3837

.37+

4611

16.9

11.3

...

TY

C35

56-3

494-

1..

.45

449

109.

535

.3Q

0–Q

1Q

2.2

0953

3489

1938

41.7

1+

4607

21.6

13.0

...

...

...

4896

133

.40.

0..

.Q

109

5508

8620

0006

.74+

4607

30.5

11.0

...

TY

C35

58-1

238-

1..

.44

429

321.

524

8.3

Q0–

Q1

Q4.

309

5512

8120

0033

.60+

4611

55.4

10.4

A335

HD

1899

16..

.45

192

169.

895

.2Q

0–Q

1Q

3.1

0958

0794

1914

08.0

2+

4616

00.1

11.3

F0V

25..

...

.15

859

44.4

1.2

Q1

Q0

0958

2720

1918

17.1

8+

4612

46.6

12.7

...

...

bina

ry$

1444

032

1.5

4.6

Q0–

Q4

...

0959

3997

1936

47.7

6+

4617

34.0

12.6

...

...

...

3853

229

2.5

219.

3Q

0–Q

1Q

4.2

0959

4100

1936

55.9

9+

4615

18.5

13.0

...

...

...

4945

444

.21.

2Q

0Q

109

6047

6219

5059

.64+

4616

03.3

10.6

A535

TY

C35

57-1

418-

1..

.39

877

228.

815

8.6

Q0–

Q1

Q3.

309

6306

4018

4631

.25+

4619

16.1

13.7

...

...

...

1393

931

0.5

4.5

Q1–

Q4

...

0963

2537

1852

00.2

4+

4621

51.6

12.0

...

...

...

1586

144

.41.

2Q

1Q

009

6402

0419

1014

.09+

4620

42.6

11.5

F525

...

...

6348

132

1.5

4.5

Q0–

Q4

Q1

0964

2894

1916

18.0

7+

4621

16.1

11.1

F025

TY

C35

42-1

780-

1..

.46

081

200.

712

6.4

Q0–

Q1

Q3.

209

6439

8219

1838

.69+

4621

27.9

12.9

...

...

...

1396

932

0.7

6.5

Q0–

Q4

...

0965

0390

1929

17.8

1+

4621

26.1

9.4

A035

HD

1838

29..

.45

231

109.

535

.3Q

0–Q

1Q

2.2

0965

1065

1930

25.6

3+

4622

52.2

11.1

...

TY

C35

56-7

68-1

...

4951

044

.21.

2Q

0Q

109

6547

8919

3628

.80+

4618

39.2

13.3

...

...

...

4022

713

7.7

66.3

Q0–

Q1

Q2.

309

6550

5519

3651

.91+

4623

20.4

11.4

A428

NG

C68

1126

NG

C68

1140

429

137.

766

.3Q

0–Q

1Q

2.3

0965

5114

1936

58.1

8+

4620

22.6

12.1

A428

NG

C68

1118

NG

C68

1152

782

321.

54.

5Q

0–Q

4Q

2.3

0965

5151

1937

01.1

8+

4622

59.4

13.2

...

NG

C68

1116

NG

C68

1148

853

33.4

0.0

...

Q1

0965

5177

1937

03.2

4+

4619

25.7

10.9

A428

NG

C68

1170

NG

C68

1143

883

79.6

4.5

Q0–

Q1

Q2.

109

6553

9319

3721

.38+

4619

53.3

12.6

...

...

...

4757

426

2.8

187.

3Q

0–Q

1Q

4.1

0965

5422

1937

24.1

0+

4623

52.1

11.5

...

NG

C68

1139

NG

C68

1145

605

189.

712

6.4

Q1

Q3.

209

6554

3319

3724

.86+

4618

39.0

11.9

B728

NG

C68

1111

4N

GC

6811

,bin

ary$

1299

431

0.5

6.8

Q1–

Q4

...

0965

5438

1937

25.2

2+

4619

35.7

12.3

...

...

...

4750

526

2.8

187.

3Q

0–Q

1Q

4.1

0965

5487

1937

29.2

1+

4622

39.1

13.1

...

...

...

4895

633

.40.

0..

.Q

109

6555

0119

3731

.22+

4621

31.9

12.4

A528

NG

C68

1149

NG

C68

1147

543

262.

818

7.3

Q0–

Q1

Q4.

109

6555

1419

3732

.11+

4619

15.0

11.5

A428

NG

C68

1111

3N

GC

6811

,bin

ary

6352

332

1.5

4.5

Q0–

Q4

Q1

0965

5800

1937

53.1

6+

4618

28.8

12.7

...

...

...

7724

229

2.5

219.

3Q

0–Q

1Q

4.2

0965

6348

1938

45.2

9+

4618

23.6

10.3

...

TY

C35

56-3

198-

1..

.49

500

44.2

1.2

Q0

Q1

0966

4869

1950

12.1

0+

4618

52.3

11.2

...

TY

C35

57-3

68-1

...

4951

044

.21.

2Q

0Q

109

6732

9320

0011

.23+

4619

17.0

10.6

A035

HD

1898

61..

.39

895

228.

815

8.6

Q0–

Q1

Q3.

309

6932

8218

5114

.90+

4626

56.1

10.4

...

TY

C35

40-1

359-

1..

.45

385

109.

535

.3Q

0–Q

1Q

2.2

0969

6853

1859

33.4

3+

4624

11.3

11.3

...

TY

C35

41-9

67-1

...

4186

979

.65.

1Q

0–Q

1Q

2.1

0969

9950

1906

55.3

2+

4625

08.0

13.4

...

...

...

4013

322

8.8

158.

5Q

0–Q

1Q

3.3

0970

0145

1907

23.5

7+

4628

21.7

12.7

...

...

...

4042

613

7.7

66.3

Q0–

Q1

Q2.

309

7003

2219

0750

.71+

4629

11.9

12.7

...

ASA

SJ1

9075

1+46

29.2

...

4519

416

9.8

95.2

Q0–

Q1

Q3.

109

7006

7919

0842

.53+

4624

14.8

9.9

G2I

II25

BD+

4626

33..

.40

416

137.

766

.3Q

0–Q

1Q

2.3

0970

3601

1915

25.0

3+

4628

10.6

14.3

...

...

...

1349

531

0.5

5.7

Q1–

Q4

...

0971

6107

1936

56.7

6+

4626

58.0

13.1

...

...

...

4844

633

.40.

1..

.Q

109

7163

5019

3717

.98+

4627

45.3

12.5

...

...

bina

ry$

4940

144

.21.

2Q

0Q

109

7169

4719

3811

.95+

4628

02.5

12.9

...

...

...

4930

244

.21.

2Q

0Q

109

7605

3119

0659

.78+

4632

20.4

9.5

F035

BD+

4626

21..

.43

946

79.6

4.5

Q0–

Q1

Q2.

109

7627

1319

1212

.26+

4630

50.3

11.1

F025

...

...

4013

422

8.8

158.

5Q

0–Q

1Q

3.3

0976

4712

1916

49.5

8+

4632

01.7

13.9

...

...

...

1315

831

0.5

6.3

Q1–

Q4

...

A125, page 32 of 70

Page 33: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

0976

4965

1917

24.9

1+

4635

35.2

8.9

A5m

p25H

D18

1206

Ap

orA

mst

ar49

507

44.2

1.2

Q0

Q1

0977

3512

1932

21.7

7+

4635

29.8

10.0

A235

BD+

4627

14..

.15

860

44.4

1.2

Q1

Q0

0977

5385

1935

24.7

0+

4635

26.9

11.1

...

TY

C35

56-1

982-

1..

.43

914

79.6

4.5

Q0–

Q1

Q2.

109

7754

5419

3532

.02+

4635

22.3

8.2

F1IV

29H

D18

5115

hybr

id15

1032

722

8.7

4.5

Q0–

Q3

...

0977

6474

1937

00.1

9+

4631

14.2

13.0

...

...

...

6342

632

1.5

4.5

Q0–

Q4

Q1

0977

7532

1938

31.0

6+

4631

34.1

10.9

...

TY

C35

56-3

228-

1..

.57

342

321.

54.

5Q

0–Q

4Q

3.1

0979

0479

1955

05.5

7+

4635

05.1

9.9

A235

HD

1888

33..

.15

822

44.4

1.2

Q1

Q0

0981

2351

1846

10.3

2+

4637

51.0

7.9

A035

HD

1740

19..

.45

192

169.

895

.2Q

0–Q

1Q

3.1

0981

3078

1848

21.5

5+

4641

43.7

11.9

...

...

...

1585

944

.41.

2Q

1Q

009

8182

6919

0040

.73+

4639

58.7

11.4

...

...

...

1585

144

.41.

2Q

1Q

009

8360

2019

3543

.10+

4640

03.0

12.8

...

...

...

1446

332

1.5

4.5

Q0–

Q4

...

0984

5907

1949

30.4

6+

4640

01.7

11.6

...

...

...

1586

044

.41.

2Q

1Q

009

8511

4219

5512

.05+

4639

55.9

7.6

kA5h

A7m

F320

,V

2094

Cyg

Am

star

,or

4778

731

0.5

4.5

Q1–

Q4

Q2.

3A

7pC

rEu40

%2

CV

n12

0987

4181

1851

26.5

7+

4646

48.0

10.8

...

...

...

3867

029

2.5

219.

3Q

0–Q

1Q

4.2

0988

1909

1910

03.5

8+

4642

16.1

11.4

F225

...

...

4384

579

.64.

5Q

0–Q

1Q

2.1

0988

5882

1918

45.0

5+

4644

27.8

14.1

...

...

...

1380

931

0.5

5.0

Q1–

Q4

...

0990

9300

1953

27.1

7+

4645

39.5

11.5

...

...

...

8877

832

1.5

248.

3Q

0–Q

1Q

4.3

0991

3481

1958

20.7

6+

4645

55.9

10.9

...

TY

C35

58-6

37-1

...

1375

944

.14.

6Q

1Q

009

9442

0819

1358

.44+

4650

00.2

14.2

...

...

...

1398

031

0.5

4.5

Q1–

Q4

...

0994

4730

1915

11.5

4+

4648

52.2

14.1

...

...

...

1398

031

0.5

4.6

Q1–

Q4

...

0997

0568

1955

01.1

5+

4652

29.2

9.6

A235

HD

1888

32..

.40

424

137.

766

.3Q

0–Q

1Q

2.3

0999

1621

1844

43.2

5+

4655

47.6

13.9

...

...

...

1327

631

0.5

6.1

Q1–

Q4

...

0999

1766

1845

08.0

2+

4658

02.0

14.2

...

...

...

1349

531

0.5

5.7

Q1–

Q4

...

0999

4789

1852

50.4

5+

4659

48.0

13.8

...

...

...

1332

231

0.5

6.4

Q1–

Q4

...

0999

5464

1854

26.0

2+

4659

11.5

13.2

...

...

...

1436

032

1.5

4.9

Q0–

Q4

...

1000

0056

1905

07.5

1+

4659

01.5

14.2

...

...

...

3658

328

.93.

9..

.Q

4.2

1000

2897

1911

41.7

1+

4655

12.7

12.2

...

...

...

1585

344

.41.

2Q

1Q

010

0045

1019

1455

.08+

4655

02.6

14.2

...

...

...

1394

131

0.5

4.5

Q1–

Q4

...

1000

6158

1918

07.3

9+

4657

26.2

9.7

K035

BD+

4626

65..

.14

431

321.

54.

5Q

0–Q

4..

.10

0145

4819

3214

.23+

4654

20.9

10.7

...

TY

C35

60-2

590-

1..

.47

550

262.

818

7.3

Q0–

Q1

Q4.

110

0309

4319

5412

.43+

4656

12.6

11.3

...

TY

C35

62-2

361-

1..

.38

677

292.

521

9.3

Q0–

Q1

Q4.

210

0357

7220

0005

.26+

4654

22.8

11.1

...

TY

C35

62-3

2-1

...

4390

379

.64.

5Q

0–Q

1Q

2.1

1005

6217

1850

47.5

2+

4700

23.3

12.9

...

...

...

1369

932

0.6

6.8

Q0–

Q4

...

1005

6297

1851

00.2

4+

4700

11.3

13.4

...

...

...

4013

722

8.8

158.

5Q

0–Q

1Q

3.3

1005

7129

1852

50.3

8+

4700

27.8

13.9

...

...

...

1393

031

0.5

4.9

Q1–

Q4

...

1006

2593

1904

12.9

1+

4703

05.0

13.3

...

...

...

1439

932

1.5

4.6

Q0–

Q4

...

1006

4111

1907

24.9

1+

4705

13.2

10.3

A535

BD+

4626

24bi

nary

4446

210

9.5

35.9

Q0–

Q1

Q2.

210

0652

4419

0947

.30+

4704

34.5

12.3

...

...

...

4394

579

.64.

5Q

0–Q

1Q

2.1

1006

8892

1917

00.3

1+

4705

38.4

11.4

...

...

...

1443

332

1.5

4.6

Q0–

Q4

...

1006

9934

1918

56.1

4+

4705

14.4

11.3

...

TY

C35

47-4

70-1

...

8832

632

1.5

248.

3Q

0–Q

1Q

4.3

1007

3601

1924

48.7

0+

4702

41.1

11.5

...

TY

C35

47-2

0-1

...

433

213

321.

64.

5..

.Q

0–Q

4.3

1009

0345

1949

00.1

2+

4705

05.2

11.3

...

TY

C35

61-2

58-1

...

4517

010

9.5

35.4

Q0–

Q1

Q2.

210

0964

9919

5554

.07+

4705

24.2

6.9

A3V

30H

D18

9013

...

3797

725

.90.

0..

.Q

3.3

1011

9517

1845

55.4

6+

4707

21.6

9.9

...

TY

C35

44-1

245-

1..

.52

795

321.

54.

5Q

0–Q

4Q

2.3

1013

0777

1910

00.3

4+

4711

12.1

12.6

...

...

...

4034

813

7.7

66.3

Q0–

Q1

Q2.

3

A125, page 33 of 70

Page 34: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

1.co

ntin

ued.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

1013

4600

1917

02.9

3+

4708

52.0

13.6

...

...

...

1428

232

1.3

4.9

Q0–

Q4

...

1013

4800

1917

24.6

0+

4708

32.4

11.8

...

...

...

1585

844

.41.

2Q

1Q

010

1405

1319

2625

.46+

4706

05.4

11.0

...

...

...

435

810

321.

64.

5..

.Q

0–Q

4.3

1014

0665

1926

38.4

7+

4706

08.0

12.1

...

...

...

432

553

321.

64.

5..

.Q

0–Q

4.3

1016

4569

1957

20.3

5+

4709

58.8

11.4

...

TY

C35

62-1

846-

1..

.39

573

137.

766

.5Q

0–Q

1Q

2.3

1020

6340

1924

58.8

2+

4714

57.3

11.2

B1

V85

0C

ygbi

nary

1340

303

432

1.6

324.

3..

.Q

0–Q

4.3

1020

8303

1928

12.5

8+

4714

04.0

11.9

...

...

...

432

367

321.

64.

5..

.Q

0–Q

4.3

1020

8345

1928

17.0

4+

4717

14.6

11.6

...

...

...

4606

920

0.7

126.

4Q

0–Q

1Q

3.2

1021

3987

1937

05.1

6+

4717

19.5

11.4

...

TY

C35

60-2

645-

1bi

nary$

3915

512

6.8

66.7

Q1

Q2.

310

2539

4318

4724

.48+

4718

05.7

10.2

...

TY

C35

44-2

546-

1..

.43

944

79.6

4.5

Q0–

Q1

Q2.

110

2545

4718

4846

.27+

4722

26.3

13.9

...

...

...

1339

331

0.5

5.6

Q1–

Q4

...

1026

4728

1910

59.6

6+

4720

21.6

9.9

A235

BD+

4727

69..

.15

840

44.4

1.2

Q1

Q0

1026

6959

1915

19.4

2+

4722

59.2

15.0

...

...

...

1359

831

0.5

5.6

Q1–

Q4

...

1027

3246

1926

05.7

6+

4721

30.1

10.9

...

...

...

432

872

321.

64.

5..

.Q

0–Q

4.3

1027

3384

1926

19.5

4+

4723

36.7

11.5

...

...

...

436

154

321.

64.

5..

.Q

0–Q

4.3

1027

3960

1927

17.4

2+

4718

39.2

11.7

...

...

...

431

979

321.

64.

5..

.Q

0–Q

4.3

1027

4244

1927

44.7

4+

4718

34.9

11.5

...

...

...

373

959

321.

635

.3..

.Q

0–Q

4.3

1028

1360

1938

39.2

2+

4723

24.5

11.1

...

TY

C35

60-1

923-

1..

.43

712

30.0

0.0

Q1

Q3.

210

2892

1119

4858

.75+

4723

25.7

10.2

A235

BD+

4729

27..

.45

449

109.

535

.3Q

0–Q

1Q

2.2

1033

8279

1925

28.9

4+

4726

07.8

12.0

...

...

...

436

158

321.

64.

5..

.Q

0–Q

4.3

1033

9342

1927

05.3

5+

4724

08.2

12.0

...

...

...

432

133

321.

64.

5..

.Q

0–Q

4.3

1034

0511

1928

56.1

6+

4724

44.0

11.6

...

...

...

431

104

321.

64.

5..

.Q

0–Q

4.3

1034

1072

1929

46.2

0+

4724

09.4

9.0

F835

HD

1839

54..

.14

797

810

9.7

4.5

...

Q0–

Q2.

210

3550

5519

4916

.61+

4724

27.3

9.3

A235

HD

1877

09..

.45

466

109.

535

.3Q

0–Q

1Q

2.2

1036

1229

1956

08.9

3+

4728

30.5

10.9

...

TY

C35

62-1

455-

1..

.40

046

137.

766

.3Q

0–Q

1Q

2.3

1038

3933

1844

15.6

5+

4734

09.2

13.3

...

...

...

1372

932

0.9

5.8

Q0–

Q4

...

1038

5459

1848

19.3

9+

4732

07.6

10.5

...

TY

C35

44-2

086-

1..

.10

335

228.

74.

5Q

0–Q

4Q

4.1

1038

9037

1856

44.6

2+

4732

01.8

10.4

K35

BD+

4727

21..

.14

423

321.

54.

6Q

0–Q

4..

.10

3943

3219

0802

.76+

4733

08.8

13.3

...

...

...

1445

732

1.5

4.5

Q0–

Q4

...

1044

8764

1844

12.4

1+

4740

31.0

10.8

...

...

...

4519

416

9.8

95.2

Q0–

Q1

Q3.

110

4505

5018

4844

.04+

4736

50.9

13.2

...

...

...

1371

932

1.2

4.6

Q0–

Q4

...

1045

0675

1849

01.1

5+

4736

27.9

12.8

...

...

...

1380

432

1.4

6.2

Q0–

Q4

...

1045

1090

1849

55.9

2+

4738

14.4

9.2

A235

HD

1747

89..

.43

946

79.6

4.5

Q0–

Q1

Q2.

110

4512

5018

5015

.94+

4738

22.5

14.1

...

...

...

1327

431

0.5

5.7

Q1–

Q4

...

1045

3475

1855

16.6

3+

4737

33.0

14.2

...

...

...

1390

731

0.1

4.5

Q1–

Q4

...

1046

7969

1923

32.4

7+

4740

28.6

12.0

...

...

...

431

107

321.

64.

5..

.Q

0–Q

4.3

1047

1914

1930

03.0

2+

4736

18.6

10.7

...

TY

C35

60-2

319-

1..

.47

572

262.

818

7.3

Q0–

Q1

Q4.

110

4848

0819

4804

.58+

4740

45.0

10.6

...

TY

C35

61-1

801-

1..

.40

134

228.

815

8.5

Q0–

Q1

Q3.

310

5261

3719

1142

.82+

4745

27.1

10.2

M731

TY

C35

46-1

494-

1..

.13

014

320.

58.

2Q

0–Q

4..

.10

5266

1519

1239

.94+

4747

43.4

14.4

...

...

...

1345

031

0.4

6.0

Q1–

Q4

...

1053

3506

1924

50.4

2+

4743

47.5

11.5

...

...

...

433

130

321.

64.

5..

.Q

0–Q

4.3

1053

3616

1925

00.9

1+

4747

49.8

9.6

A535

BD+

4728

28..

.40

147

137.

766

.5Q

0–Q

1Q

2.3

1053

4629

1926

43.2

7+

4746

08.7

11.3

...

...

...

431

681

321.

64.

5..

.Q

0–Q

4.3

1053

6147

1929

11.9

3+

4744

43.0

11.6

...

...

...

449

999

321.

94.

5Q

0–Q

4Q

0–Q

4.3

1053

7907

1932

08.1

8+

4742

28.8

9.9

F035

BD+

4728

56..

.15

860

44.4

1.2

Q1

Q0

1054

9292

1948

10.5

6+

4745

33.3

11.0

...

...

...

4442

732

1.5

248.

3Q

0–Q

1Q

4.3

A125, page 34 of 70

Page 35: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

1054

9371

1948

16.1

5+

4742

28.8

9.5

A535

BD+

4729

22..

.43

939

79.6

4.5

Q0–

Q1

Q2.

110

5868

3719

0302

.38+

4748

48.9

12.4

...

...

...

4531

610

9.5

35.3

Q0–

Q1

Q2.

210

5908

5719

1138

.54+

4753

45.3

10.0

F035

BD+

4727

73..

.15

851

44.4

1.2

Q1

Q0

1060

4429

1934

36.4

6+

4750

14.0

9.9

F035

BD+

4728

68bi

nary$

5253

813

7.9

101.

1..

.Q

0–Q

2.3

1061

5125

1948

58.9

2+

4751

56.6

10.3

...

...

...

4038

513

7.7

66.3

Q0–

Q1

Q2.

310

6474

9318

5145

.14+

4757

29.4

11.7

...

...

...

1586

044

.41.

2Q

1Q

010

6476

1118

5204

.49+

4759

54.2

12.0

...

...

...

1585

144

.41.

2Q

1Q

010

6478

6018

5237

.75+

4755

26.2

13.3

...

...

...

1366

732

1.0

7.4

Q0–

Q4

...

1064

8728

1854

35.7

6+

4756

52.3

11.4

...

...

...

4410

232

1.5

248.

4Q

0–Q

1Q

4.3

1065

2134

1902

08.2

8+

4755

45.2

11.9

...

...

...

1124

925

2.5

4.5

Q0–

Q4

...

1065

8302

1915

07.6

8+

4754

19.0

13.1

...

...

...

4359

179

.64.

5Q

0–Q

1Q

2.1

1065

8802

1916

03.0

0+

4757

27.0

11.9

...

...

...

1585

444

.41.

2Q

1Q

010

6638

9219

2445

.10+

4758

53.9

11.8

...

...

...

430

810

321.

64.

5..

.Q

0–Q

4.3

1066

4703

1926

02.4

7+

4758

53.9

10.9

...

TY

C35

47-1

575-

1..

.44

427

321.

524

8.3

Q0–

Q1

Q4.

310

6649

7519

2628

.49+

4758

11.7

7.6

A235

HD

1832

80..

.38

016

25.9

0.0

...

Q3.

310

6757

6219

4305

.02+

4757

32.6

10.9

...

TY

C35

61-3

71-1

...

1584

244

.41.

2Q

1Q

010

6845

8719

5336

.67+

4759

53.1

11.0

...

TY

C35

62-4

61-1

...

4443

032

1.5

248.

3Q

0–Q

1Q

4.3

1068

4673

1953

42.4

1+

4758

27.2

11.1

...

TY

C35

62-8

05-1

...

4951

144

.21.

2Q

0Q

110

6856

5319

5450

.30+

4755

43.1

11.1

...

TY

C35

62-3

01-1

...

4946

544

.21.

2Q

0Q

110

6867

5219

5603

.43+

4758

55.8

11.3

...

TY

C35

62-7

07-1

...

4545

510

9.5

35.3

Q0–

Q1

Q2.

210

7097

1618

4529

.64+

4805

33.0

13.9

...

...

...

1350

131

0.5

6.1

Q1–

Q4

...

1071

3398

1853

42.4

3+

4802

25.8

11.2

...

TY

C35

44-1

186-

1..

.15

860

44.4

1.2

Q1

Q0

1071

7871

1903

14.8

8+

4802

56.6

10.5

...

TY

C35

45-2

523-

1..

.40

421

137.

766

.3Q

0–Q

1Q

2.3

1072

3718

1915

05.9

3+

4800

40.9

14.2

...

...

...

1365

031

0.5

5.9

Q1–

Q4

...

1073

0618

1926

30.4

8+

4805

34.8

10.5

...

TY

C35

47-1

205-

1..

.41

166

532

1.6

7.3

...

Q0–

Q4.

310

7759

6818

4515

.58+

4806

56.6

10.6

...

TY

C35

44-7

33-1

...

3991

022

8.8

158.

6Q

0–Q

1Q

3.3

1077

7541

1848

50.1

4+

4806

45.9

14.1

...

...

...

1265

231

0.5

7.3

Q1–

Q4

...

1077

7903

1849

40.4

2+

4807

13.9

10.2

...

BD+

4727

05..

.43

945

79.6

4.5

Q0–

Q1

Q2.

110

7786

4018

5117

.76+

4806

19.5

13.8

...

...

...

1319

031

0.5

7.4

Q1–

Q4

...

1078

3150

1901

20.7

6+

4808

30.9

13.1

...

...

...

1129

925

2.5

4.5

Q0–

Q4

...

1078

8451

1912

37.8

0+

4808

15.5

11.1

...

TY

C35

46-1

364-

1..

.40

136

228.

815

8.5

Q0–

Q1

Q3.

310

7975

2619

2749

.37+

4810

36.3

8.3

B532

HD

1835

58..

.14

772

710

9.7

4.5

...

Q0–

Q2.

210

7978

4919

2820

.69+

4810

57.2

10.8

...

TY

C35

47-1

020-

1bi

nary

435

432

321.

65.

1..

.Q

0–Q

4.3

1081

3970

1950

47.2

1+

4810

17.3

11.3

...

TY

C35

61-1

538-

1..

.40

408

137.

766

.3Q

0–Q

1Q

2.3

1081

5466

1952

28.6

3+

4810

28.0

11.2

...

TY

C35

61-4

34-1

bina

ry$

4394

679

.64.

5Q

0–Q

1Q

2.1

1085

3783

1913

30.6

0+

4812

21.2

11.0

...

TY

C35

46-3

74-1

...

4442

832

1.5

248.

3Q

0–Q

1Q

4.3

1086

1649

1927

58.3

7+

4817

37.9

12.1

...

...

...

431

057

321.

64.

5..

.Q

0–Q

4.3

1090

2738

1845

46.9

9+

4823

01.6

12.5

...

...

...

970

621

7.8

5.4

Q1–

Q3

...

1092

0182

1927

36.1

7+

4819

09.9

11.8

...

...

...

430

256

321.

64.

5..

.Q

0–Q

4.3

1092

0273

1927

45.7

7+

4819

45.4

11.9

...

...

...

430

371

321.

64.

5..

.Q

0–Q

4.3

1092

0447

1928

04.9

7+

4818

27.6

11.2

...

TY

C35

47-1

099-

1..

.44

429

321.

524

8.3

Q0–

Q1

Q4.

310

9716

7419

1909

.79+

4826

53.3

13.8

...

...

...

1273

431

0.5

5.7

Q1–

Q4

...

1097

5247

1926

34.3

7+

4829

14.9

11.1

...

...

...

4855

644

.21.

3Q

0Q

110

9778

5919

3137

.99+

4826

33.1

8.8

A235

HD

1843

33..

.49

510

44.2

1.2

Q0

Q1

1098

8009

1948

08.2

3+

4827

37.8

10.2

...

TY

C35

61-6

22-1

...

4394

779

.64.

5Q

0–Q

1Q

2.1

1101

3201

1848

00.0

7+

4832

32.0

9.3

A235

BD+

4827

68..

.43

656

79.6

4.5

Q0–

Q1

Q2.

1

A125, page 35 of 70

Page 36: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

1.co

ntin

ued.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

1101

7401

1859

53.8

1+

4833

17.0

14.6

...

...

...

1087

324

1.5

150.

6Q

1–Q

4..

.11

0205

2119

0739

.65+

4834

19.4

11.4

...

...

...

338

509

252.

75.

1..

.Q

0–Q

4.1

1102

1188

1909

15.5

8+

4833

38.9

11.3

...

...

...

342

509

252.

74.

5..

.Q

0–Q

4.1

1102

7270

1922

35.1

4+

4835

49.5

11.3

...

TY

C35

47-1

058-

1..

.88

810

321.

524

8.3

Q0–

Q1

Q4.

311

0679

7218

4826

.30+

4836

16.9

14.3

...

...

...

1255

031

0.5

7.2

Q1–

Q4

...

1106

9435

1852

28.2

5+

4840

08.7

14.5

...

...

...

1330

031

0.5

5.9

Q1–

Q4

...

1108

2830

1924

46.8

7+

4838

19.8

10.9

...

TY

C35

47-7

59-1

bina

ry38

597

292.

521

9.3

Q0–

Q1

Q4.

211

0904

0519

3912

.38+

4836

24.2

9.6

A535

BD+

4829

25..

.40

423

137.

766

.3Q

0–Q

1Q

2.3

1112

2763

1852

27.2

4+

4847

55.6

13.9

...

...

...

1329

731

0.5

5.8

Q1–

Q4

...

1112

5764

1901

09.6

7+

4842

57.5

11.1

...

TY

C35

45-6

9-1

...

4904

133

.40.

0..

.Q

111

1271

9019

0437

.85+

4846

32.4

11.4

...

...

...

1585

644

.41.

2Q

1Q

011

1280

4119

0659

.26+

4843

27.7

10.8

...

...

...

339

574

252.

74.

6..

.Q

0–Q

4.1

1112

8126

1907

12.1

9+

4847

45.1

11.3

...

...

...

338

231

252.

75.

1..

.Q

0–Q

4.1

1112

9289

1910

15.1

9+

4844

32.1

11.7

...

...

...

336

245

252.

75.

1..

.Q

0–Q

4.1

1118

0361

1904

04.6

1+

4852

00.3

7.7

A2/

3V20

HD

1778

76..

.39

548

217.

815

8.5

Q1

Q3.

311

1827

1619

1024

.26+

4850

41.5

12.0

...

...

...

337

715

252.

75.

1..

.Q

0–Q

4.1

1118

3399

1912

06.2

9+

4852

21.4

12.8

...

...

...

1132

425

2.5

4.6

Q0–

Q4

...

1118

3539

1912

25.8

0+

4850

21.2

10.8

...

TY

C35

50-4

56-1

...

4518

016

9.8

95.2

Q0–

Q1

Q3.

111

1930

4619

3245

.31+

4852

07.6

9.6

A235

BD+

4829

12..

.40

255

137.

766

.3Q

0–Q

1Q

2.3

1119

7934

1941

29.0

6+

4848

22.0

11.0

...

TY

C35

65-5

14-1

...

4432

432

1.5

248.

3Q

0–Q

1Q

4.3

1119

9412

1943

51.5

8+

4848

07.5

10.9

...

TY

C35

65-6

74-1

...

5816

032

1.6

248.

3Q

1Q

0–Q

4.3

1123

0518

1855

50.5

0+

4855

32.1

13.6

...

...

...

1045

424

1.5

5.7

Q1–

Q4

...

1123

2922

1902

17.3

3+

4854

33.0

14.1

...

...

...

1029

024

1.5

6.2

Q1–

Q4

...

1123

3189

1902

52.4

2+

4856

31.6

13.5

...

...

...

1054

525

1.5

5.6

Q0–

Q4

...

1123

4888

1907

00.2

2+

4856

07.0

11.9

...

...

...

337

220

252.

75.

1..

.Q

0–Q

4.1

1123

5721

1909

10.6

1+

4855

39.1

11.9

...

...

...

338

373

252.

75.

1..

.Q

0–Q

4.1

1123

6253

1910

39.3

4+

4856

39.3

12.0

...

...

...

328

959

252.

75.

1..

.Q

0–Q

4.1

1124

0653

1919

53.1

8+

4854

03.6

10.6

...

TY

C35

51-5

23-1

...

7727

229

2.5

219.

3Q

0–Q

1Q

4.2

1125

3226

1943

39.6

2+

4855

44.2

8.4

F535

HD

1867

00..

.56

546

321.

535

.3Q

0–Q

4Q

2.2

1128

5767

1901

12.1

9+

4902

05.6

10.3

F235

BD+

4828

15..

.45

466

109.

535

.3Q

0–Q

1Q

2.2

1128

8686

1908

39.3

1+

4903

12.5

11.8

...

TY

C35

50-8

92-1

...

1586

144

.41.

2Q

1Q

011

2901

9719

1240

.70+

4902

36.3

11.4

...

TY

C35

50-4

2-1

...

337

111

252.

75.

1..

.Q

0–Q

4.1

1130

9335

1948

47.2

1+

4905

50.0

10.5

...

TY

C35

65-1

318-

1..

.45

182

169.

895

.2Q

0–Q

1Q

3.1

1134

0063

1904

11.6

6+

4910

52.6

14.4

...

...

...

1061

724

1.5

4.9

Q1–

Q4

...

1134

0713

1905

42.7

9+

4908

47.4

13.0

...

...

...

4607

620

0.7

126.

4Q

0–Q

1Q

3.2

1134

2032

1909

19.6

3+

4911

48.3

12.8

...

...

...

1133

225

2.5

4.5

Q0–

Q4

...

1139

3580

1906

05.3

5+

4917

49.7

11.5

...

...

...

340

340

252.

74.

5..

.Q

0–Q

4.1

1139

4216

1907

48.4

3+

4914

02.1

12.0

...

...

...

338

263

252.

75.

1..

.Q

0–Q

4.1

1139

5018

1909

55.4

9+

4915

04.5

10.8

...

TY

C35

50-3

00-1

...

335

442

252.

75.

1..

.Q

0–Q

4.1

1139

5028

1909

57.8

6+

4916

44.4

11.7

...

...

...

336

659

252.

74.

5..

.Q

0–Q

4.1

1139

5392

1910

54.3

4+

4917

04.6

12.6

...

...

...

4546

110

9.5

35.3

Q0–

Q1

Q2.

211

4029

5119

2732

.81+

4915

23.5

8.1

kF3h

A9m

F514

HD

1834

89A

mst

ar14

2872

132

2.0

4.5

Q0–

Q4

Q0

1144

5774

1905

21.0

0+

4918

01.6

11.9

...

...

...

341

474

252.

75.

1..

.Q

0–Q

4.1

1144

5913

1905

40.6

3+

4918

20.8

8.5

kA7h

A9m

F514

HD

1783

27A

m,h

ybri

d14,1

524

170

228.

54.

5Q

0–Q

3Q

011

4461

4319

0619

.22+

4920

52.2

11.8

...

...

...

334

372

252.

75.

1..

.Q

0–Q

4.1

1144

6181

1906

24.3

6+

4922

19.3

11.9

...

...

...

338

310

252.

74.

8..

.Q

0–Q

4.1

A125, page 36 of 70

Page 37: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

1.co

ntin

ued.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

1144

7883

1911

04.9

2+

4919

22.3

9.8

F035

BD+

4929

51..

.35

151

725

3.0

4.5

Q0–

Q4

Q0–

Q4.

111

4479

5319

1113

.92+

4922

41.1

11.3

...

...

...

342

439

252.

74.

5..

.Q

0–Q

4.1

1144

8266

1912

02.9

3+

4918

46.2

11.5

...

...

...

339

553

252.

74.

5..

.Q

0–Q

4.1

1144

9931

1915

46.0

8+

4919

42.5

12.1

...

...

...

1278

032

0.0

7.8

Q0–

Q4

...

1145

4008

1924

45.9

4+

4923

03.2

11.1

...

TY

C35

51-2

195-

1..

.94

458

262.

818

7.5

Q0–

Q1

Q4.

111

4947

6518

5757

.77+

4924

56.4

11.1

...

TY

C35

49-1

627-

1..

.49

461

44.2

1.2

Q0

Q1

1149

7012

1903

53.0

4+

4925

39.1

9.7

F035

BD+

4929

27..

.49

507

44.2

1.2

Q0

Q1

1149

8538

1907

46.8

5+

4929

07.3

7.3

F535

HD

1788

74..

.10

495

879

.74.

5..

.Q

0–Q

2.1

1149

9354

1909

50.9

3+

4925

10.5

12.0

...

...

...

298

877

252.

730

.9..

.Q

0–Q

4.1

1149

9453

1910

05.3

5+

4925

47.5

10.7

...

TY

C35

50-1

330-

1..

.34

256

225

2.7

4.5

...

Q0–

Q4.

111

5020

7519

1607

.75+

4928

46.6

14.2

...

...

...

1378

830

9.6

4.6

Q1–

Q4

...

1150

8397

1929

38.3

0+

4929

48.4

10.7

...

...

...

3864

329

2.5

219.

3Q

0–Q

1Q

4.2

1150

9728

1932

21.2

4+

4927

49.4

9.7

A232

BD+

4930

39..

.15

835

44.4

1.6

Q1

Q0

1151

5690

1942

55.3

0+

4925

27.0

10.6

...

TY

C35

65-5

80-1

...

3811

429

2.5

219.

4Q

0–Q

1Q

4.2

1154

9609

1904

23.6

4+

4932

58.2

13.2

...

...

...

1089

825

2.1

4.8

Q0–

Q4

...

1155

1622

1910

12.6

7+

4933

08.0

13.9

...

...

...

1036

924

1.5

5.7

Q1–

Q4

...

1157

2666

1951

22.8

0+

4935

28.8

9.9

...

TY

C35

65-1

155-

1..

.15

857

44.4

1.2

Q1

Q0

1160

2449

1908

13.7

8+

4939

07.6

9.9

...

TY

C35

50-1

718-

1..

.15

855

44.4

1.2

Q1

Q0

1160

7193

1919

29.7

8+

4941

07.8

12.6

...

...

...

1439

332

1.5

4.6

Q0–

Q4

...

1161

2274

1930

41.5

4+

4939

10.7

10.6

...

TY

C35

64-1

819-

1..

.40

115

228.

815

8.5

Q0–

Q1

Q3.

311

6223

2819

4756

.14+

4939

14.1

9.5

A233

BD+

4931

09..

.2

089

44.2

1.2

Q0–

Q1

...

1165

1083

1901

15.6

5+

4946

57.8

11.3

...

...

...

1105

725

2.5

4.6

Q0–

Q4

...

1165

1147

1901

26.5

7+

4945

14.1

13.8

...

...

...

1042

324

1.3

5.5

Q1–

Q4

...

1165

3958

1908

57.1

9+

4944

22.2

11.9

...

...

...

335

138

252.

74.

5..

.Q

0–Q

4.1

1165

4210

1909

41.7

6+

4947

37.4

11.9

...

...

...

334

440

252.

74.

5..

.Q

0–Q

4.1

1165

7840

1918

15.2

6+

4945

33.7

15.0

...

...

...

1304

331

0.5

6.1

Q1–

Q4

...

1166

1993

1927

55.7

8+

4945

43.5

9.4

F233

BD+

4930

18..

.45

466

109.

535

.3Q

0–Q

1Q

2.2

1167

1429

1945

48.8

2+

4947

11.6

11.0

...

TY

C35

65-1

003-

1..

.41

580

321.

524

8.3

Q0–

Q1

Q4.

311

7003

7018

5738

.28+

4951

03.6

10.6

...

TY

C35

49-6

77-1

...

3978

622

8.7

158.

6Q

0–Q

1Q

3.3

1170

0604

1858

21.7

4+

4953

55.7

11.1

...

TY

C35

49-9

14-1

...

4910

044

.21.

3Q

0Q

111

7064

4919

1334

.66+

4951

01.2

11.0

...

...

...

1438

432

1.5

4.9

Q0–

Q4

...

1170

6564

1913

51.1

7+

4951

34.5

12.4

...

...

...

1438

032

1.5

4.8

Q0–

Q4

...

1170

7341

1915

32.3

8+

4951

13.6

13.8

...

...

...

1391

531

0.5

4.8

Q1–

Q4

...

1170

8170

1917

18.5

0+

4951

00.8

7.2

F235

HD

1812

52..

.57

638

321.

535

.3Q

0–Q

4Q

2.2

1171

4150

1930

25.7

8+

4953

09.0

10.3

...

TY

C35

64-2

31-1

...

3981

413

7.7

66.4

Q0–

Q1

Q2.

311

7188

3919

3917

.64+

4948

06.1

10.9

...

TY

C35

64-8

91-1

...

4437

232

1.5

248.

3Q

0–Q

1Q

4.3

1175

3169

1903

04.3

7+

4954

06.3

14.7

...

...

...

1056

324

1.5

5.7

Q1–

Q4

...

1175

4974

1908

15.9

4+

4957

15.4

12.7

...

...

...

4519

516

9.8

156.

1Q

0–Q

1Q

3.1

1182

1140

1941

26.9

8+

5003

11.0

10.0

F033

BD+

4930

81..

.15

800

44.4

1.2

Q1

Q0

1182

2666

1943

57.5

3+

5004

31.8

10.7

...

...

...

4751

526

2.8

187.

3Q

0–Q

1Q

4.1

1182

4964

1947

43.1

0+

5005

14.2

10.6

...

TY

C35

65-2

47-1

...

3982

422

8.8

158.

6Q

0–Q

1Q

3.3

1187

4676

1947

15.3

1+

5011

20.1

10.1

A535

BD+

4931

06..

.15

861

44.4

1.2

Q1

Q0

1187

4898

1947

35.9

5+

5006

09.4

11.0

...

TY

C35

65-1

373-

1..

.15

858

44.4

1.2

Q1

Q0

1191

0256

1917

46.5

6+

5016

17.4

10.6

...

...

bina

ry$

4686

325

1.8

187.

5Q

1Q

4.1

1191

0642

1918

33.7

7+

5017

00.6

10.2

...

TY

C35

50-1

782-

1..

.45

401

109.

535

.3Q

0–Q

1Q

2.2

A125, page 37 of 70

Page 38: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e1.

cont

inue

d.

KIC

IDR

AD

ecK

pSp

ectr

alty

peN

ame

Var

iabl

eN

Dat

apoi

nts

#T

"TQ

uart

ers

LC

Qua

rter

sSC

(J20

00)

(J20

00)

(d)

(d)

1197

3705

1946

42.5

8+

5021

01.3

9.1

B934

HD

2349

99..

.28

668

322.

04.

6Q

0–Q

4Q

012

0188

3419

3848

.29+

5024

13.8

10.8

...

TY

C35

64-2

74-1

...

9514

626

2.8

187.

3Q

0–Q

1Q

4.1

1202

0590

1942

20.3

5+

5027

38.8

10.0

...

TY

C35

65-8

59-1

...

1583

044

.41.

4Q

1Q

012

0584

2819

1805

.66+

5033

35.9

11.1

...

TY

C35

50-8

95-1

...

4905

544

.21.

2Q

0Q

112

0624

4319

2748

.05+

5031

10.2

10.9

...

TY

C35

51-4

50-1

...

1582

644

.41.

6Q

1Q

012

0681

8019

3922

.42+

5032

03.4

10.4

...

TY

C35

64-1

358-

1..

.40

428

137.

766

.3Q

0–Q

1Q

2.3

1210

2187

1904

01.9

7+

5037

26.3

11.1

...

TY

C35

49-8

8-1

...

4930

844

.21.

2Q

0Q

112

1176

8919

4037

.25+

5038

31.5

10.8

...

TY

C35

68-9

96-1

...

4544

110

9.5

35.3

Q0–

Q1

Q2.

212

1220

7519

4815

.07+

5039

11.8

10.7

...

TY

C35

69-3

91-1

bina

ry$

4756

826

2.8

187.

3Q

0–Q

1Q

4.1

1221

6817

1943

11.1

4+

5053

45.6

10.7

...

TY

C35

69-3

68-1

...

4043

313

7.7

66.3

Q0–

Q1

Q2.

312

2172

8119

4400

.38+

5053

13.2

9.9

F234

HD

2349

84..

.15

841

44.4

1.2

Q1

Q0

1235

3648

1918

07.9

7+

5110

47.5

9.6

A234

HD

2348

59..

.40

397

137.

766

.3Q

0–Q

1Q

2.3

1264

7070

1921

51.1

4+

5142

20.1

10.7

...

TY

C35

55-1

407-

1..

.47

581

262.

818

7.3

Q0–

Q1

Q4.

112

7843

9419

1951

.41+

5205

39.6

9.8

A534

HD

2348

69..

.15

729

44.4

1.6

Q1

Q0

Not

es.(1

)P=

9.35

62d,

eclip

sing

bina

ry(H

artm

anet

al.2

004)

;(2)

P=

0.06

65d

(Hen

ryet

al.2

001)

;(3)

P=

4.03

03d,

puls

atin

gst

ar(H

artm

anet

al.2

004)

;(4)

P=

0.56

07d

(Har

tman

etal

.200

4);

(5)

P=

0.18

86d

(Har

tman

etal

.200

4);(6

)P=

0.29

48d

(Har

tman

etal

.200

4);(7

)P=

35.9

d(W

atso

n20

06);

(8)

P=

4.92

4d

(Pig

ulsk

ieta

l.20

09);

(9)

P=

2.18

d(M

agal

ashv

ili&

Kum

ishv

ili19

76);

(10)

P=

0.06

6677

d(W

atso

n20

06);

(11)

P=

0.38

414

d(W

atso

n20

06);

(12)

P=

8.48

03d

(Ote

ro20

07);

8.48

0322

d(C

arri

eret

al.2

002)

;(13)

P=

4.56

427

d,ec

lipsi

ngbi

nary

(Mal

kov

etal

.200

6);

(14)

Abt

(198

4);(1

5)G

riga

hcèn

eet

al.(

2010

);(1

6)H

enry

etal

.(20

01);

(17)

Sato

&K

uji(

1990

);(1

8)C

anno

n(1

925)

;(19)

Abt

(200

4);(2

0)G

reni

eret

al.(

1999

);(2

1)H

ill&

Lyna

s-G

ray

(197

7);(2

2)G

uette

r(1

968)

;(23)

Abt

&C

ardo

na(1

984)

;(24)

Perr

yman

etal

.(19

97);

(25)

Mac

rae

(195

2);(2

6)Fl

oque

t(19

75);

(27)

Floq

uet

(197

0);(2

8)L

indo!

(197

2);(2

9)M

oore

&Pa

ddoc

k(1

950)

;(30)

Bid

elm

anet

al.

(198

8);(3

1)St

ephe

nson

(198

6);(3

2)V

ysso

tsky

(195

8);(3

3)H

ill&

Schi

lt(1

952)

;(34)

Can

non

(192

5);(3

5)K

harc

henk

o&

Roe

ser(

2009

);(3

6)E

clip

sing

bina

ry(P

r!a

etal

.201

1);(3

7)B

alon

aet

al.(

2011

c);

(38)

Ecl

ipsi

ngbi

nary

(Sla

wso

net

al.2

011)

;(39)

Wri

ghte

tal.

(200

3);(4

0)H

o%ei

t(19

51);

(41)

Mol

enda

-Zak

owic

zet

al.(

2008

).($

)B

inar

ityis

susp

ecte

dby

insp

ectio

nof

Dig

itize

dSk

ySu

rvey

and

2MA

SSim

ages

;(%)

spec

tros

copi

cbi

nary

.

A125, page 38 of 70

Page 39: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.E!

ectiv

ete

mpe

ratu

re(i

nK

),lo

gg

(in

dex)

,andv

sin

ival

ues

(in

kms"

1 )for

the

750

sam

ple

star

s.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0116

2150

6870

...

...

...

6870±

290a

3.47

...

...

3.5±

0.3a

...

...

0129

4756

8410

...

...

...

8410±

290a

3.92

...

...

3.9±

0.3a

...

...

0143

2149

7270

...

...

...

7270±

290a

3.99

...

...

4.0±

0.3a

...

...

0157

1152%

7050

6500±

130b

7000±

75g

...

7000±

75g

3.16

4.49±

0.21

b4.

15±

0.26g

4.2±

0.26g

91±

13g

...

0157

1717

8110

...

...

...

8110±

290a

3.98

...

...

4.0±

0.3a

...

...

0157

3064

4639

...

...

...

4639±

290a

2.54

...

...

2.5±

0.3a

...

...

0171

8594

7500

...

...

...

7500±

290a

3.95

...

...

4.0±

0.3a

...

...

0199

5489

...

6410±

120b

...

...

6410±

120b

...

4.43±

0.21

b..

.4.

43±

0.21

b..

...

.02

0209

66..

.65

60±

130b

...

...

6560±

130b

...

3.50±

0.23

b..

.3.

50±

0.23

b..

...

.02

1622

8366

80..

...

...

.66

80±

290a

4.07

...

...

4.1±

0.3a

...

...

0216

3434

4590

...

...

...

4590±

290a

2.67

...

...

2.7±

0.3a

...

...

0216

6218

7150

7070±

80g

...

...

7070±

80g

3.35

3.84±

0.21

b2.

69±

0.19g

2.69±

0.19g

100±

3g..

.02

1683

3381

40..

...

...

.81

40±

290a

3.83

...

...

3.8±

0.3a

...

...

0230

0165

7140

...

...

...

7140±

290a

3.58

...

...

3.6±

0.3a

...

...

0230

3365

7280

...

...

...

7280±

290a

3.65

...

...

3.7±

0.3a

...

...

0230

6469

4600

...

...

...

4600±

290a

2.42

...

...

2.4±

0.3a

...

...

0230

6716

4670

...

...

...

4670±

290a

2.32

...

...

2.3±

0.3a

...

...

0231

0479

4440

...

...

...

4440±

290a

2.02

...

...

2.0±

0.3a

...

...

0231

1130

4640

...

...

...

4640±

290a

2.31

...

...

2.3±

0.3a

...

...

0242

3932

...

...

...

...

...

...

...

...

...

...

...

0243

9660

7990

...

...

...

7990±

290a

3.95

...

...

4.0±

0.3a

...

...

0244

3055

4590

...

...

...

4590±

290a

2.52

...

...

2.5±

0.3a

...

...

0244

4598

...

...

...

...

...

...

...

...

...

...

...

0255

6297

4590

...

...

...

4590±

290a

2.48

...

...

2.5±

0.3a

...

...

0255

6387

...

...

...

...

...

...

...

...

...

...

...

0255

7115

4340

...

...

...

4340±

290a

2.22

...

...

2.2±

0.3a

...

...

0255

7430

6250

...

...

...

6250±

290a

4.10

...

...

4.1±

0.3a

...

...

0255

8273

6440

...

...

...

6440±

290a

4.19

...

...

4.2±

0.3a

...

...

0256

8519

6170

...

...

...

6170±

290a

4.46

...

...

4.5±

0.3a

...

...

0256

9639

8020

...

...

...

8020±

290a

4.12

...

...

4.1±

0.3a

...

...

0257

1868

7930

...

...

...

7930±

290a

3.56

...

...

3.6±

0.3a

...

...

0257

2386

...

...

...

...

...

...

...

...

...

...

...

0257

5161

...

6940±

150b

...

...

6940±

150b

...

4.00±

0.21

b..

.4.

00±

0.21

b..

...

.02

5782

51..

.66

10±

130b

...

...

6610±

130b

...

4.23±

0.21

b..

.4.

23±

0.21

b..

...

.02

5836

5846

20..

...

...

.46

20±

290a

2.44

...

...

2.4±

0.3a

...

...

0258

4202

...

...

...

...

...

...

...

...

...

...

...

0258

4908

8180

...

...

...

8180±

290a

3.70

...

...

3.7±

0.3a

...

...

0269

4337

7290

...

...

...

7290±

290a

3.99

...

...

4.0±

0.3a

...

...

0270

7479

7280

...

...

...

7280±

290a

4.10

...

...

4.1±

0.3a

...

...

0271

8596

4850

...

...

...

4850±

290a

2.63

...

...

2.6±

0.3a

...

...

0272

0582

7060

...

...

...

7060±

290a

4.17

...

...

4.2±

0.3a

...

...

0283

4796

4570

...

...

...

4570±

290a

2.34

...

...

2.3±

0.3a

...

...

0283

5795

...

6690±

130b

...

...

6690±

130b

...

3.74±

0.22

b..

.3.

74±

0.22

b..

...

.

A125, page 39 of 70

Page 40: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0285

3280

7320

...

...

...

7320±

290a

3.59

...

...

3.6±

0.3a

...

...

0285

5687

4770

...

...

...

4770±

290a

2.52

...

...

2.5±

0.3a

...

...

0286

0123

4620

...

...

...

4620±

290a

2.53

...

...

2.5±

0.3a

...

...

0296

9151

4700

...

...

...

4700±

290a

2.37

...

...

2.4±

0.3a

...

...

0297

0244

4720

...

...

...

4720±

290a

2.24

...

...

2.2±

0.3a

...

...

0297

2401

4660

...

...

...

4660±

290a

2.59

...

...

2.6±

0.3a

...

...

0297

5832

...

...

...

...

...

...

...

...

...

...

...

0298

7660

7310

...

...

...

7310±

290a

3.59

...

...

3.6±

0.3a

...

...

0298

9746

...

...

...

...

...

...

....

....

...

...

.02

9955

2548

50..

...

...

.48

50±

290a

2.64

...

...

2.6±

0.3a

...

...

0299

7802

...

...

...

...

...

...

...

...

...

...

...

0309

7912

7880

...

...

...

7880±

290a

3.56

...

...

3.6±

0.3a

...

...

0311

1451

...

...

...

...

...

...

...

...

...

...

...

0311

9604

8210

...

...

...

8210±

290a

4.04

...

...

4.0±

0.3a

...

...

0311

9825

...

...

...

...

...

...

...

...

...

...

...

0321

5800

...

...

...

...

...

...

...

...

...

...

...

0321

7554%

7800

7830±

120g

...

...

7830±

120g

3.50

3.69±

0.09g

...

3.69±

0.09g

228±

18g

...

0321

8637

7190

...

...

...

7190±

290a

3.89

...

...

3.9±

0.3a

...

...

0321

9256

7290

7500±

150i

...

...

7500±

150i

3.56

3.6±

0.1i

...

3.6±

0.1i

90±

5i..

.03

2207

8345

90..

...

...

.45

90±

290a

2.58

...

...

2.6±

0.3a

...

...

0322

2364

...

6750±

130b

...

...

6750±

130b

...

3.82±

0.21

b..

.3.

82±

0.21

b..

...

.03

2302

2779

70..

...

...

.79

70±

290a

3.89

...

...

3.9±

0.3a

...

...

0323

1406

7800

...

...

...

7800±

290a

3.76

...

...

3.8±

0.3a

...

...

0324

0556

8420

...

...

...

8420±

290a

3.85

...

...

3.9±

0.3a

...

...

0324

5420

7870

...

...

...

7870±

290a

3.66

...

...

3.7±

0.3a

...

...

0324

8627

4660

...

...

...

4660±

290a

2.32

...

...

2.3±

0.3a

...

...

0332

7681

6500

...

...

...

6500±

290a

3.68

...

...

3.7±

0.3a

...

...

0333

1147

7020

...

...

...

7020±

290a

3.55

...

...

3.6±

0.3a

...

...

0333

7002

7200

...

...

...

7200±

290a

3.60

...

...

3.6±

0.3a

...

...

0334

7643

6780

...

...

...

6780±

290a

4.07

...

...

4.1±

0.3a

...

...

0334

8390

7140

6850±

150b

...

...

6850±

150b

4.02

4.10±

0.21

b..

.4.

10±

0.21

b..

...

.03

3540

2248

10..

...

...

.48

10±

290a

2.26

...

...

2.3±

0.3a

...

...

0335

5066

4900

...

...

...

4900±

290a

2.74

...

...

2.7±

0.3a

...

...

0342

4493

7230

...

...

...

7230±

290a

3.44

...

...

3.4±

0.3a

...

...

0342

5802

8050

...

...

...

8050±

290a

4.06

...

...

4.1±

0.3a

...

...

0342

7144

4790

...

...

...

4790±

290a

2.55

...

...

2.5±

0.3a

...

...

0342

7365

4900

...

...

...

4900±

290a

2.48

...

...

2.5±

0.3a

...

...

0342

9637

6960

7200±

150i

...

...

7200±

150i

3.42

4.0±

0.1i

...

4.0±

0.1i

50±

5i..

.03

4379

4074

3073

42±

162e

7700±

120i

...

7700±

120i

3.86

3.3±

0.2e

4.1±

0.2i

4.1±

0.2i

120±

5i..

.03

4404

9574

10..

...

...

.74

10±

290a

3.93

...

...

3.9±

0.3a

...

...

0344

9373

...

...

...

...

...

...

...

...

...

...

...

0344

9625

...

...

...

...

...

...

...

...

...

...

...

0345

3494

7810

7750±

70g

...

...

7750±

70g

3.84

3.6±

0.3g

...

3.6±

0.3g

210±

15g

...

A125, page 40 of 70

Page 41: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0345

7434

4570

...

...

...

4570±

290a

2.39

...

...

2.4±

0.3a

...

...

0345

8097

...

...

...

...

...

...

...

...

...

...

...

0345

8318

...

...

...

...

...

...

...

...

...

...

...

0352

5951

4570

...

...

...

4570±

290a

2.47

...

...

2.5±

0.3a

...

...

0352

8578

5020

...

...

...

5020±

290a

2.78

...

...

2.8±

0.3a

...

...

0353

9153

7310

6790±

140b

...

...

6790±

140b

3.81

3.73±

0.21

b..

.3.

73±

0.21

b..

...

.03

5460

6147

70..

...

...

.47

70±

290a

2.34

...

...

2.3±

0.3a

...

...

0355

8145

7340

...

...

...

7340±

290a

4.11

...

...

4.1±

0.3a

...

...

0362

9080

4830

...

...

...

4830±

290a

2.74

...

...

2.7±

0.3a

...

...

0363

3693

4530

...

...

...

4530±

290a

2.38

...

...

2.4±

0.3a

...

...

0363

4384

7480

...

...

...

7480±

290a

3.86

...

...

3.9±

0.3a

...

...

0364

3717

4410

...

...

...

4410±

290a

2.02

...

...

2.0±

0.3a

...

...

0364

4116

7500

...

...

...

7500±

290a

4.11

...

...

4.1±

0.3a

...

...

0365

5513

...

...

...

...

...

...

...

...

...

...

...

0365

5608

6600

...

...

...

6600±

290a

4.33

...

...

4.3±

0.3a

...

...

0366

3141

...

...

...

...

...

...

...

...

...

...

...

0373

3735

6440

6671±

76c

6760±

0d65

46±

0o66

71±

76c

4.03

4.31±

0.10

d..

.4.

0.1d

...

...

0375

8717

...

...

...

...

...

...

...

...

...

...

...

0375

9814

4890

...

...

...

4890±

290a

3.51

...

...

3.5±

0.3a

...

...

0376

0002

7030

...

...

...

7030±

290a

4.04

...

...

4.0±

0.3a

...

...

0376

0826

8640

...

...

...

8640±

290a

3.42

...

...

3.4±

0.3a

...

...

0376

1641

8150

...

...

...

8150±

290a

4.10

...

...

4.1±

0.3a

...

...

0383

6911

...

...

...

...

...

...

...

...

...

...

...

0385

0810

7300

...

...

...

7300±

290a

3.56

...

...

3.6±

0.3a

...

...

0385

1151

8190

...

...

...

8190±

290a

4.10

...

...

4.1±

0.3a

...

...

0386

8032

8340

...

...

...

8340±

290a

4.04

...

...

4.0±

0.3a

...

...

0394

1283

7800

...

...

...

7800±

290a

3.87

...

...

3.9±

0.3a

...

...

0394

2911

7310

...

...

...

7310±

290a

3.99

...

...

4.0±

0.3a

...

...

0396

6357

7460

...

...

...

7460±

290a

3.59

...

...

3.6±

0.3a

...

...

0397

0729

7160

...

...

...

7160±

290a

4.14

...

...

4.1±

0.3a

...

...

0403

5667

7960

...

...

...

7960±

290a

3.87

...

...

3.9±

0.3a

...

...

0404

4353

8300

...

...

...

8300±

290a

3.56

...

...

3.6±

0.3a

...

...

0404

8488

5900

...

...

...

5900±

290a

4.21

...

...

4.2±

0.3a

...

...

0404

8494

7620

...

...

...

7620±

290a

3.95

...

...

4.0±

0.3a

...

...

0406

9477

7190

...

...

...

7190±

290a

3.80

...

...

3.8±

0.3a

...

...

0407

5519

...

...

...

...

...

...

...

...

...

...

...

0407

7032

6790

...

...

...

6790±

290a

4.05

...

...

4.1±

0.3a

...

...

0414

4300

...

...

...

...

...

...

...

...

...

...

...

0415

0611

6620

...

...

...

6620±

290a

4.05

...

...

4.1±

0.3a

...

...

0416

0876

8290

...

...

...

8290±

290a

3.65

...

...

3.7±

0.3a

...

...

0416

4363

7480

6470±

120b

...

...

6470±

120b

3.83

3.84±

0.22

b..

.3.

84±

0.22

b..

...

.04

1685

7477

10..

...

...

.77

10±

290a

3.50

...

...

3.5±

0.3a

...

...

0417

0631

7500

...

...

...

7500±

290a

3.47

...

...

3.5±

0.3a

...

...

A125, page 41 of 70

Page 42: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0418

0199

7220

...

...

...

7220±

290a

3.91

...

...

3.9±

0.3a

...

...

0425

2757

7650

...

...

...

7650±

290a

3.72

...

...

3.7±

0.3a

...

...

0426

9337

8000

...

...

...

8000±

290a

3.58

...

...

3.6±

0.3a

...

...

0428

1581

8140

...

...

...

8140±

290a

3.84

...

...

3.8±

0.3a

...

...

0438

3117

8250

...

...

...

8250±

290a

3.63

...

...

3.6±

0.3a

...

...

0447

6836

6760

...

...

...

6760±

290a

3.88

...

...

3.9±

0.3a

...

...

0448

0321

7150

...

...

...

7150±

290a

3.87

...

...

3.9±

0.3a

...

...

0448

8840

7130

...

...

...

7130±

290a

3.54

...

...

3.5±

0.3a

...

...

0455

0962

7290

...

...

...

7290±

290a

3.54

...

...

3.5±

0.3a

...

...

0455

6345

7290

...

...

...

7290±

290a

3.87

...

...

3.9±

0.3a

...

...

0457

0326

...

7000±

150i

...

...

7000±

150i

...

4.0±

0.3i

...

4.0±

0.3i

80±

20i

...

0458

8487

7860

...

...

...

7860±

290a

3.98

...

...

4.0±

0.3a

...

...

0464

7763

6890

6850±

140b

...

...

6850±

140b

4.05

3.56±

0.22

b..

.3.

56±

0.22

b..

...

.04

6494

7683

30..

...

...

.83

30±

290a

3.87

...

...

3.9±

0.3a

...

...

0467

1225

8230

...

...

...

8230±

290a

3.27

...

...

3.3±

0.3a

...

...

0467

7684

7860

...

...

...

7860±

290a

3.32

...

...

3.3±

0.3a

...

...

0475

8316

6980

...

...

...

6980±

290a

4.07

...

...

4.1±

0.3a

...

...

0476

8677

8360

...

...

...

8360±

290a

3.97

...

...

4.0±

0.3a

...

...

0484

0675

7110

...

...

...

7110±

290a

3.55

...

...

3.6±

0.3a

...

...

0485

0899

...

7132±

163e

7244±

0d..

.71

32±

163e

...

4.2±

0.2e

4.26±

0.05

d4.

26±

0.05

d..

...

.04

8566

3073

50..

...

...

.73

50±

290a

3.89

...

...

3.9±

0.3a

...

...

0485

7678

...

6668±

0o..

...

.66

80±

290o

...

...

...

...

...

...

0486

3077

7520

...

...

...

7520±

290a

3.90

...

...

3.9±

0.3a

...

...

0490

9697

7820

...

...

...

7820±

290a

3.92

...

...

3.9±

0.3a

...

...

0491

9818

7320

...

...

...

7320±

290a

3.97

...

...

4.0±

0.3a

...

...

0492

0125

7630

...

...

...

7630±

290a

3.62

...

...

3.6±

0.3a

...

...

0493

6524

7470

...

...

...

7470±

290a

3.79

...

...

3.8±

0.3a

...

...

0493

7257

...

...

...

...

...

...

...

...

...

...

...

0498

9900

7900

...

...

...

7900±

290a

3.51

...

...

3.5±

0.3a

...

...

0502

4150

5250

...

...

...

5250±

290a

...

...

...

...

...

...

0502

4454

6210

...

...

...

6210±

290a

4.11

...

...

4.1±

0.3a

...

...

0502

4455

6760

...

...

...

6760±

290a

4.44

...

...

4.4±

0.3a

...

...

0502

4456

4300

...

...

...

4300±

290a

...

...

...

...

...

...

0502

4750

...

...

...

...

...

...

...

...

...

...

...

0503

8228

6740

...

...

...

6740±

290a

4.13

...

...

4.1±

0.3a

...

...

0508

0290

5140

...

...

...

5140±

290a

3.58

...

...

3.6±

0.3a

...

...

0508

8308

6570

6740±

50g

...

...

6740±

50g

4.04

2.70±

0.13g

...

2.70±

0.13g

41±

1g..

.05

1057

5470

90..

...

...

.70

90±

290a

4.13

...

...

4.1±

0.3a

...

...

0511

2786

...

...

...

...

...

...

...

...

...

...

...

0511

2932

...

...

...

...

...

...

...

...

...

...

...

0511

3797

8140

...

...

...

8140±

290a

3.83

...

...

3.8±

0.3a

...

...

0516

4767

...

6576±

121e

6960±

80g

6982±

0o69

60±

80g

...

3.11±

0.19

e4.

01±

0.37g

3.11±

0.19

e16

9g..

.05

1807

9674

50..

...

...

.74

50±

290a

3.89

...

...

3.9±

0.3a

...

...

A125, page 42 of 70

Page 43: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0519

7256

7610

...

...

...

7610±

290a

3.88

...

...

3.9±

0.3a

...

...

0519

9464

6080

...

...

...

6080±

290a

4.53

...

...

4.5±

0.3a

...

...

0520

0084

7470

...

...

...

7470±

290a

3.84

...

...

3.8±

0.3a

...

...

0520

1088

5450

...

...

...

5450±

290a

...

...

...

...

...

...

0520

9712

8360

...

...

...

8360±

290a

3.95

...

...

4.0±

0.3a

...

...

0521

7733

9120

...

...

...

9120±

290a

4.22

...

...

4.2±

0.3a

...

...

0521

9533

7410

...

...

...

7410±

290a

3.94

...

...

3.9±

0.3a

115n

...

0527

2673

7120

...

...

...

7120±

290a

3.76

...

...

3.8±

0.3a

...

...

0529

4571

6580

...

...

...

6580±

290a

4.07

...

...

4.1±

0.3a

...

...

0529

6877

6660

6500±

200i

...

...

6500±

200i

4.11

3.8±

0.3i

...

3.8±

0.3i

200±

20i

...

0535

6349

8290

...

...

...

8290±

290a

3.91

...

...

3.9±

0.3a

...

...

0537

1747

7070

...

...

...

7070±

290a

4.03

...

...

4.0±

0.3a

...

...

0539

1416

8060

...

...

...

8060±

290a

3.89

...

...

3.9±

0.3a

...

...

0542

8254

7390

...

...

...

7390±

290a

3.93

...

...

3.9±

0.3a

...

...

0543

6432

8330

...

...

...

8330±

290a

3.90

...

...

3.9±

0.3a

...

...

0543

7206

7710

...

...

...

7710±

290a

3.67

...

...

3.7±

0.3a

...

...

0544

6068%

5340

5980±

120g

...

...

5980±

120g

4.48

3.58±

0.28g

...

3.58±

0.28g

11±

1g..

.05

4731

7174

50..

...

...

.74

50±

290a

3.63

...

...

3.6±

0.3a

...

...

0547

4427

6880

...

...

...

6880±

290a

4.14

...

...

4.1±

0.3a

...

...

0547

6495

7360

...

...

...

7360±

290a

3.92

...

...

3.9±

0.3a

...

...

0547

6864

6580

6550±

120b

...

...

6550±

120b

4.11

3.72±

0.22

b..

.3.

72±

0.22

b..

...

.05

5138

6161

7066

10±

140b

...

...

6610±

140b

4.43

4.48±

0.21

b..

.4.

48±

0.21

b..

...

.05

6030

4980

00..

...

...

.80

00±

290a

3.71

...

...

3.7±

0.3a

...

...

0563

0362

7360

...

...

...

7360±

290a

3.53

...

...

3.5±

0.3a

...

...

0563

2093

8090

...

...

...

8090±

290a

4.07

...

...

4.1±

0.3a

...

...

0564

1711

7160

...

...

...

7160±

290a

3.97

...

...

4.0±

0.3a

...

...

0570

9664

7200

...

...

...

7200±

290a

4.04

...

...

4.0±

0.3a

...

...

0572

2346

6670

...

...

...

6670±

290a

4.21

...

...

4.2±

0.3a

...

...

0572

4048

6520

...

...

...

6520±

290a

4.08

...

...

4.1±

0.3a

...

...

0572

4440

7290

7699±

81c

7537±

186e

7350±

120i

7350±

120i

3.57

3.98±

0.21

e3.

0.3i

3.6±

0.3i

220±

5i..

.05

7248

1073

30..

...

...

.73

30±

290a

3.88

...

...

3.9±

0.3a

...

...

0576

8203

6450

...

...

...

6450±

290a

3.95

...

...

3.9±

0.3a

...

...

0577

2411

6760

...

...

...

6760±

290a

4.18

...

...

4.2±

0.3a

...

...

0577

4557

7050

...

...

...

7050±

290a

3.99

...

...

4.0±

0.3a

...

...

0578

5707

8010

7940±

80g

...

...

7940±

80g

3.62

3.44±

0.26g

...

3.44±

0.26g

170±

11g

...

0581

0113

6360

6480±

120b

...

...

6480±

120b

4.22

3.60±

0.23

b..

.3.

60±

0.23

b..

...

.05

8577

1467

10..

...

...

.67

10±

290a

3.80

...

...

3.8±

0.3a

...

...

0588

0360

7690

...

...

...

7690±

290a

3.64

...

...

3.6±

0.3a

...

...

0594

0273

8010

...

...

...

8010±

290a

3.59

...

...

3.6±

0.3a

...

...

0595

4264

6720

6900±

146e

...

...

6900±

146e

4.15

3.86±

0.21

e..

.3.

86±

0.21

e..

...

.05

9658

3765

2069

75±

200i

...

...

6975±

200i

4.15

4.0±

0.4i

...

4.0±

0.3i

20±

10i

...

0598

0337

7680

...

...

...

7680±

290a

3.76

...

...

3.8±

0.3a

...

...

0598

8140

7450

7267±

163e

7400±

150i

...

7400±

150i

3.54

3.32±

0.23

e3.

0.3i

3.32±

0.23

e70±

20i

...

A125, page 43 of 70

Page 44: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0603

2730

7110

...

...

...

7110±

290a

3.79

...

...

3.8±

0.3a

...

...

0606

7817

7840

...

...

...

7840±

290a

3.86

...

...

3.9±

0.3a

...

...

0612

3324

6670

6700±

130b

6641±

123e

...

6700±

130b

3.40

3.09±

0.23

b3.

06±

0.21

e3.

0.3b

...

...

0614

1372

7080

...

...

...

7080±

290a

4.21

...

...

4.2±

0.3a

...

...

0614

2919

7000

...

...

...

7000±

290a

4.02

...

...

4.0±

0.3a

...

...

0618

7665

6880

6025±

60c

6025±

0d..

.60

25±

60c

4.01

4.27±

0.11

d..

.4.

27±

0.11

d..

...

.06

1997

3178

50..

...

...

.78

50±

290a

3.55

...

...

3.6±

0.3a

...

...

0626

8890

7280

...

...

...

7280±

290a

3.49

...

...

3.5±

0.3a

...

...

0627

9848

...

6826±

140e

...

...

6826±

140e

...

3.8±

0.2e

...

3.8±

0.2e

...

...

0628

9468

8270

8150±

100g

...

...

8150±

100g

3.74

3.29±

0.09g

...

3.29±

0.09g

148±

7g..

.06

3017

4567

9067

40±

130b

...

...

6740±

130b

4.13

4.01±

0.21

b..

.4.

01±

0.21

b..

...

.06

3813

0680

60..

...

...

.80

60±

290a

3.63

...

...

3.6±

0.3a

...

...

0643

2054

7090

7287±

167e

7400±

150l

...

7400±

150l

3.85

3.81±

0.19

e3.

0.2l

3.81±

0.19

e..

...

.06

4409

3083

20..

...

...

.83

20±

290a

4.09

...

...

4.1±

0.3a

...

...

0644

3122

7480

...

...

...

7480±

290a

3.54

...

...

3.5±

0.3a

...

...

0644

6951

7380

...

...

...

7380±

290a

4.06

...

...

4.1±

0.3a

...

...

0644

8112

8150

...

...

...

8150±

290a

4.01

...

...

4.0±

0.3a

...

...

0646

2033

8390

...

...

...

8390±

290a

4.32

...

...

4.3±

0.3a

...

...

0650

0578

7840

...

...

...

7840±

290a

3.64

...

...

3.6±

0.3a

...

...

0650

9175

7300

7520±

60g

...

...

7520±

60g

3.52

3.29±

0.3g

...

3.3±

0.3g

132±

8g..

.06

5198

6971

50..

...

...

.71

50±

290a

3.80

...

...

3.8±

0.3a

...

...

0658

6052

7520

...

...

...

7520±

290a

4.05

...

...

4.1±

0.3a

...

...

0658

7551

8380

8870±

190g

...

...

8870±

190g

3.93

3.78±

0.09g

...

3.78±

0.09g

138±

9g..

.06

5904

0370

30..

...

...

.70

30±

290a

3.93

...

...

3.9±

0.3a

...

...

0660

6229

6750

...

...

...

6750±

290a

4.09

...

...

4.1±

0.3a

...

...

0661

4168

7270

...

...

...

7270±

290a

4.14

...

...

4.1±

0.3a

...

...

0662

9106

7070

...

...

...

7070±

290a

3.95

...

...

4.0±

0.3a

...

...

0666

8729

7770

...

...

...

7770±

290a

3.48

...

...

3.5±

0.3a

...

...

0667

0742

7450

6386±

62c

...

...

6386±

62c

3.61

...

...

3.6±

0.3a

...

...

0667

8614

7410

...

...

...

7410±

290a

3.85

...

...

3.9±

0.3a

...

...

0669

4649

7750

...

...

...

7750±

290a

3.66

...

...

3.7±

0.3a

...

...

0675

6386

7990

7900±

70g

...

...

7900±

70g

3.51

3.17±

0.10g

...

3.2±

0.1g

190±

12g

...

0675

6481

7310

...

...

...

7310±

290a

3.52

...

...

3.5±

0.3a

...

...

0676

1539

7240

...

...

...

7240±

290a

4.04

...

...

4.0±

0.3a

...

...

0677

6331

7650

...

...

...

7650±

290a

3.72

...

...

3.7±

0.3a

...

...

0679

0335

7690

...

...

...

7690±

290a

3.52

...

...

3.5±

0.3a

...

...

0680

4821

7480

...

...

...

7480±

290a

3.65

...

...

3.7±

0.3a

...

...

0686

5077

7770

...

...

...

7770±

290a

3.62

...

...

3.6±

0.3a

...

...

0692

2690

7320

...

...

...

7320±

290a

3.61

...

...

3.6±

0.3a

...

...

0692

3424

7060

...

...

...

7060±

290a

4.16

...

...

4.2±

0.3a

...

...

0693

7758

7840

...

...

...

7840±

290a

3.47

...

...

3.5±

0.3a

...

...

0693

9291

7140

...

...

...

7140±

290a

3.52

...

...

3.5±

0.3a

...

...

0694

7064

8170

...

...

...

8170±

290a

3.91

...

...

3.9±

0.3a

...

...

A125, page 44 of 70

Page 45: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0695

1642

7180

...

...

...

7180±

290a

3.37

...

...

3.4±

0.3a

...

...

0696

5789

7650

...

...

...

7650±

290a

3.39

...

...

3.4±

0.3a

...

...

0700

7103

6910

...

...

...

6910±

290a

4.06

...

...

4.1±

0.3a

...

...

0710

6205

6970

6900±

140b

...

...

6900±

140b

4.05

3.73±

0.21

b..

.3.

73±

0.21

b..

...

.07

1066

4870

10..

...

...

.70

10±

290a

4.11

...

...

4.1±

0.3a

...

...

0710

9598

7270

...

...

...

7270±

290a

4.08

...

...

4.1±

0.3a

...

...

0711

9530

7780

7608±

190e

7500±

200i

...

7500±

200i

3.49

3.26±

0.21

e3.

0.3i

3.26±

0.21

e20

20i

...

0712

2746

8340

7740±

200b

...

...

7740±

200b

3.84

4.00±

0.18

b..

.4.

00±

0.18

b..

...

.07

2042

3780

70..

...

...

.80

70±

290a

4.05

...

...

4.1±

0.3a

...

...

0721

1759

8220

...

...

...

8220±

290a

3.77

...

...

3.8±

0.3a

...

...

0721

2040

7500

...

...

...

7500±

290a

3.97

...

...

4.0±

0.3a

...

...

0721

5607

6530

...

...

...

6530±

290a

4.06

...

...

4.1±

0.3a

...

...

0721

7483

6940

...

...

...

6940±

290a

3.89

...

...

3.9±

0.3a

...

...

0722

0356

6340

...

...

...

6340±

290a

4.26

...

...

4.3±

0.3a

...

...

0726

5427

7560

...

...

...

7560±

290a

4.13

...

...

4.1±

0.3a

...

...

0728

7118

7850

...

...

...

7850±

290a

3.76

...

...

3.8±

0.3a

...

...

0730

0387

7000

...

...

...

7000±

290a

3.60

...

...

3.6±

0.3a

...

...

0730

4385

6890

...

...

...

6890±

290a

3.60

...

...

3.6±

0.3a

...

...

0733

8125

7860

...

...

...

7860±

290a

3.96

...

...

4.0±

0.3a

...

...

0735

0486

7290

...

...

...

7290±

290a

3.65

...

...

3.7±

0.3a

...

...

0735

2425

6890

...

...

...

6890±

290a

4.07

...

...

4.1±

0.3a

...

...

0735

2776

7460

...

...

...

7460±

290a

3.99

...

...

4.0±

0.3a

...

...

0738

5478

6480

...

...

...

6480±

290a

3.87

...

...

3.9±

0.3a

...

...

0743

6266

7020

...

...

...

7020±

290a

4.05

...

...

4.1±

0.3a

...

...

0745

0284

7930

...

...

...

7930±

290a

3.74

...

...

3.7±

0.3a

...

...

0750

2559

7470

...

...

...

7470±

290a

3.89

...

...

3.9±

0.3a

...

...

0753

3694

7860

...

...

...

7860±

290a

3.80

...

...

3.8±

0.3a

...

...

0754

8061

5000

5370±

120q

...

...

5370±

120q

2.42

1.50±

0.35

q..

.2.

0.3a

12±

2q..

.07

5484

7973

4075

00±

250r

...

...

7500±

250l

3.84

3.90±

0.25

l..

.3.

90±

0.25

l10±

2l..

.07

5532

3769

30..

...

...

.69

30±

290a

4.12

...

...

4.1±

0.3a

...

...

0758

3939

8310

...

...

...

8310±

290a

3.95

...

...

3.9±

0.3a

...

...

0759

6250

6870

...

...

...

6870±

290a

3.90

...

...

3.9±

0.3a

...

...

0766

2076

7050

...

...

...

7050±

290a

4.01

...

...

4.0±

0.3a

...

...

0766

8791

8150

...

...

...

8150±

290a

3.89

...

...

3.9±

0.3a

...

...

0766

9848

...

...

...

...

...

...

...

...

...

19o

19.4±

2.0n

0769

4191

7850

...

...

...

7850±

290a

3.54

...

...

3.5±

0.3a

...

...

0769

7795

7480

...

...

...

7480±

290a

3.56

...

...

3.6±

0.3a

...

...

0769

9056

7410

...

...

...

7410±

290a

3.67

...

...

3.7±

0.3a

...

...

0770

2705

7310

6710±

130b

...

...

6710±

130b

4.00

2.88±

0.23

b..

.2.

88±

0.23

b..

...

.07

7324

5875

50..

...

...

.75

50±

290a

3.64

...

...

3.6±

0.3a

...

...

0774

2739

7170

...

...

...

7170±

290a

3.89

...

...

3.9±

0.3a

...

...

0774

8238

7230

7260±

64g

...

...

7260±

64g

3.47

4.06±

0.28g

...

4.06±

0.28g

119±

6g..

.07

7568

5380

60..

...

...

.80

60±

290a

3.94

...

...

3.9±

0.3a

...

...

A125, page 45 of 70

Page 46: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0776

7565

...

...

...

...

...

...

...

...

...

...

...

0777

0282

7450

...

...

...

7450±

290a

3.50

...

...

3.5±

0.3a

...

...

0777

1991

7300

...

...

...

7300±

290a

3.53

...

...

3.5±

0.3a

...

...

0777

3133

6640

...

...

...

6640±

290a

3.52

...

...

3.5±

0.3a

...

...

0777

7435

8120

...

...

...

8120±

290a

3.75

...

...

3.8±

0.3a

...

...

0779

8339

6680

6880±

144e

6700±

200i

6745±

0o68

80±

144e

3.40

3.90±

0.21

e3.

0.3i

3.90±

0.21

e15

.4±

2.0n

15±

5g,i

0782

7131

8290

...

...

...

8290±

290a

3.49

...

...

3.5±

0.3a

...

...

0783

1302

8160

...

...

...

8160±

290a

3.86

...

...

3.9±

0.3a

...

...

0783

4612

7450

...

...

...

7450±

290a

3.67

...

...

3.7±

0.3a

...

...

0784

2286

7660

...

...

...

7660±

290a

3.77

...

...

3.8±

0.3a

...

...

0784

2621

7620

...

...

...

7620±

290a

3.54

...

...

3.5±

0.3a

...

...

0784

8288

7380

...

...

...

7380±

290a

3.52

...

...

3.5±

0.3a

...

...

0789

0526

7080

...

...

...

7080±

290a

4.07

...

...

4.1±

0.3a

...

...

0790

0367

6970

...

...

...

6970±

290a

4.14

...

...

4.1±

0.3a

...

...

0790

8633

7840

...

...

...

7840±

290a

3.73

...

...

3.7±

0.3a

...

...

0795

9867

8480

...

...

...

8480±

290a

3.90

...

...

3.9±

0.3a

...

...

0797

7996

7120

...

...

...

7120±

290a

3.77

...

...

3.8±

0.3a

...

...

0798

5370

5610

...

...

...

5610±

290a

4.60

...

...

4.6±

0.3a

...

...

0802

9546

7120

...

...

...

7120±

290a

3.89

...

...

3.9±

0.3a

...

...

0804

3961

6350

...

...

...

6350±

290a

3.62

...

...

3.6±

0.3a

...

...

0805

4146

8150

6770±

150b

...

...

6770±

150b

3.67

3.08±

0.27

b..

.3.

0.3a

...

...

0810

3917

7130

...

...

...

7130±

290a

4.16

...

...

4.2±

0.3a

...

...

0810

4589

6510

...

...

...

6510±

290a

4.29

...

...

4.3±

0.3a

...

...

0812

3127

7160

...

...

...

7160±

290a

3.69

...

...

3.7±

0.3a

...

...

0814

3903

3680

...

...

...

3680±

290a

4.22

...

...

4.2±

0.3a

...

...

0814

4674

7290

...

...

...

7290±

290a

3.85

...

...

3.9±

0.3a

...

...

0814

5477

6800

...

...

...

6800±

290a

4.06

...

...

4.1±

0.3a

...

...

0814

9341

7540

...

...

...

7540±

290a

4.00

...

...

4.0±

0.3a

...

...

0815

9135

5020

...

...

...

5020±

290a

4.14

...

...

4.1±

0.3a

...

...

0819

7761

7070

...

...

...

7070±

290a

4.09

...

...

4.1±

0.3a

...

...

0819

7788

8010

7500±

150i

...

...

7500±

150i

3.98

4.0±

0.3i

...

4.0±

0.3i

230±

20i

...

0821

1500

7400

...

...

...

7400±

290a

3.91

...

...

3.9±

0.3a

...

...

0821

8419

4550

...

...

...

4550±

290a

2.20

...

...

2.2±

0.3a

...

...

0822

2685

...

...

...

...

...

...

...

...

...

...

...

0822

3568

6790

6740±

140b

...

...

6740±

140b

3.88

4.38±

0.21

b..

.4.

38±

0.21

b..

...

.08

2239

8755

50..

...

...

.55

50±

290a

4.45

...

...

4.5±

0.3a

...

...

0823

0025

7280

...

...

...

7280±

290a

3.48

...

...

3.5±

0.3a

...

...

0824

5366

...

...

...

...

...

...

...

...

...

...

...

0824

8630

7310

...

...

...

7310±

290a

3.74

...

...

3.7±

0.3a

...

...

0826

4061

7230

...

...

...

7230±

290a

4.10

...

...

4.1±

0.3a

...

...

0826

4075

7650

...

...

...

7650±

290a

4.06

...

...

4.1±

0.3a

...

...

0826

4274

7640

...

...

...

7640±

290a

3.74

...

...

3.7±

0.3a

...

...

0826

4404

7890

7500±

200i

...

...

7500±

200i

3.73

3.7±

0.3i

...

3.7±

0.3i

250±

20i

...

A125, page 46 of 70

Page 47: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0826

4546

7630

...

...

...

7630±

290a

3.96

...

...

4.0±

0.3a

...

...

0826

4583

8360

7240±

160b

...

...

7240±

160b

3.64

2.97±

0.22

b..

.3.

97±

0.22

b..

...

.08

2645

88..

...

...

...

...

...

...

...

...

...

...

.08

2646

1773

10..

...

...

.73

10±

290a

4.12

...

...

4.1±

0.3a

...

...

0826

4674

8030

...

...

...

8030±

290a

3.69

...

...

3.7±

0.3a

...

...

0826

4698

8010

7500±

200i

...

...

7500±

200i

3.79

3.9±

0.2i

...

3.9±

0.2i

210±

20i

...

0828

3796

5500

...

...

...

5500±

290a

4.05

...

...

4.1±

0.3a

...

...

0829

3302

6450

...

...

...

6450±

290a

4.22

...

...

4.2±

0.3a

...

...

0832

3104

7590

...

...

...

7590±

290a

3.92

...

...

3.9±

0.3a

...

...

0833

0056

7240

...

...

...

7240±

290a

4.10

...

...

4.1±

0.3a

...

...

0833

0092

6900

...

...

...

6900±

290a

4.12

...

...

4.1±

0.3a

...

...

0833

0463

6020

...

...

...

6020±

290a

4.86

...

...

4.9±

0.3a

...

...

0833

0778

7620

...

...

...

7620±

290a

4.03

...

...

4.0±

0.3a

...

...

0835

2420

6560

...

...

...

6560±

290a

4.30

...

...

4.3±

0.3a

...

...

0835

5130

7040

...

...

...

7040±

290a

4.11

...

...

4.1±

0.3a

...

...

0835

5837

5860

...

...

...

5860±

290a

4.30

...

...

4.3±

0.3a

...

...

0839

7426

7030

...

...

...

7030±

290a

3.55

...

...

3.6±

0.3a

...

...

0841

5752

7780

...

...

...

7780±

290a

4.00

...

...

4.0±

0.3a

...

...

0842

9756

7360

...

...

...

7360±

290a

3.67

...

...

3.7±

0.3a

...

...

0844

6738

7150

...

...

...

7150±

290a

3.93

...

...

3.9±

0.3a

...

...

0845

4553

6670

...

...

...

6670±

290a

3.58

...

...

3.6±

0.3a

...

...

0845

9354

7430

...

...

...

7430±

290a

3.62

...

...

3.6±

0.3a

...

...

0846

0025

...

...

...

...

...

...

...

...

...

...

...

0846

0993

6710

...

...

...

6710±

290a

3.98

...

...

4.0±

0.3a

...

...

0847

9107

5050

...

...

...

5050±

290a

4.52

...

...

4.5±

0.3a

...

...

0848

2540

6360

...

...

...

6360±

290a

4.33

...

...

4.3±

0.3a

...

...

0848

8065

6190

...

...

...

6190±

290a

4.20

...

...

4.2±

0.3a

...

...

0848

9712

8350

...

...

...

8350±

290a

3.52

...

...

3.5±

0.3a

...

...

0849

9639

6580

...

...

...

6580±

290a

4.12

...

...

4.1±

0.3a

...

...

0850

7325

7140

...

...

...

7140±

290a

3.43

...

...

3.4±

0.3a

...

...

0851

6008

8320

...

...

...

8320±

290a

3.60

...

...

3.6±

0.3a

...

...

0851

6686

8240

...

...

...

8240±

290a

4.02

...

...

4.0±

0.3a

...

...

0852

5286

7350

...

...

...

7350±

290a

4.19

...

...

4.2±

0.3a

...

...

0854

5456

7860

...

...

...

7860±

290a

3.87

...

...

3.9±

0.3a

...

...

0856

0996

7870

...

...

...

7870±

290a

3.61

...

...

3.6±

0.3a

...

...

0856

5229

7740

...

...

...

7740±

290a

3.88

...

...

3.9±

0.3a

...

...

0857

9615

8260

...

...

...

8260±

290a

3.98

...

...

4.0±

0.3a

...

...

0858

3770

7660

9000±

200i

...

...

9000±

200i

3.47

3.0±

0.2i

...

3.0±

0.2i

130±

10i

...

0859

0553

7300

...

...

...

7300±

290a

3.98

...

...

4.0±

0.3a

...

...

0860

8260

7890

...

...

...

7890±

290a

3.91

...

...

3.9±

0.3a

...

...

0862

3953

7730

7720±

50g

...

...

7720±

50g

3.74

3.47±

0.08g

...

3.47±

0.08g

84±

4g..

.08

6514

5269

40..

...

...

.69

40±

290a

4.07

...

...

4.1±

0.3a

...

...

0865

5712

7380

...

...

...

7380±

290a

3.45

...

...

3.4±

0.3a

...

...

A125, page 47 of 70

Page 48: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0869

5156

7640

...

...

...

7640±

290a

3.37

...

...

3.4±

0.3a

...

...

0870

3413

7710

...

...

...

7710±

290a

3.77

...

...

3.8±

0.3a

...

...

0871

4886

9140

1900

0f..

...

.19

000±

290f

4.09

4.3f

...

4.3±

0.3f

...

...

0871

7065

7440

...

...

...

7440±

290a

3.76

...

...

3.8±

0.3a

...

...

0873

8244

8170

8260±

160g

...

...

8260±

160g

4.15

3.25±

0.12g

...

3.25±

0.12g

133±

8g..

.08

7424

4955

80..

...

...

.55

80±

290a

4.38

...

...

4.4±

0.3a

...

...

0874

6834

4690

...

...

...

4690±

290a

3.28

...

...

3.3±

0.3a

...

...

0874

7415

5030

...

...

...

5030±

290a

3.51

...

...

3.5±

0.3a

...

...

0874

8251

6800

...

...

...

6800±

290a

4.15

...

...

4.2±

0.3a

...

...

0875

0029

...

7340±

60g

...

...

7340±

60g

...

3.72±

0.3g

...

3.7±

0.3g

165±

8g..

.08

7666

1969

9065

70±

120b

...

...

6570±

120b

3.81

3.59±

0.22

b..

.3.

59±

0.22

b..

...

.08

8278

2173

90..

...

...

.73

90±

290a

3.69

...

...

3.7±

0.3a

...

...

0883

8457

6200

...

...

...

6200±

290a

3.85

...

...

3.9±

0.3a

...

...

0886

9302

7280

...

...

...

7280±

290a

4.18

...

...

4.2±

0.3a

...

...

0886

9892

...

...

...

...

...

...

...

...

...

...

...

0887

1304

7150

...

...

...

7150±

290a

3.43

...

...

3.4±

0.3a

...

...

0888

1697

7730

...

...

...

7730±

290a

3.86

...

...

3.9±

0.3a

...

...

0891

5335

7770

...

...

...

7770±

290a

3.48

...

...

3.5±

0.3a

...

...

0893

3391

7630

7616±

193e

...

...

7616±

193e

3.69

3.71±

0.19

e..

.3.

71±

0.19

e..

...

.08

9406

40..

...

...

...

...

...

...

...

...

...

...

.08

9729

6676

60..

...

...

.76

60±

290a

3.80

...

...

3.8±

0.3a

...

...

0897

5515

7180

...

...

...

7180±

290a

3.90

...

...

3.9±

0.3a

...

...

0902

0157

6960

6880±

150b

...

...

6880±

150b

3.97

4.12±

0.21

b..

.4.

12±

0.21

b..

...

.09

0201

9965

40..

...

...

.65

40±

290a

3.98

...

...

4.0±

0.3a

...

...

0905

2363

7610

...

...

...

7610±

290a

3.74

...

...

3.7±

0.3a

...

...

0907

2011

...

...

...

...

...

...

...

...

...

...

...

0907

3007

...

...

...

...

...

...

...

...

...

...

...

0907

3985

5990

...

...

...

5990±

290a

4.37

...

...

4.4±

0.3a

...

...

0907

7192

4750

...

...

...

4750±

290a

4.40

...

...

4.4±

0.3a

...

...

0910

8615

6710

...

...

...

6710±

290a

3.81

...

...

3.8±

0.3a

...

...

0911

1056

6800

...

...

...

6800±

290a

3.65

...

...

3.7±

0.3a

...

...

0911

7875

...

...

...

...

...

...

...

...

...

...

...

0913

8872

7500

...

...

...

7500±

290a

4.03

...

...

4.0±

0.3a

...

...

0914

3785

7600

...

...

...

7600±

290a

4.25

...

...

4.3±

0.3a

...

...

0914

7229

7300

...

...

...

7300±

290a

3.57

...

...

3.6±

0.3a

...

...

0915

6808

7070

...

...

...

7070±

290a

3.94

...

...

3.9±

0.3a

...

...

0920

1644

...

...

...

...

...

...

...

...

...

...

...

0920

4672

4030

...

...

...

4030±

290a

1.82

...

...

1.8±

0.3a

...

...

0920

4718

7150

...

...

...

7150±

290a

3.93

...

...

3.9±

0.3a

...

...

0921

0037

...

...

...

...

...

...

...

...

...

...

...

0921

6367

7840

...

...

...

7840±

290a

3.65

...

...

3.7±

0.3a

...

...

0922

2942

7000

...

...

...

7000±

290a

3.99

...

...

4.0±

0.3a

...

...

0922

9318

7140

...

...

...

7140±

290a

3.65

...

...

3.7±

0.3a

...

...

A125, page 48 of 70

Page 49: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0924

6481

8050

...

...

...

8050±

290a

3.79

...

...

3.8±

0.3a

...

...

0926

4399

5060

...

...

...

5060±

290a

4.46

...

...

4.5±

0.3a

...

...

0926

4462

4870

...

...

...

4870±

290a

3.31

...

...

3.3±

0.3a

...

...

0926

7042

8130

...

...

...

8130±

290a

3.81

...

...

3.8±

0.3a

...

...

0926

8087

...

...

...

...

...

...

...

...

...

...

...

0927

2082

...

...

...

...

...

...

...

...

...

...

...

0927

4000

5660

...

...

...

5660±

290a

4.46

...

...

4.5±

0.3a

...

...

0929

1618

7610

...

...

...

7610±

290a

3.61

...

...

3.6±

0.3a

...

...

0930

6095

6340

...

...

...

6340±

290a

4.63

...

...

4.6±

0.3a

...

...

0932

4334

7250

...

...

...

7250±

290a

4.06

...

...

4.1±

0.3a

...

...

0932

7993

4600

...

...

...

4600±

290a

2.37

...

...

2.4±

0.3a

...

...

0933

6219

6520

...

...

...

6520±

290a

4.26

...

...

4.3±

0.3a

...

...

0935

1622

7450

...

...

...

7450±

290a

3.53

...

...

3.5±

0.3a

...

...

0935

3572

7190

...

...

...

7190±

290a

3.99

...

...

4.0±

0.3a

...

...

0936

8220

6660

...

...

...

6660±

290a

4.10

...

...

4.1±

0.3a

...

...

0938

6259

5810

...

...

...

5810±

290a

4.30

...

...

4.3±

0.3a

...

...

0939

1395

7310

...

...

...

7310±

290a

3.96

...

...

4.0±

0.3a

...

...

0939

5246

...

...

...

...

...

...

...

...

...

...

...

0940

8694

7480

6810±

130b

...

...

6810±

130b

3.62

3.80±

0.19

b..

.3.

80±

0.19

b..

...

.09

4130

5784

7086

30±

140g

...

...

8630±

140g

3.87

3.62±

0.07g

...

3.62±

0.07g

165±

8g..

.09

4509

4082

10..

...

...

.82

10±

290a

4.21

...

...

4.2±

0.3a

...

...

0945

1598

6060

...

...

...

6060±

290a

4.56

...

...

4.6±

0.3a

...

...

0945

3075

8060

...

...

...

8060±

290a

4.00

...

...

4.0±

0.3a

...

...

0945

8750

5070

...

...

...

5070±

290a

3.69

...

...

3.7±

0.3a

...

...

0947

3000

7130

...

...

...

7130±

290a

3.88

...

...

3.9±

0.3a

...

...

0948

9590

7160

...

...

...

7160±

290a

4.09

...

...

4.1±

0.3a

...

...

0949

0042

7060

...

...

...

7060±

290a

3.98

...

...

4.0±

0.3a

...

...

0949

0067

6880

...

...

...

6880±

290a

4.07

...

...

4.1±

0.3a

...

...

0950

9296

7400

...

...

...

7400±

290a

3.61

...

...

3.6±

0.3a

...

...

0951

4879

5880

...

...

...

5880±

290a

4.10

...

...

4.1±

0.3a

...

...

0952

0434

...

...

...

...

...

...

...

...

...

...

...

0952

0864

...

...

...

...

...

...

...

...

...

...

...

0953

2644

7300

...

...

...

7300±

290a

3.56

...

...

3.6±

0.3a

...

...

0953

3449

...

...

...

...

...

...

...

...

...

...

...

0953

3489

...

...

...

...

...

...

...

...

...

...

...

0955

0886

7490

...

...

...

7490±

290a

3.89

...

...

3.9±

0.3a

...

...

0955

1281

7450

...

...

...

7450±

290a

3.65

...

...

3.7±

0.3a

...

...

0958

0794

7300

...

...

...

7300±

290a

4.05

...

...

4.1±

0.3a

...

...

0958

2720

5620

...

...

...

5620±

290a

4.49

...

...

4.5±

0.3a

...

...

0959

3997

7620

...

...

...

7620±

290a

3.62

...

...

3.6±

0.3a

...

...

0959

4100

6520

...

...

...

6520±

290a

4.51

...

...

4.5±

0.3a

...

...

0960

4762

7290

...

...

...

7290±

290a

3.77

...

...

3.8±

0.3a

...

...

0963

0640

6530

...

...

...

6530±

290a

4.10

...

...

4.1±

0.3a

...

...

A125, page 49 of 70

Page 50: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0963

2537

7820

...

...

...

7820±

290a

3.83

...

...

3.8±

0.3a

...

...

0964

0204

6440

...

...

...

6440±

290a

4.25

...

...

4.3±

0.3a

...

...

0964

2894

7050

...

...

...

7050±

290a

4.09

...

...

4.1±

0.3a

...

...

0964

3982

6580

...

...

...

6580±

290a

4.20

...

...

4.2±

0.3a

...

...

0965

0390

8390

...

...

...

8390±

290a

3.68

...

...

3.7±

0.3a

...

...

0965

1065

7390

7010±

150b

...

...

7010±

150b

3.67

3.82±

0.21

b..

.3.

82±

0.21

b..

...

.09

6547

8969

90..

...

...

.69

90±

290a

4.09

...

...

4.1±

0.3a

...

...

0965

5055

7620

...

...

...

7620±

290a

3.48

...

...

3.5±

0.3a

...

...

0965

5114

7750

7400±

200i

...

...

7400±

200i

3.78

3.9±

0.3i

...

3.9±

0.3i

150±

20i

...

0965

5151

7060

...

...

...

7060±

290a

4.18

...

...

4.2±

0.3a

...

...

0965

5177

6900

...

...

...

6900±

290a

3.87

...

...

3.9±

0.3a

...

...

0965

5393

7570

...

...

...

7570±

290a

4.06

...

...

4.1±

0.3a

...

...

0965

5422

7600

...

...

...

7600±

290a

3.38

...

...

3.4±

0.3a

...

...

0965

5433

8300

...

...

...

8300±

290a

...

...

...

...

...

...

0965

5438

6970

...

...

...

6970±

290a

4.09

...

...

4.1±

0.3a

...

...

0965

5487

...

...

...

...

...

...

...

...

...

...

...

0965

5501

7740

...

...

...

7740±

290a

3.88

...

...

3.9±

0.3a

...

...

0965

5514

7440

...

...

...

7440±

290a

3.61

...

...

3.6±

0.3a

...

...

0965

5800

6780

...

...

...

6780±

290a

4.16

...

...

4.2±

0.3a

...

...

0965

6348

7670

7190±

160b

...

...

7190±

160b

3.52

3.9±

0.2b

...

3.9±

0.2b

...

...

0966

4869

7190

...

...

...

7190±

290a

3.99

...

...

4.0±

0.3a

...

...

0967

3293

8230

...

...

...

8230±

290a

3.87

...

...

3.9±

0.3a

...

...

0969

3282

...

...

...

...

...

...

...

...

...

...

...

0969

6853

7130

...

...

...

7130±

290a

4.14

...

...

4.1±

0.3a

...

...

0969

9950

...

...

...

...

...

...

...

...

...

...

...

0970

0145

7590

...

...

...

7590±

290a

4.03

...

...

4.0±

0.3a

...

...

0970

0322

...

6700±

100m

...

...

6700±

100m

...

3.7±

0.1m

...

3.7±

0.1m

19±

1m..

.09

7006

7950

70..

...

...

.50

70±

290a

4.45

...

...

4.5±

0.3a

...

...

0970

3601

5720

...

...

...

5720±

290a

4.89

...

...

4.9±

0.3a

...

...

0971

6107

7460

...

...

...

7460±

290a

3.65

...

...

3.7±

0.3a

...

...

0971

6350

...

...

...

...

...

...

...

...

...

...

...

0971

6947

7300

...

...

...

7300±

290a

4.04

...

...

4.0±

0.3a

...

...

0976

0531

6740

...

...

...

6740±

290a

4.03

...

...

4.0±

0.3a

...

...

0976

2713

6960

...

...

...

6960±

290a

4.09

...

...

4.1±

0.3a

...

...

0976

4712

6020

...

...

...

6020±

290a

4.68

...

...

4.7±

0.3a

...

...

0976

4965

7460

7470±

45g

...

...

7470±

45g

4.09

3.78±

0.19g

...

3.78±

0.19g

85±

3g..

.09

7735

1279

60..

...

...

.79

60±

290a

3.70

...

...

3.7±

0.3a

...

...

0977

5385

7450

...

...

...

7450±

290a

4.05

...

...

4.5±

0.3a

...

...

0977

5454

...

7109±

159e

7050±

150i

...

7050±

150i

...

3.91±

0.21

e4.

0.3i

3.91±

0.21

i70±

5i..

.09

7764

74..

...

...

...

...

...

...

...

...

...

...

.09

7775

32..

...

...

...

...

...

...

...

...

...

...

.09

7904

7978

40..

...

...

.78

40±

290a

4.04

...

...

4.0±

0.3a

...

...

0981

2351

7790

7847±

87g

...

...

7847±

87g

3.47

3.15±

0.23g

...

3.15±

0.23g

56±

4g..

.

A125, page 50 of 70

Page 51: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

0981

3078

...

6811±

138b

...

...

6811±

138b

...

3.67±

0.21

b..

.3.

67±

0.21

b..

...

.09

8182

69..

...

...

...

...

...

...

...

...

...

...

.09

8360

2074

80..

...

...

.74

80±

290a

4.09

...

...

4.1±

0.3a

...

...

0984

5907

7940

...

...

...

7940±

290a

4.03

...

...

4.0±

0.3a

...

...

0985

1142

6800

7047±

156e

...

...

7047±

156e

3.95

3.97±

0.21

e..

.3.

97±

0.21

e..

...

.09

8741

8171

80..

...

...

.71

80±

290a

4.08

...

...

4.1±

0.3a

...

...

0988

1909

6810

...

...

...

6810±

290a

3.86

...

...

3.9±

0.3a

...

...

0988

5882

5090

...

...

...

5090±

290a

2.63

...

...

2.6±

0.3a

...

...

0990

9300

6670

...

...

...

6670±

290a

4.19

...

...

4.2±

0.3a

...

...

0991

3481

7410

...

...

...

7410±

290a

3.53

...

...

3.5±

0.3a

...

...

0994

4208

7040

...

...

...

7040±

290a

4.29

...

...

4.3±

0.3a

...

...

0994

4730

5920

...

...

...

5920±

290a

4.18

...

...

4.2±

0.3a

...

...

0997

0568

7790

...

...

...

7790±

290a

3.64

...

...

3.6±

0.3a

...

...

0999

1621

5270

...

...

...

5270±

290a

4.35

...

...

4.4±

0.3a

...

...

0999

1766

6050

...

...

...

6050±

290a

4.25

...

...

4.3±

0.3a

...

...

0999

4789

5290

...

...

...

5290±

290a

3.85

...

...

3.9±

0.3a

...

...

0999

5464

4850

...

...

...

4850±

290a

2.64

...

...

2.6±

0.3a

...

...

1000

0056

8200

...

...

...

8200±

290a

3.96

...

...

4.0±

0.3a

...

...

1000

2897

7490

...

...

...

7490±

290a

3.74

...

...

3.7±

0.3a

...

...

1000

4510

4340

...

...

...

4340±

290a

4.60

...

...

4.6±

0.3a

...

...

1000

6158

4680

...

...

...

4680±

290a

2.39

...

...

2.4±

0.3a

...

...

1001

4548

7160

...

...

...

7160±

290a

3.92

...

...

3.9±

0.3a

...

...

1003

0943

6700

...

...

...

6700±

290a

4.30

...

...

4.3±

0.3a

...

...

1003

5772

7290

...

...

...

7290±

290a

3.48

...

...

3.5±

0.3a

...

...

1005

6217

6000

...

...

...

6000±

290a

4.28

...

...

4.3±

0.3a

...

...

1005

6297

7160

...

...

...

7160±

290a

4.03

...

...

4.0±

0.3a

...

...

1005

7129

4860

...

...

...

4860±

290a

3.17

...

...

3.2±

0.3a

...

...

1006

2593

5270

...

...

...

5270±

290a

4.93

...

...

4.9±

0.3a

...

...

1006

4111

7220

...

...

...

7220±

290a

4.05

...

...

4.1±

0.3a

...

...

1006

5244

7260

...

...

...

7260±

290a

3.98

...

...

4.0±

0.3a

...

...

1006

8892

4610

...

...

...

4610±

290a

2.29

...

...

2.3±

0.3a

...

...

1006

9934

7060

...

...

...

7060±

290a

4.01

...

...

4.0±

0.3a

...

...

1007

3601

7100

6680±

130b

...

...

6680±

130b

4.09

3.47±

0.22

b..

.3.

47±

0.22

b..

...

.10

0903

4571

90..

...

...

.71

90±

290a

3.94

...

...

3.9±

0.3a

...

...

1009

6499

7780

8021±

218e

...

...

8012±

218e

4.13

3.91±

0.16

e..

.3.

91±

0.16

e..

...

.10

1195

1762

3064

50±

80g

...

...

6450±

80g

4.38

4.3±

0.2g

...

4.3±

0.2g

78±

4g..

.10

1307

7780

20..

...

...

.80

20±

290a

3.71

...

...

3.7±

0.3a

...

...

1013

4600

5010

...

...

...

5010±

290a

3.06

...

...

3.1±

0.3a

...

...

1013

4800

7910

...

...

...

7910±

290a

3.71

...

...

3.7±

0.3a

...

...

1014

0513

5880

6030±

100b

...

...

6030±

100b

3.96

4.30±

0.22

b..

.4.

30±

0.22

b..

...

.10

1406

6566

20..

...

...

.66

20±

290a

4.37

...

...

4.4±

0.3a

...

...

1016

4569

7720

7130±

150b

...

...

7130±

150b

3.66

2.90±

0.22

b..

.2.

90±

0.22

b..

...

.10

2063

4052

1057

60±

80b

...

...

5760±

80b

4.46

4.48±

0.22

b..

.4.

48±

0.22

b..

...

.

A125, page 51 of 70

Page 52: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

1020

8303

6380

6310±

120b

...

...

6310±

120b

4.17

4.05±

0.22

b..

.4.

05±

0.22

b..

...

.10

2083

4571

50..

...

...

.71

50±

290a

4.01

...

...

4.0±

0.3a

...

...

1021

3987

7830

...

...

...

7830±

290a

3.94

...

...

3.9±

0.3a

...

...

1025

3943

7740

...

...

...

7740±

290a

3.70

...

...

3.7±

0.3a

...

...

1025

4547

5880

...

...

...

5880±

290a

4.84

...

...

4.8±

0.3a

...

...

1026

4728

7790

...

...

...

7790±

290a

3.85

...

...

3.9±

0.3a

...

...

1026

6959

5050

...

...

...

5050±

290a

4.40

...

...

4.4±

0.3a

...

...

1027

3246

6070

6300±

120b

...

...

6300±

120b

4.15

4.54±

0.21

b..

.4.

54±

0.21

b..

...

.10

2733

8469

7062

20±

110b

...

...

6220±

110b

3.96

3.79±

0.25

b..

.3.

79±

0.25

b..

...

.10

2739

6066

6064

60±

130b

...

...

6460±

130b

4.44

4.13±

0.22

b..

.4.

13±

0.22

b..

...

.10

2742

4452

10..

...

...

.52

10±

290a

4.53

...

...

4.5±

0.3a

...

...

1028

1360

7530

...

...

...

7530±

290a

4.05

...

...

4.1±

0.3a

...

...

1028

9211

7900

...

...

...

7900±

290a

3.73

...

...

3.7±

0.3a

...

...

1033

8279

5400

...

...

...

5400±

290a

4.47

...

...

4.5±

0.3a

...

...

1033

9342

5950

...

...

...

5950±

290a

4.19

...

...

4.2±

0.3a

...

...

1034

0511

5850

...

...

...

5850±

290a

4.40

...

...

4.4±

0.3a

...

...

1034

1072

6300

...

...

...

6300±

290a

4.18

...

...

4.2±

0.3a

...

...

1035

5055

8110

...

...

...

8110±

290a

3.74

...

...

3.7±

0.3a

...

...

1036

1229

6980

...

...

...

6980±

290a

4.03

...

...

4.0±

0.3a

...

...

1038

3933

5100

...

...

...

5100±

290a

4.27

...

...

4.3±

0.3a

...

...

1038

5459

6920

...

...

...

6920±

290a

4.23

...

...

4.2±

0.3a

...

...

1038

9037

4710

...

...

...

4710±

290a

2.19

...

...

2.2±

0.3a

...

...

1039

4332

4920

...

...

...

4920±

290a

4.47

...

...

4.5±

0.3a

...

...

1044

8764

7400

...

...

...

7400±

290a

4.00

...

...

4.0±

0.3a

...

...

1045

0550

4970

...

...

...

4970±

290a

3.63

...

...

3.6±

0.3a

...

...

1045

0675

6420

...

...

...

6420±

290a

4.12

...

...

4.1±

0.3a

...

...

1045

1090

7580

7640±

60g

...

...

7640±

60g

4.13

3.74±

0.19g

...

3.74±

0.19g

44±

2g..

.10

4512

5056

50..

...

...

.56

50±

290a

4.06

...

...

4.1±

0.3a

...

...

1045

3475

5200

...

...

...

5200±

290a

4.47

...

...

4.5±

0.3a

...

...

1046

7969

8850

...

...

...

8850±

290a

4.09

...

...

4.1±

0.3a

...

...

1047

1914

7290

...

...

...

7290±

290a

3.95

...

...

4.0±

0.3a

...

...

1048

4808

8140

...

...

...

8140±

290a

3.99

...

...

4.0±

0.3a

...

...

1052

6137

3180

...

...

...

3180±

290a

...

...

...

...

...

...

1052

6615

6080

...

...

...

6080±

290a

4.62

...

...

4.6±

0.3a

...

...

1053

3506

6510

...

...

...

6510±

290a

4.18

...

...

4.2±

0.3a

...

...

1053

3616

8320

...

...

...

8320±

290a

3.77

...

...

3.8±

0.3a

...

...

1053

4629

6070

...

...

...

6070±

290a

3.94

...

...

3.9±

0.3a

...

...

1053

6147

1249

020

800±

0f..

...

.20

800±

290f

5.89

3.8f

...

3.8±

0.3f

195±

10f

...

1053

7907

7500

...

...

...

7500±

290a

3.45

...

...

3.4±

0.3a

...

...

1054

9292

7740

...

...

...

7740±

290a

3.94

...

...

3.9±

0.3a

...

...

1054

9371

6970

...

...

...

6970±

290a

3.95

...

...

4.0±

0.3a

...

...

1058

6837

7020

...

...

...

7020±

290a

4.23

...

...

4.2±

0.3a

...

...

1059

0857

7560

...

...

...

7560±

290a

3.76

...

...

3.8±

0.3a

...

...

A125, page 52 of 70

Page 53: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

1060

4429

7620

7200±

200p

...

...

7200±

200p

3.53

3.5±

0.5p

...

3.5±

0.3a

60p

...

1061

5125

7160

...

...

...

7160±

290a

3.59

...

...

3.6±

0.3a

...

...

1064

7493

...

...

...

...

...

...

...

...

...

...

...

1064

7611

7130

...

...

...

7130±

290a

3.97

...

...

4.0±

0.3a

...

...

1064

7860

5460

...

...

...

5460±

290a

4.61

...

...

4.6±

0.3a

...

...

1064

8728

6600

...

...

...

6600±

290a

4.08

...

...

4.1±

0.3a

...

...

1065

2134

6880

...

...

...

6880±

290a

4.17

...

...

4.2±

0.3a

...

...

1065

8302

1481

015

900±

0f..

...

.15

900±

290f

6.08

3.9f

...

3.9±

0.3f

...

...

1065

8802

7480

...

...

...

7480±

290a

4.11

...

...

4.1±

0.3a

...

...

1066

3892

5960

6020±

100b

...

...

6020±

100b

4.32

4.9±

0.2b

...

4.9±

0.2b

...

...

1066

4703

7630

...

...

...

7630±

290a

3.65

...

...

3.7±

0.3a

...

...

1066

4975

7950

6641±

123e

...

...

6641±

123e

3.58

...

...

3.6±

0.3a

...

...

1067

5762

7220

...

...

...

7220±

290a

3.59

...

...

3.6±

0.3a

...

...

1068

4587

7290

...

...

...

7290±

290a

3.83

...

...

3.8±

0.3a

...

...

1068

4673

7110

...

...

...

7110±

290a

3.91

...

...

3.9±

0.3a

...

...

1068

5653

7970

...

...

...

7970±

290a

3.90

...

...

3.9±

0.3a

...

...

1068

6752

7270

...

...

...

7270±

290a

3.95

...

...

4.0±

0.3a

...

...

1070

9716

6050

...

...

...

6050±

290a

4.35

...

...

4.4±

0.3a

...

...

1071

3398

...

...

...

...

...

...

...

...

...

...

...

1071

7871

7290

...

...

...

7290±

290a

3.50

...

...

3.5±

0.3a

...

...

1072

3718

5370

...

...

...

5370±

290a

4.18

...

...

4.2±

0.3a

...

...

1073

0618

6200

...

...

...

6200±

290a

4.22

...

...

4.2±

0.3a

...

...

1077

5968

7490

...

...

...

7490±

290a

3.84

...

...

3.8±

0.3a

...

...

1077

7541

...

...

...

...

...

...

...

...

...

...

...

1077

7903

7320

...

...

...

7320±

290a

3.53

...

...

3.5±

0.3a

...

...

1077

8640

6390

...

...

...

6390±

290a

4.16

...

...

4.2±

0.3a

...

...

1078

3150

7340

...

...

...

7340±

290a

3.93

...

...

3.9±

0.3a

...

...

1078

8451

8790

...

...

...

8790±

290a

4.02

...

...

4.0±

0.3a

...

...

1079

7526

1171

023

600±

5600

f20

870±

0f..

.20

870±

5600

f4.

413.

0.0f

...

3.2±

0.3f

...

...

1079

7849

6020

...

...

...

6020±

290a

4.20

...

...

4.2±

0.3a

...

...

1081

3970

7420

...

...

...

7420±

290a

3.61

...

...

3.6±

0.3a

...

...

1081

5466

8310

...

...

...

8310±

290a

3.86

...

...

3.9±

0.3a

...

...

1085

3783

7830

...

...

...

7830±

290a

3.88

...

...

3.9±

0.3a

...

...

1086

1649

5900

...

...

...

5900±

290a

4.18

...

...

4.2±

0.3a

...

...

1090

2738

4640

...

...

...

4640±

290a

2.47

...

...

2.5±

0.3a

...

...

1092

0182

5930

...

...

...

5930±

290a

4.24

...

...

4.2±

0.3a

...

...

1092

0273

5570

...

...

...

5570±

290a

4.09

...

...

4.1±

0.3a

...

...

1092

0447

7900

...

...

...

7900±

290a

3.98

...

...

4.0±

0.3a

...

...

1097

1674

5530

...

...

...

5530±

290a

4.31

...

...

4.3±

0.3a

...

...

1097

5247

7780

...

...

...

7780±

290a

...

...

...

3.9±

0.3a

...

...

1097

7859

8050

8190±

70g

...

...

8190±

70g

3.94

3.61±

0.07g

...

3.61±

0.07g

63±

3g..

.10

9880

0973

20..

...

...

.73

20±

290a

4.00

...

...

4.0±

0.3a

...

...

1101

3201

7780

7200±

200p

...

...

7200±

200p

3.82

3.5±

0.2p

...

3.5±

0.2p

100p

...

A125, page 53 of 70

Page 54: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

1101

7401

5410

...

...

...

5410±

290a

4.39

...

...

4.4±

0.3a

...

...

1102

0521

6670

...

...

...

6670±

290a

4.31

...

...

4.3±

0.3a

...

...

1102

1188

7320

...

...

...

7320±

290a

4.15

...

...

4.2±

0.3a

...

...

1102

7270

6850

...

...

...

6850±

290a

3.91

...

...

3.9±

0.3a

...

...

1106

7972

5990

...

...

...

5990±

290a

4.46

...

...

4.5±

0.3a

...

...

1106

9435

5590

...

...

...

5590±

290a

4.55

...

...

4.6±

0.3a

...

...

1108

2830

7020

...

...

...

7020±

290a

3.96

...

...

4.0±

0.3a

...

...

1109

0405

7710

...

...

...

7710±

290a

3.71

...

...

3.7±

0.3a

...

...

1112

2763

6530

...

...

...

6530±

290a

4.28

...

...

4.3±

0.3a

...

...

1112

5764

7980

...

...

...

7980±

290a

3.85

...

...

3.9±

0.3a

...

...

1112

7190

7630

...

...

...

7630±

290a

3.72

...

...

3.7±

0.3a

...

...

1112

8041

5670

...

...

...

5670±

290a

4.47

...

...

4.5±

0.3a

...

...

1112

8126

5940

...

...

...

5940±

290a

4.32

...

...

4.3±

0.3a

...

...

1112

9289

5990

...

...

...

5990±

290a

4.31

...

...

4.3±

0.3a

...

...

1118

0361

8330

...

...

...

8330±

290a

3.55

...

...

3.6±

0.3a

...

...

1118

2716

5390

...

...

...

5390±

290a

4.22

...

...

4.2±

0.3a

...

...

1118

3399

7260

...

...

...

7260±

290a

4.03

...

...

4.0±

0.3a

...

...

1118

3539

7470

...

...

...

7470±

290a

3.51

...

...

3.5±

0.3a

...

...

1119

3046

8170

...

...

...

8170±

290a

3.70

...

...

3.7±

0.3a

...

...

1119

7934

7860

...

...

...

7860±

290a

3.68

...

...

3.7±

0.3a

...

...

1119

9412

7470

...

...

...

7470±

290a

3.70

...

...

3.7±

0.3a

...

...

1123

0518

6140

...

...

...

6140±

290a

4.38

...

...

4.4±

0.3a

...

...

1123

2922

...

...

...

...

...

...

...

...

...

...

...

1123

3189

...

...

...

...

...

...

...

...

...

...

...

1123

4888

5940

...

...

...

5940±

290a

4.33

...

...

4.3±

0.3a

...

...

1123

5721

5740

...

...

...

5740±

290a

4.33

...

...

4.3±

0.3a

...

...

1123

6253

5430

...

...

...

5430±

290a

4.45

...

...

4.5±

0.3a

...

...

1124

0653

6460

...

...

...

6460±

290a

4.12

...

...

4.1±

0.3a

...

...

1125

3226

6470

6736±

75c

6800±

400h

6622±

0o67

36±

75c

4.18

4.2±

0.1h

...

4.2±

0.1h

19±

1h..

.11

2857

6774

60..

...

...

.74

60±

290a

3.65

...

...

3.7±

0.3a

...

...

1128

8686

...

...

...

...

...

...

...

...

...

...

...

1129

0197

6340

...

...

...

6340±

290a

4.30

...

...

4.3±

0.3a

...

...

1130

9335

7280

...

...

...

7280±

290a

3.86

...

...

3.9±

0.3a

...

...

1134

0063

4900

...

...

...

4900±

290a

3.10

...

...

3.1±

0.3a

...

...

1134

0713

...

...

...

...

...

...

...

...

...

...

...

1134

2032

...

...

...

...

...

...

...

...

...

...

...

1139

3580

3850

...

...

...

3850±

290a

4.45

...

...

4.5±

0.3a

...

...

1139

4216

5140

...

...

...

5140±

290a

4.19

...

...

4.2±

0.3a

...

...

1139

5018

5420

5740±

80b

...

...

5740±

80b

4.47

3.65±

0.24

b..

.3.

65±

0.24

b..

...

.11

3950

2853

2057

20±

80b

...

...

5320±

290a

4.42

4.26±

0.23

b..

.4.

26±

0.23

b..

...

.11

3953

92..

...

...

...

...

...

...

...

...

...

...

.11

4029

51..

.71

50±

120i

7250±

100k

...

7250±

100k

...

3.5±

0.1i

3.5±

0.1k

3.5±

0.1k

100±

2i..

.11

4457

7461

1062

10±

110b

...

...

6210±

290b

4.33

4.64±

0.20

b..

.4.

0.2b

...

...

A125, page 54 of 70

Page 55: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

2.co

ntin

ued.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

1144

5913

6950

7200±

120i

7250±

100k

...

7250±

100k

3.89

3.5±

0.2i

3.5±

0.2k

3.5±

0.2k

51±

1k..

.11

4461

4343

00..

...

...

.43

00±

290a

4.47

...

...

4.5±

0.3a

...

...

1144

6181

5770

...

...

...

5770±

290a

4.38

...

...

4.4±

0.3a

...

...

1144

7883

6690

6800±

400h

...

...

6690±

290a

4.07

4.2±

0.1h

...

4.2±

0.1h

105±

3h..

.11

4479

5364

10..

...

...

.64

10±

290a

4.43

...

...

4.4±

0.3a

...

...

1144

8266

5980

6110±

110b

...

...

6110±

110b

4.27

4.69±

0.20

b..

.4.

0.2b

...

...

1144

9931

5940

6130±

110b

...

...

6130±

110b

4.52

4.84±

0.20

b..

.4.

0.2b

...

...

1145

4008

6870

...

...

...

6870±

290a

3.79

...

...

3.8±

0.3a

...

...

1149

4765

7050

...

...

...

7050±

290a

3.99

...

...

4.0±

0.3a

...

...

1149

7012

7660

...

...

...

7660±

290a

3.87

...

...

3.9±

0.3a

...

...

1149

8538

6290

6410±

70c

6450±

80g

6441±

0o64

10±

70c

4.04

3.30±

0.41g

...

3.3±

0.3g

40±

1g45

o

1149

9354

5780

6020±

100b

...

...

6020±

100b

4.47

4.39±

0.22

b..

.4.

39±

0.22

b..

...

.11

4994

5358

10..

...

...

.58

10±

290a

4.38

...

...

4.4±

0.3a

...

...

1150

2075

3980

...

...

...

3980±

290a

4.57

...

...

4.6±

0.3a

...

...

1150

8397

7460

...

...

...

7460±

290a

3.52

...

...

3.5±

0.3a

...

...

1150

9728

7790

...

...

...

7790±

290a

3.73

...

...

3.7±

0.3a

...

...

1151

5690

6460

...

...

...

6460±

290a

4.11

...

...

4.1±

0.3a

...

...

1154

9609

5580

...

...

...

5580±

290a

4.56

...

...

4.6±

0.3a

...

...

1155

1622

5690

...

...

...

5690±

290a

4.50

...

...

4.5±

0.3a

...

...

1157

2666

7040

...

...

...

7040±

290a

3.49

...

...

3.5±

0.3a

...

...

1160

2449

7390

...

...

...

7390±

290a

3.83

...

...

3.8±

0.3a

...

...

1160

7193

7210

...

...

...

7210±

290a

4.14

...

...

4.1±

0.3a

...

...

1161

2274

7470

...

...

...

7470±

290a

3.62

...

...

3.6±

0.3a

...

...

1162

2328

...

...

...

...

...

...

...

...

...

...

...

1165

1083

...

...

...

...

...

...

...

...

...

...

...

1165

1147

6030

...

...

...

6030±

290a

4.48

...

...

4.5±

0.3a

...

...

1165

3958

6620

6450±

120b

...

...

6450±

120b

4.25

4.20±

0.21

b..

.4.

20±

0.21

b..

...

.11

6542

1060

6062

00±

110b

...

...

6200±

110b

4.46

4.63±

0.21

b..

.4.

63±

0.21

b..

...

.11

6578

4061

20..

...

...

.61

20±

290a

4.66

...

...

4.7±

0.3a

...

...

1166

1993

7200

...

...

...

7200±

290a

3.93

...

...

3.9±

0.3a

...

...

1167

1429

7360

...

...

...

7360±

290a

3.58

...

...

3.6±

0.3a

...

...

1170

0370

8290

...

...

...

8290±

290a

3.99

...

...

4.0±

0.3a

...

...

1170

0604

7630

...

...

...

7630±

290a

3.85

...

...

3.9±

0.3a

...

...

1170

6449

...

...

...

...

...

...

...

...

...

...

...

1170

6564

4550

...

...

...

4550±

290a

2.35

...

...

2.4±

0.3a

...

...

1170

7341

4210

...

...

...

4210±

290a

4.58

...

...

4.6±

0.3a

...

...

1170

8170

6640

6776±

79c

6918±

0d67

14±

0o67

76±

79c

4.15

4.21±

0.07

d..

.4.

21±

0.07

d..

...

.11

7141

5082

70..

...

...

.82

70±

290a

3.87

...

...

3.9±

0.3a

...

...

1171

8839

8260

...

...

...

8260±

290a

3.78

...

...

3.8±

0.3a

...

...

1175

3169

7210

...

...

...

7210±

290a

3.94

...

...

3.9±

0.3a

...

...

1175

4974

...

...

...

...

...

...

...

...

...

...

...

1182

1140

8050

...

...

...

8050±

290a

3.85

...

...

3.9±

0.3a

...

...

1182

2666

8440

...

...

...

8440±

290a

3.87

...

...

3.9±

0.3a

...

...

A125, page 55 of 70

Page 56: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e2.

cont

inue

d.

Te!

(K)

logg

(dex

)v

sin

i(km

s"1 )

KIC

IDK

ICa

Lite

ratu

reL

itera

ture

Lite

ratu

reA

dopt

ed$

KIC

aL

itera

ture

Lite

ratu

reA

dopt

ed$

Spec

tra

Spec

tra

1182

4964

7190

...

...

...

7190±

290a

3.97

...

...

4.0±

0.3a

...

...

1187

4676

8220

...

...

...

8220±

290a

4.00

...

...

4.0±

0.3a

...

...

1187

4898

7010

6650±

130b

...

...

6650±

130b

3.96

3.72±

0.22

b..

.3.

72±

0.22

b..

...

.11

9102

5671

30..

...

...

.71

30±

290a

3.53

...

...

3.5±

0.3a

...

...

1191

0642

7660

...

...

...

7660±

290a

3.59

...

...

3.6±

0.3a

...

...

1197

3705%

7400

1189

0f73

00±

300i

1115

0j11

150±

290j

4.04

4.2±

0.3i

3.96

j4.

0.3j

120±

20i

103±

10j

1201

8834

7270

...

...

...

7270±

290a

4.00

...

...

4.0±

0.3a

...

...

1202

0590

8020

...

...

...

8020±

290a

3.67

...

...

3.7±

0.3a

...

...

1205

8428

7110

...

...

...

7110±

290a

3.99

...

...

4.0±

0.3a

...

...

1206

2443

7380

...

...

...

7380±

290a

3.97

...

...

4.0±

0.3a

...

...

1206

8180

7460

...

...

...

7460±

290a

3.78

...

...

3.8±

0.3a

...

...

1210

2187

7030

...

...

...

7030±

290a

4.13

...

...

4.1±

0.3a

...

...

1211

7689

6910

...

...

...

6910±

290a

4.09

...

...

4.1±

0.3a

...

...

1212

2075

7120

...

...

...

7120±

290a

3.89

...

...

3.9±

0.3a

...

...

1221

6817

6680

...

...

...

6680±

290a

3.81

...

...

3.8±

0.3a

...

...

1221

7281

7130

...

...

...

7130±

290a

3.71

...

...

3.7±

0.3a

...

...

1235

3648

7410

7190±

45g

...

...

7190±

45g

3.47

3.60±

0.26g

...

3.60±

0.26g

189±

12g

...

1264

7070

7280

...

...

...

7280±

290a

3.87

...

...

3.9±

0.3a

...

...

1278

4394

7850

...

...

...

7850±

290a

3.61

...

...

3.6±

0.3a

...

...

Not

es.(%

)Sp

ectr

osco

pic

bina

ry;

valu

esde

rived

from

phot

omet

ry:

(a)

KIC

Cat

alog

ue,L

atha

met

al.(

2005

);(b

)SP

Mph

otom

etry

,thi

spa

per;

(c)

Mas

ana

etal

.(20

06);

(d)

Alle

nde

Prie

to&

Lam

bert

(199

9);(e

)H

auck

&M

erm

illio

d(1

998)

;val

ues

deriv

edfr

omph

otom

etry

orsp

ectr

osco

py:(f

)B

alon

aet

al.(

2011

b);v

alue

sde

rived

from

spec

tros

copy

:(g)

TL

Ssp

ectr

a,th

ispa

per;

(h)

SOPH

IEsp

ectr

a,th

ispa

per;

(i)C

atan

zaro

etal

.(20

11);

(j)

Leh

man

net

al.(

2011

);(k

)B

alon

aet

al.(

2011

c);(l

)A

ntoc

ieta

l.,pr

iv.c

omm

.;(m

)B

rege

reta

l.(2

011)

;(n)

Gle

bock

i&St

awik

owsk

i(20

00);

(o)

Nor

dstr

ömet

al.

(200

4);(p

)C

atan

zaro

etal

.(20

10);

(q)

Mol

enda

-Zak

owic

zet

al.(

2008

);(r

)A

ntoc

ieta

l.(2

011)

;($)

the

estim

ated

erro

rson

the

KIC

valu

esar

e29

0K

forT

e!an

d0.

3de

xfo

rlogg

(see

text

).

A125, page 56 of 70

Page 57: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

3.C

lass

ifica

tion

and

char

acte

riza

tion

of"

Sct,!

Dor

,and

hybr

idst

ars.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)"

Scts

tars

0116

2150

"Sc

t13

60

136

204

...

[4.0

,35.

5]18

5716

.408

...

0157

1717

"Sc

t98

098

126

...

[5.4

,56.

5]76

741

.235

•01

7185

94"

Sct

530

5313

9..

.[5

.4,7

6.1]

1674

18.3

28..

.02

3033

65"

Sct

370

3716

2..

.[5

.0,3

4.8]

7340

14.8

06..

.02

4396

60"

Sct

360

3651

...

[15.

9,79

.5]

829

42.9

67..

.02

5718

68"

Sct

189

018

934

5..

.[4

.0,5

2.7]

1766

20.5

50..

.02

5723

86"

Sct

120

1259

...

[9.1

,12.

1]10

919.

481

•02

9876

60"

Sct

186

018

653

7..

.[4

.3,6

4.0]

3610

15.0

49..

.03

2175

54"

Sct

138

013

844

6..

.[4

.0,5

6.1]

2407

5.60

4..

.03

2192

56"

Sct

355

035

553

2..

.[4

.0,7

9.7]

1431

17.8

57..

.03

3476

43"

Sct

930

9316

4..

.[4

.2,6

8.2]

654

29.6

95..

.03

4258

02"

Sct

160

1630

...

[24.

3,44

.4]

643

31.6

93..

.03

4296

37"

Sct

180

1829

...

[9.3

,19.

4]16

4010

.338

...

0344

0495

"Sc

t8

08

9..

.[4

.1,2

1.7]

332

15.9

73..

.03

4583

18"

Sct

160

1647

...

[7.0

,23.

0]11

4713

.490

...

0355

8145

"Sc

t81

081

140

...

[4.0

,44.

2]28

9122

.122

...

0363

4384

"Sc

t20

80

208

573

...

[4.4

,68.

7]15

8411

.648

...

0364

4116

"Sc

t75

075

95..

.[6

.5,4

2.6]

1325

30.0

22..

.03

6555

13"

Sct

120

1246

...

[5.2

,12.

6]28

488.

333

...

0376

0002

"Sc

t86

086

159

...

[7.3

,33.

1]22

4616

.260

...

0376

1641

"Sc

t62

062

149

...

[11.

6,74

.6]

506

37.3

07..

.03

8508

10"

Sct

104

010

442

2..

.[4

.5,5

1.1]

1936

14.4

62..

.03

9412

83"

Sct

114

011

417

3..

.[9

.4,6

9.1]

1067

33.2

70..

.03

9429

11"

Sct

190

019

029

5..

.[4

.3,5

2.9]

1220

29.4

90..

.04

0356

67"

Sct

310

3178

...

[4.8

,79.

0]55

246

.399

...

0404

8494

"Sc

t87

087

254

...

[9.9

,42.

0]47

0114

.364

...

0407

7032

"Sc

t27

40

274

869

...

[4.6

,75.

8]37

0714

.482

...

0416

8574

"Sc

t43

042

139

...

[4.4

,18.

9]14

957.

989

...

0425

2757

"Sc

t13

50

135

332

...

[5.0

,36.

5]39

6121

.480

...

0426

9337

"Sc

t10

60

106

297

...

[5.0

,69.

1]15

5235

.215

•04

3831

17"

Sct

110

1112

...

[22.

8,45

.1]

399

26.2

59..

.04

6477

63"

Sct

142

014

249

4..

.[4

.1,7

4.2]

3973

23.7

17..

.04

6494

76"

Sct

880

8819

5..

.[4

.3,4

6.7]

1544

20.6

99..

.04

8406

75"

Sct

490

4963

...

[4.5

,47.

4]11

6822

.069

...

0485

6630

"Sc

t12

40

124

373

...

[4.4

,48.

7]26

8019

.582

...

0486

3077

"Sc

t16

00

160

631

...

[4.1

,40.

9]23

9920

.992

...

0490

9697

"Sc

t32

10

321

496

...

[4.3

,73.

2]11

1819

.045

...

0493

6524

"Sc

t30

029

75..

.[1

0.2,

54.9

]24

5828

.039

...

0508

0290

"Sc

t4

04

11..

.[4

.0,2

1.5]

332

21.5

43..

.05

2097

12"

Sct

850

8516

5..

.[5

.4,6

5.2]

931

14.0

48..

.05

2726

73"

Sct

710

7118

4..

.[4

.5,3

2.1]

9479

16.8

09..

.05

3914

16"

Sct

120

012

040

1..

.[4

.0,6

1.9]

2740

9.62

1..

.

A125, page 57 of 70

Page 58: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)05

4282

54"

Sct

168

016

828

5..

.[4

.2,6

6.2]

2775

19.1

61..

.05

4744

27"

Sct

129

012

928

3..

.[4

.1,3

1.1]

5363

14.8

16..

.05

6030

49"

Sct

118

011

820

9..

.[4

.0,4

8.5]

2163

24.3

45..

.05

6320

93"

Sct

530

5315

3..

.[4

.5,7

5.8]

623

47.6

16..

.05

7096

64"

Sct

250

2446

...

[4.2

,29.

0]82

319

.440

...

0576

8203

"Sc

t3

03

5..

.[7

.8,1

7.0]

1269

7.80

8..

.05

7745

57"

Sct

600

6013

3..

.[4

.7,3

5.4]

3426

13.8

55..

.05

7857

07"

Sct

990

9920

0..

.[4

.4,7

1.3]

1036

41.2

79..

.06

1233

24"

Sct

103

010

346

8..

.[4

.1,5

1.0]

1259

63.

235

...

0658

6052

"Sc

t78

078

219

...

[4.1

,49.

2]41

6120

.880

...

0659

0403

"Sc

t99

099

410

...

[4.1

,51.

3]17

926

5.00

7..

.06

6062

29"

Sct

350

3585

...

[4.2

,49.

7]44

036.

417

...

0662

9106

"Sc

t25

025

95..

.[4

.5,2

7.0]

2608

16.9

43..

.06

6687

29"

Sct

228

022

846

3..

.[4

.1,4

8.9]

2003

21.1

64..

.06

7903

35"

Sct

447

044

710

80..

.[4

.0,5

1.7]

3374

20.2

65..

.06

8048

21"

Sct

200

2026

...

[12.

8,23

.3]

730

14.5

18..

.06

8650

77"

Sct

530

5321

5..

.[5

.3,7

3.1]

2102

24.1

63..

.06

9377

58"

Sct

730

7325

7..

.[4

.4,6

7.2]

4883

20.0

77..

.06

9392

91"

Sct

210

2136

...

[7.5

,27.

6]72

517

.876

...

0694

7064

"Sc

t6

06

13..

.[2

0.6,

23.0

]21

0422

.791

...

0696

5789

"Sc

t29

10

291

942

...

[4.0

,73.

2]31

3516

.321

•07

1062

05"

Sct

180

1853

...

[8.0

,19.

5]49

0113

.395

...

0721

2040

"Sc

t99

099

121

...

[9.7

,62.

1]86

025

.848

...

0721

7483

"Sc

t34

034

87..

.[4

.2,3

5.1]

4795

13.9

32..

.07

2654

27"

Sct

190

019

039

1..

.[4

.4,5

1.4]

1943

24.1

37..

.07

2871

18"

Sct

118

011

817

8..

.[6

.5,4

9.8]

2241

30.8

30..

.07

3524

25"

Sct

113

011

322

2..

.[4

.3,3

3.5]

1847

11.8

20..

.07

4502

84"

Sct

136

013

629

8..

.[4

.0,4

9.1]

3167

19.7

26..

.07

5484

79"

Sct

670

6793

...

[5.9

,67.

2]14

5121

.709

...

0758

3939

"Sc

t50

10

501

806

...

[4.2

,78.

6]13

3023

.165

...

0769

7795

"Sc

t11

40

114

383

...

[4.2

,35.

7]25

2317

.487

...

0769

9056

"Sc

t30

50

305

651

...

[4.1

,75.

2]24

0612

.977

...

0777

3133

"Sc

t15

50

155

531

...

[4.6

,33.

5]23

529

5.82

6..

.07

7774

35"

Sct

430

4355

...

[6.0

,45.

9]18

6620

.216

...

0783

4612

"Sc

t19

70

197

627

...

[4.1

,47.

5]48

228.

529

...

0784

2286

"Sc

t12

20

122

441

...

[4.4

,78.

5]27

8526

.424

...

0784

2621

"Sc

t29

029

48..

.[4

.4,4

2.9]

688

29.7

91..

.07

9003

67"

Sct

300

3079

...

[4.6

,41.

2]38

5713

.247

...

0810

3917

"Sc

t39

039

69..

.[4

.0,3

8.1]

1799

17.7

47..

.08

2453

66"

Sct

101

010

136

7..

.[4

.0,4

9.1]

2745

111

.938

...

0824

8630

"Sc

t18

40

184

311

...

[4.0

,37.

2]16

5219

.486

...

0826

4546

"Sc

t38

036

82..

.[4

.0,3

8.4]

1180

24.9

85..

.08

3307

78"

Sct

50

59

...

[4.9

,26.

4]13

126

.427

...

A125, page 58 of 70

Page 59: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)08

3524

20"

Sct

140

1463

...

[6.9

,19.

3]53

769.

271

...

0841

5752

"Sc

t49

049

60..

.[7

.3,6

6.3]

365

37.7

64..

.08

4297

56"

Sct

530

5367

...

[22.

1,61

.9]

590

27.7

46..

.08

4467

38"

Sct

370

3760

...

[8.0

,67.

3]98

538

.249

...

0845

9354

"Sc

t28

50

284

988

...

[4.1

,51.

6]38

6719

.468

...

0849

9639

"Sc

t64

064

117

...

[4.0

,21.

3]11

1713

.160

...

0851

6686

"Sc

t41

041

44..

.[2

1.1,

60.0

]14

243

.752

...

0852

5286

"Sc

t97

097

235

...

[4.3

,53.

4]21

8934

.056

•08

5609

96"

Sct

250

2527

...

[16.

9,51

.7]

824

20.9

44..

.08

5652

29"

Sct

118

011

840

5..

.[8

.1,4

6.8]

3902

22.5

43..

.08

5796

15"

Sct

340

3468

...

[4.1

,31.

9]98

78.

130

...

0860

8260

"Sc

t19

20

192

325

...

[4.1

,35.

7]13

3213

.191

...

0862

3953

"Sc

t10

70

107

342

...

[6.6

,54.

5]11

516

27.2

57..

.08

6557

12"

Sct

253

025

349

4..

.[4

.0,3

5.2]

2141

14.4

36..

.08

6951

56"

Sct

560

5623

7..

.[4

.3,5

4.7]

3358

5.77

7..

.08

7170

65"

Sct

740

7320

6..

.[4

.5,6

1.5]

811

24.5

47..

.08

7474

15"

Sct

40

46

...

[11.

0,12

.5]

3911

.030

...

0875

0029

"Sc

t3

03

7..

.[4

.4,2

2.4]

484

22.4

39..

.08

8278

21"

Sct

890

8917

2..

.[1

2.9,

50.1

]16

8917

.713

...

0886

9892

"Sc

t34

034

129

...

[4.2

,18.

6]55

397.

699

...

0888

1697

"Sc

t93

093

339

...

[5.5

,76.

3]18

3516

.557

...

0893

3391

"Sc

t7

07

7..

.[6

.7,1

4.5]

193

6.70

8..

.09

0201

99"

Sct

530

5318

0..

.[4

.0,5

7.3]

5855

7.47

7..

.09

1086

15"

Sct

100

1021

...

[6.6

,49.

2]49

76.

617

...

0911

1056

"Sc

t20

80

208

775

...

[4.0

,56.

2]12

668

5.65

5..

.09

1388

72"

Sct

980

9727

3..

.[4

.2,4

9.2]

2268

19.6

97..

.09

1437

85"

Sct

900

9039

2..

.[5

.8,7

7.6]

2386

11.7

98..

.09

1568

08"

Sct

690

6911

6..

.[6

.4,4

8.5]

2204

21.2

79..

.09

2016

44"

Sct

207

020

744

8..

.[4

.3,4

2.5]

2067

14.7

23..

.09

2100

37"

Sct

101

010

128

8..

.[4

.6,3

4.8]

7634

9.28

2..

.09

2293

18"

Sct

263

026

385

1..

.[4

.0,4

4.1]

5249

6.24

6..

.09

2464

81"

Sct

570

5712

4..

.[4

.1,6

2.3]

402

33.8

45..

.09

2670

42"

Sct

185

018

547

5..

.[4

.1,6

9.9]

7895

24.6

64..

.09

2916

18"

Sct

100

010

052

2..

.[4

.1,3

2.9]

3352

10.3

21..

.09

3060

95"

Sct

232

023

212

54..

.[4

.2,7

1.6]

5665

510

.173

...

0932

4334

"Sc

t14

20

142

356

...

[4.1

,39.

2]86

7510

.272

...

0935

3572

"Sc

t12

012

16..

.[6

.5,4

9.0]

1780

13.3

92..

.09

3682

20"

Sct

179

017

950

5..

.[4

.2,6

2.5]

8093

5.39

2..

.09

3952

46"

Sct

630

6319

9..

.[4

.6,5

8.3]

4588

7.69

7..

.09

4086

94"

Sct

278

027

884

4..

.[4

.3,8

0.0]

155

660

5.66

1..

.09

4509

40"

Sct

990

9921

9..

.[6

.0,7

6.0]

3959

29.9

97..

.09

4530

75"

Sct

210

2160

...

[4.6

,34.

9]23

8919

.313

...

0948

9590

"Sc

t75

075

113

...

[7.3

,46.

7]15

4915

.788

...

A125, page 59 of 70

Page 60: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)09

5334

49"

Sct

640

6418

0..

.[4

.1,4

9.3]

3170

12.5

19..

.09

5512

81"

Sct

170

017

033

5..

.[4

.4,4

1.8]

1593

21.4

80..

.09

5807

94"

Sct

840

8439

3..

.[4

.1,5

0.5]

2886

10.1

88..

.09

6428

94"

Sct

280

2810

0..

.[5

.1,2

9.1]

7796

14.6

78..

.09

6550

55"

Sct

640

6418

2..

.[4

.2,2

5.1]

2269

7.84

2..

.09

6551

14"

Sct

268

026

850

8..

.[4

.5,7

7.3]

3633

20.5

69..

.09

6551

77"

Sct

103

010

142

0..

.[4

.7,2

7.6]

8012

8.51

0..

.09

6553

93"

Sct

229

022

949

8..

.[4

.7,6

4.6]

2682

28.1

59..

.09

6554

22"

Sct

137

013

738

5..

.[4

.0,5

0.2]

5689

5.12

8•

0965

5514

"Sc

t16

50

165

305

...

[4.7

,64.

1]33

3615

.177

...

0967

3293

"Sc

t20

020

23..

.[2

4.2,

48.8

]19

229

.120

...

0969

3282

"Sc

t32

40

324

1047

...

[4.1

,63.

6]43

918.

683

...

0969

9950

"Sc

t64

064

142

...

[13.

8,49

.1]

5219

17.0

11..

.09

7001

45"

Sct

720

7223

0..

.[4

.0,3

5.2]

4431

13.0

62•

0970

0322

"Sc

t28

028

75..

.[9

.8,2

4.1]

2794

412

.569

...

0976

2713

"Sc

t38

038

80..

.[4

.4,2

6.8]

3687

13.8

59..

.09

7735

12"

Sct

150

1341

...

[9.2

,14.

9]22

429.

207

...

0977

6474

"Sc

t57

057

93..

.[4

.4,6

8.6]

1173

16.2

66..

.09

8123

51"

Sct

170

017

048

0..

.[4

.8,7

9.8]

4279

18.5

81..

.09

8182

69"

Sct

270

2685

...

[9.4

,76.

2]16

6619

.175

...

0983

6020

"Sc

t28

028

41..

.[1

3.7,

22.3

]10

6217

.715

...

0984

5907

"Sc

t12

70

124

570

...

[4.9

,77.

0]33

209

17.5

97..

.09

8741

81"

Sct

710

7111

4..

.[5

.6,3

1.7]

1116

20.3

16..

.10

0000

56"

Sct

880

8838

7..

.[4

.4,6

5.9]

8606

20.1

41..

.10

0028

97"

Sct

330

3318

1..

.[4

.5,4

9.0]

4046

15.3

93..

.10

0562

97"

Sct

630

6332

3..

.[4

.6,3

9.9]

3290

29.

560

...

1013

4800

"Sc

t84

081

319

...

[4.1

,49.

1]28

9427

.058

...

1021

3987

"Sc

t9

09

20..

.[7

.2,2

0.6]

1156

17.0

59•

1025

3943

"Sc

t24

60

246

805

...

[4.2

,78.

8]69

5925

.206

...

1027

3384

"Sc

t81

081

238

...

[6.4

,25.

6]18

859

8.22

3..

.10

2892

11"

Sct

267

026

764

5..

.[4

.4,4

9.9]

2067

19.8

12..

.10

3550

55"

Sct

450

4514

0..

.[5

.7,5

2.6]

3433

22.0

84..

.10

4487

64"

Sct

920

9248

4..

.[4

.1,3

3.6]

1077

69.

591

...

1045

1090

"Sc

t79

079

157

...

[10.

5,64

.8]

1411

38.3

76..

.10

4848

08"

Sct

590

5986

...

[10.

5,80

.0]

886

27.1

18..

.10

5336

16"

Sct

40

45

...

[31.

9,50

.6]

3431

.853

...

1054

9292

"Sc

t82

082

92..

.[4

.9,4

8.3]

957

18.0

81..

.10

5493

71"

Sct

150

1544

...

[7.1

,15.

8]39

9613

.880

...

1059

0857

"Sc

t87

087

343

...

[4.4

,48.

5]22

1720

.924

...

1060

4429

"Sc

t90

090

147

...

[4.0

,38.

7]87

318

.407

...

1061

5125

"Sc

t10

90

109

385

...

[4.1

,39.

2]50

649.

661

...

1065

8802

"Sc

t62

062

312

...

[4.4

,37.

1]29

988.

159

...

1066

4703

"Sc

t22

80

228

506

...

[4.0

,47.

3]40

475.

558

...

A125, page 60 of 70

Page 61: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)10

6845

87"

Sct

306

030

676

0..

.[4

.0,4

8.9]

7128

12.8

37..

.10

6846

73"

Sct

90

928

...

[5.8

,10.

4]74

3010

.387

...

1068

6752

"Sc

t62

062

87..

.[1

2.7,

58.8

]62

840

.473

...

1071

3398

"Sc

t80

080

383

...

[5.1

,48.

1]31

0615

.348

...

1071

7871

"Sc

t23

40

234

693

...

[4.2

,39.

7]37

7812

.217

...

1077

5968

"Sc

t11

011

17..

.[4

.5,2

4.7]

432

21.5

49..

.10

7779

03"

Sct

277

027

796

6..

.[4

.1,3

8.0]

4486

16.7

91..

.10

7884

51"

Sct

122

012

230

1..

.[4

.0,4

3.1]

3603

23.1

60..

.10

8139

70"

Sct

183

018

364

8..

.[4

.1,4

9.8]

5261

9.60

6..

.10

8154

66"

Sct

267

026

772

1..

.[4

.1,7

9.0]

2188

36.7

12..

.10

8537

83"

Sct

102

010

213

6..

.[4

.0,5

0.7]

1708

28.9

55..

.10

9204

47"

Sct

890

8913

2..

.[4

.0,6

2.9]

1622

31.5

23..

.10

9778

59"

Sct

670

6712

0..

.[4

.1,6

3.6]

2014

59.9

69..

.10

9880

09"

Sct

169

016

561

3..

.[4

.1,4

8.8]

5483

12.9

57..

.11

0132

01"

Sct

260

2656

...

[5.5

,57.

8]52

233

.416

...

1102

1188

"Sc

t70

070

77..

.[4

.5,5

5.5]

1360

23.8

31..

.11

0904

05"

Sct

540

5489

...

[4.1

,37.

5]99

214

.371

...

1112

5764

"Sc

t35

035

95..

.[1

9.2,

65.5

]18

6838

.327

...

1112

7190

"Sc

t48

047

156

...

[13.

7,59

.3]

3559

18.7

31..

.11

1835

39"

Sct

213

021

344

0..

.[4

.1,4

8.8]

2265

22.6

64..

.11

3407

13"

Sct

260

2611

3..

.[4

.2,2

3.6]

1133

310

.150

...

1139

5392

"Sc

t90

090

413

...

[4.8

,46.

2]65

7725

.188

...

1140

2951

"Sc

t97

097

161

...

[5.3

,49.

1]88

423

.846

...

1149

7012

"Sc

t85

085

258

...

[4.0

,41.

1]16

6024

.105

...

1166

1993

"Sc

t14

70

147

440

...

[4.3

,49.

5]34

7314

.035

...

1167

1429

"Sc

t31

20

312

624

...

[4.1

,49.

4]14

2515

.970

...

1170

0370

"Sc

t30

030

30..

.[5

.2,7

2.0]

101

28.6

78..

.11

7549

74"

Sct

870

8439

6..

.[4

.3,6

9.9]

5765

816

.345

...

1182

1140

"Sc

t32

032

70..

.[1

8.4,

57.4

]23

524

.877

...

1187

4676

"Sc

t73

073

241

...

[4.9

,67.

5]17

9813

.577

...

1202

0590

"Sc

t19

019

34..

.[1

8.8,

37.4

]39

322

.215

...

1206

8180

"Sc

t29

80

298

722

...

[4.1

,49.

3]22

2620

.302

...

1235

3648

"Sc

t48

044

277

...

[4.3

,24.

0]39

287.

818

...

1264

7070

"Sc

t33

033

52..

.[9

.8,3

9.2]

1110

13.3

56..

.12

7843

94"

Sct

30

311

...

[29.

4,47

.9]

107

42.6

52..

.H

ybri

dst

ars

0216

8333

hybr

id68

1353

278

[0.2

,5.0

][5

.5,4

9.1]

1452

21.7

18..

.02

6943

37hy

brid

5227

2212

3[0

.2,4

.9]

[5.4

,34.

6]50

624

.500

...

0270

7479

hybr

id18

858

124

674

[0.2

,5.0

][5

.1,5

1.1]

2267

15.1

58..

.02

8532

80hy

brid

5328

2310

2[0

.2,5

.0]

[5.0

,35.

1]98

813

.000

...

0297

5832

hybr

id15

104

128

[0.3

,3.5

][5

.7,1

6.5]

733

2.03

4•

0309

7912

hybr

id21

154

56[0

.2,4

.6]

[5.2

,20.

0]21

21.

466

•03

1196

04hy

brid

171

1215

719

6[0

.2,4

.6]

[5.0

,76.

9]55

441

.151

...

A125, page 61 of 70

Page 62: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)03

2314

06hy

brid

362

6229

279

3[0

.2,5

.0]

[5.0

,65.

0]17

6117

.438

...

0324

0556

hybr

id19

140

151

329

[0.3

,5.0

][5

.0,6

3.6]

867

25.2

20..

.03

2454

20hy

brid

4210

3222

4[0

.8,3

.9]

[5.0

,45.

8]27

3314

.097

...

0333

7002

hybr

id16

292

6452

9[0

.2,4

.9]

[5.0

,52.

8]45

944.

558

...

0343

7940

hybr

id34

710

622

495

7[0

.2,5

.0]

[5.1

,63.

2]48

8610

.476

...

0345

3494

hybr

id17

647

129

358

[0.3

,5.0

][5

.0,6

2.9]

487

7.49

9..

.03

8511

51hy

brid

73

122

[0.2

,1.3

][2

6.5,

26.5

]42

26.4

87..

.03

9707

29hy

brid

156

4410

533

2[0

.2,5

.0]

[5.6

,28.

2]13

9418

.828

...

0404

4353

hybr

id59

1344

153

[0.6

,4.8

][5

.1,5

4.5]

553

2.39

0..

.04

1706

31hy

brid

495

7441

213

8[0

.2,5

.0]

[5.1

,59.

5]62

648.

314

...

0418

0199

hybr

id91

3061

404

[0.5

,4.9

][5

.2,5

1.2]

790

3.28

4..

.04

2815

81hy

brid

7751

2128

2[0

.2,4

.6]

[5.2

,54.

3]47

80.

882

...

0447

6836

hybr

id9

53

52[0

.5,5

.0]

[5.5

,10.

9]96

99.

859

...

0448

0321

hybr

id14

254

8650

4[0

.2,5

.0]

[5.1

,61.

2]23

230.

710

...

0448

8840

hybr

id17

842

129

517

[0.3

,5.0

][5

.0,5

1.3]

1277

15.8

03..

.04

5509

62hy

brid

179

9383

603

[0.2

,5.0

][5

.3,5

4.1]

2912

2.25

9..

.04

5563

45hy

brid

137

1911

618

6[0

.3,4

.2]

[13.

1,64

.5]

653

26.6

40..

.04

6712

25hy

brid

7439

3019

1[0

.2,5

.0]

[5.1

,46.

3]12

718.

880

...

0476

8677

hybr

id13

37

47[0

.2,4

.7]

[6.2

,52.

2]12

422

.904

...

0491

9818

hybr

id45

3410

74[0

.4,5

.0]

[5.0

,32.

4]34

22.

871

...

0492

0125

hybr

id28

208

92[0

.4,4

.8]

[5.6

,29.

3]39

023

.884

...

0498

9900

hybr

id42

2416

210

[0.2

,4.8

][5

.0,3

8.9]

718

2.18

9..

.05

0382

28hy

brid

203

7212

561

6[0

.2,5

.0]

[5.1

,49.

7]22

610.

904

...

0521

9533

hybr

id35

2211

112

[0.3

,4.6

][5

.4,2

9.9]

437

10.2

85..

.05

3563

49hy

brid

4114

2260

[0.2

,5.0

][5

.1,5

1.5]

205

9.82

6..

.05

4372

06hy

brid

120

3282

258

[0.2

,4.7

][5

.2,4

9.7]

1637

13.0

11..

.05

4460

68hy

brid

6333

2421

7[0

.3,4

.9]

[5.3

,52.

1]55

80.

287

...

0547

3171

hybr

id11

246

6439

1[0

.3,4

.8]

[5.1

,54.

5]35

787.

574

...

0547

6864

hybr

id85

2654

374

[0.2

,3.4

][5

.1,1

9.2]

1862

1.66

7•

0564

1711

hybr

id11

946

6829

4[0

.3,4

.8]

[5.0

,51.

6]75

821

.111

...

0572

2346

hybr

id17

972

9950

7[0

.2,4

.9]

[5.0

,50.

4]30

0211

.325

•05

7244

40hy

brid

425

7034

366

3[0

.2,5

.0]

[5.1

,79.

7]19

1819

.251

...

0581

0113

hybr

id41

1722

92[0

.2,3

.5]

[5.8

,20.

6]65

20.

333

...

0585

7714

hybr

id21

041

166

850

[0.2

,3.7

][5

.0,5

5.0]

2293

012

.227

...

0594

0273

hybr

id17

080

8146

3[0

.2,5

.0]

[5.0

,51.

0]15

713.

016

...

0596

5837

hybr

id93

2960

354

[0.7

,4.5

][5

.0,4

9.2]

7243

3.39

2..

.06

0327

30hy

brid

8726

5714

4[0

.2,5

.0]

[5.0

,78.

1]11

4016

.267

...

0606

7817

hybr

id13

327

103

296

[0.2

,4.9

][5

.1,7

9.7]

1374

34.4

08..

.06

1413

72hy

brid

195

1421

[0.3

,4.8

][5

.1,3

1.9]

338

18.9

91•

0614

2919

hybr

id59

3719

115

[0.3

,4.9

][5

.4,4

9.2]

986

16.3

16..

.06

1876

65hy

brid

184

6012

165

9[0

.2,5

.0]

[5.0

,35.

5]38

2611

.729

...

0619

9731

hybr

id42

1821

215

[0.4

,4.9

][5

.1,2

2.5]

2183

7.64

3..

.06

2688

90hy

brid

359

7328

415

2[0

.2,4

.8]

[5.1

,55.

1]15

399

6.86

6..

.

A125, page 62 of 70

Page 63: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)06

2894

68hy

brid

6217

4010

3[0

.5,4

.9]

[5.1

,40.

4]43

213

.652

...

0638

1306

hybr

id64

4316

123

[0.2

,4.9

][5

.3,5

3.3]

234

5.81

4..

.06

4320

54hy

brid

356

6827

982

9[0

.2,5

.0]

[5.0

,74.

9]29

0110

.571

...

0644

3122

hybr

id15

463

8453

7[0

.2,5

.0]

[5.0

,55.

3]14

662.

425

...

0644

6951

hybr

id28

830

256

509

[0.4

,4.8

][5

.1,5

2.9]

1509

14.8

72..

.06

5091

75hy

brid

112

4268

449

[0.6

,5.0

][5

.1,5

3.7]

4431

3.95

4..

.06

5875

51hy

brid

444

3979

[0.2

,3.6

][5

.5,6

0.6]

192

17.4

22..

.06

6141

68hy

brid

143

4099

392

[0.2

,4.8

][5

.0,5

7.7]

2002

8.35

6..

.06

6707

42hy

brid

194

5713

453

0[0

.4,5

.0]

[5.1

,70.

3]14

1112

.789

...

0669

4649

hybr

id12

039

7824

8[0

.3,4

.9]

[5.0

,57.

7]10

2712

.771

...

0675

6386

hybr

id63

952

237

[0.3

,4.8

][5

.1,7

2.6]

1001

8.96

4..

.06

7564

81hy

brid

114

4271

256

[0.2

,5.0

][5

.1,7

4.0]

540

5.76

6..

.06

7615

39hy

brid

212

5615

462

7[0

.2,4

.9]

[5.1

,59.

1]19

7517

.826

...

0677

6331

hybr

id40

551

351

789

[0.2

,5.0

][5

.3,4

8.7]

1697

13.7

89..

.06

9226

90hy

brid

183

4612

847

8[0

.3,4

.9]

[5.0

,49.

4]14

7515

.257

...

0695

1642

hybr

id75

3440

295

[0.2

,4.6

][5

.5,5

0.8]

2838

0.72

1..

.07

1095

98hy

brid

152

3311

629

1[0

.3,4

.8]

[5.1

,54.

7]90

818

.597

...

0711

9530

hybr

id10

678

1948

1[0

.2,5

.0]

[5.0

,15.

2]24

434.

193

...

0712

2746

hybr

id54

747

191

[1.1

,4.9

][5

.1,4

8.8]

735

30.1

54..

.07

2042

37hy

brid

269

5421

453

7[0

.2,4

.9]

[5.0

,63.

4]29

2617

.993

...

0721

1759

hybr

id16

337

125

587

[0.3

,4.9

][5

.1,7

9.4]

736

7.31

8..

.07

3003

87hy

brid

329

6425

485

2[0

.2,4

.9]

[5.2

,50.

5]34

6910

.293

...

0735

0486

hybr

id22

174

58[0

.3,4

.7]

[5.3

,17.

1]13

01.

330

...

0735

2776

hybr

id10

532

6538

2[0

.2,5

.0]

[6.1

,36.

5]17

642.

374

...

0750

2559

hybr

id64

3820

145

[0.5

,4.7

][5

.2,3

1.9]

1383

4.52

2..

.07

5336

94hy

brid

146

559

[0.3

,4.9

][5

.6,4

9.5]

1621

11.2

43..

.07

5532

37hy

brid

4634

1013

2[0

.2,4

.9]

[5.4

,15.

6]21

8414

.713

...

0766

8791

hybr

id23

417

30[0

.2,4

.9]

[5.0

,31.

1]98

20.6

43..

.07

7027

05hy

brid

196

6313

057

5[0

.3,4

.9]

[5.1

,53.

3]87

82.

038

...

0773

2458

hybr

id20

104

26[0

.2,4

.9]

[5.0

,32.

1]35

913

.184

...

0774

8238

hybr

id53

3017

144

[0.4

,4.9

][5

.0,4

9.1]

552

2.29

2..

.07

7568

53hy

brid

61

56

[0.2

,3.1

][5

.0,2

7.0]

9821

.141

...

0777

0282

hybr

id70

5310

195

[0.2

,4.7

][2

8.5,

51.3

]21

361.

004

...

0777

1991

hybr

id12

64

25[0

.8,4

.1]

[5.3

,21.

4]70

2.05

5..

.07

8271

31hy

brid

3917

1917

5[0

.3,4

.7]

[5.0

,39.

4]93

910

.044

...

0783

1302

hybr

id76

2251

184

[0.2

,3.6

][5

.5,4

8.8]

1051

18.7

50•

0784

8288

hybr

id24

762

178

370

[0.2

,4.9

][5

.0,6

6.9]

840

25.2

38•

0795

9867

hybr

id73

2343

303

[0.2

,4.5

][5

.6,3

9.3]

1081

7.71

3..

.07

9779

96hy

brid

118

2784

220

[0.2

,4.9

][5

.1,5

8.2]

1224

11.0

30..

.08

0295

46hy

brid

7938

3835

9[0

.2,4

.7]

[5.7

,27.

4]99

62.

034

...

0805

4146

hybr

id38

1124

80[0

.3,3

.2]

[5.5

,76.

0]18

566

.295

...

0814

9341

hybr

id18

327

149

350

[0.2

,4.9

][5

.1,5

0.5]

1681

27.0

16..

.08

1977

88hy

brid

128

5275

410

[0.3

,4.8

][5

.1,4

7.3]

3441

14.9

98..

.

A125, page 63 of 70

Page 64: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)08

2644

04hy

brid

9732

5741

4[0

.2,4

.8]

[5.1

,52.

3]53

809.

396

...

0826

4583

hybr

id50

3414

175

[0.3

,4.8

][5

.1,5

4.0]

519

0.96

8..

.08

2646

74hy

brid

5433

1621

5[0

.2,5

.0]

[5.2

,18.

1]40

06.

598

...

0826

4698

hybr

id14

049

8946

5[0

.3,4

.8]

[5.2

,47.

9]18

4813

.801

•08

3974

26hy

brid

4622

2419

7[0

.3,4

.9]

[5.1

,14.

1]12

415.

576

...

0845

4553

hybr

id59

2626

255

[0.2

,5.0

][5

.0,2

2.7]

2014

2.92

0..

.08

4609

93hy

brid

258

7018

663

0[0

.2,5

.0]

[5.0

,56.

6]10

8518

.067

...

0850

7325

hybr

id79

4136

146

[0.2

,4.9

][5

.1,4

9.2]

213

11.6

79..

.08

5160

08hy

brid

126

5271

229

[0.3

,5.0

][5

.0,4

9.1]

886

13.3

76..

.08

5905

53hy

brid

7022

4714

6[0

.3,4

.9]

[5.5

,53.

3]10

0224

.285

...

0873

8244

hybr

id11

639

7118

5[0

.2,5

.0]

[5.0

,49.

6]34

614

.621

...

0891

5335

hybr

id71

2742

162

[0.2

,4.2

][5

.1,3

3.5]

1429

8.82

8..

.08

9406

40hy

brid

232

6416

486

6[0

.3,4

.9]

[5.4

,52.

7]10

783

17.8

39..

.08

9729

66hy

brid

286

4723

764

1[0

.2,5

.0]

[5.1

,50.

5]29

4619

.225

...

0897

5515

hybr

id25

147

61[0

.3,4

.7]

[5.3

,25.

8]29

313

.972

...

0905

2363

hybr

id13

47

16[0

.2,1

.5]

[19.

1,48

.0]

4441

.966

...

0907

2011

hybr

id13

327

101

445

[0.2

,4.9

][5

.3,5

5.9]

6138

6.11

6..

.09

0730

07hy

brid

104

5050

347

[0.2

,5.0

][5

.0,2

9.5]

5031

11.4

71..

.09

2229

42hy

brid

9462

2425

9[0

.2,5

.0]

[5.2

,50.

3]67

12.

162

...

0935

1622

hybr

id48

2117

127

[0.2

,4.8

][5

.2,1

3.4]

1152

6.02

0..

.09

3913

95hy

brid

2824

297

[0.2

,4.5

][5

.3,1

5.4]

465

1.94

9..

.09

4130

57hy

brid

137

3510

127

7[0

.2,4

.9]

[5.1

,51.

8]49

713

.546

...

0947

3000

hybr

id11

64

43[0

.2,5

.0]

[5.6

,17.

4]99

78.

699

...

0950

9296

hybr

id96

4253

389

[0.2

,4.9

][5

.3,5

1.0]

1406

17.6

77..

.09

5326

44hy

brid

6433

2827

3[0

.4,5

.0]

[5.4

,35.

5]15

2020

.487

...

0953

3489

hybr

id17

78

37[1

.5,4

.4]

[6.4

,37.

6]33

34.

008

...

0955

0886

hybr

id10

924

8025

5[0

.4,5

.0]

[5.6

,68.

6]30

6350

.126

...

0960

4762

hybr

id10

34

12[0

.9,3

.7]

[5.2

,24.

3]12

618

.151

...

0965

0390

hybr

id12

256

5731

3[0

.4,4

.9]

[5.1

,51.

7]79

71.

071

...

0965

1065

hybr

id10

720

8434

5[0

.2,4

.8]

[5.5

,47.

6]22

5919

.478

...

0965

5438

hybr

id22

711

43[0

.2,4

.6]

[5.4

,31.

9]38

912

.992

...

0965

5501

hybr

id13

824

110

173

[0.2

,4.4

][5

.0,5

3.7]

530

27.7

23..

.09

6563

48hy

brid

2918

213

7[0

.2,4

.8]

[5.5

,21.

9]80

62.

818

...

0966

4869

hybr

id88

4933

320

[0.2

,5.0

][5

.4,4

1.5]

1389

1.62

2..

.09

7006

79hy

brid

5035

1111

4[0

.2,5

.0]

[5.1

,34.

7]95

0.26

2..

.09

7169

47hy

brid

6319

3930

2[0

.2,4

.8]

[5.4

,16.

8]83

36.

215

...

0976

4965

hybr

id24

810

72[0

.3,5

.0]

[5.1

,34.

6]96

127

.178

...

0977

5385

hybr

id22

137

58[0

.7,4

.0]

[5.1

,25.

9]18

91.

788

...

0977

5454

hybr

id18

102

73[0

.2,4

.6]

[14.

7,14

.9]

316

4.16

1..

.09

7904

79hy

brid

95

325

[1.4

,4.4

][5

.5,2

0.0]

246

1.61

8..

.09

8130

78hy

brid

7329

3735

2[0

.3,3

.9]

[7.4

,39.

5]38

7117

.588

...

0997

0568

hybr

id15

064

8339

5[0

.2,5

.0]

[5.0

,55.

5]94

53.

408

...

1001

4548

hybr

id16

242

114

314

[0.2

,5.0

][5

.0,5

7.8]

775

1.52

8..

.

A125, page 64 of 70

Page 65: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)10

0357

72hy

brid

125

3883

427

[0.2

,4.9

][5

.4,6

5.8]

1947

26.8

91..

.10

0652

44hy

brid

115

4357

448

[0.2

,5.0

][5

.0,4

9.1]

1009

711

.930

...

1013

0777

hybr

id36

155

305

908

[0.4

,4.9

][5

.1,6

3.7]

2101

33.8

21..

.10

1645

69hy

brid

5325

2414

5[0

.2,4

.9]

[5.0

,53.

5]46

615

.396

...

1020

8345

hybr

id74

4127

212

[0.3

,4.9

][5

.1,2

0.5]

861

3.45

2..

.10

2647

28hy

brid

101

3761

436

[0.2

,4.6

][5

.4,5

3.5]

875

3.37

9..

.10

3612

29hy

brid

2520

513

7[0

.5,4

.9]

[5.6

,29.

3]81

32.

653

...

1047

1914

hybr

id30

846

254

534

[0.2

,4.9

][5

.2,5

7.0]

2156

15.0

70..

.10

5379

07hy

brid

110

2283

510

[0.2

,4.5

][5

.1,4

5.3]

4741

11.5

55..

.10

6474

93hy

brid

7828

4737

8[0

.2,4

.6]

[5.1

,56.

1]55

3617

.101

...

1064

7611

hybr

id69

2242

317

[0.5

,4.6

][5

.1,5

1.2]

4527

15.7

23..

.10

6649

75hy

brid

95

321

[1.3

,4.4

][6

.1,1

9.9]

383

2.57

5..

.10

6757

62hy

brid

6823

4030

0[0

.3,4

.7]

[5.0

,50.

4]31

1815

.914

...

1068

5653

hybr

id47

2421

149

[0.2

,5.0

][5

.4,4

3.9]

565

19.4

11..

.10

7831

50hy

brid

7763

661

3[0

.3,5

.0]

[5.1

,17.

0]38

961.

560

...

1097

5247

hybr

id8

53

8[0

.3,4

.8]

[7.1

,19.

5]86

13.9

43..

.11

1803

61hy

brid

3611

2572

[0.2

,5.0

][5

.0,6

0.0]

334

3.75

2..

.11

1930

46hy

brid

112

6248

303

[0.2

,4.9

][5

.0,5

4.7]

704

1.27

5..

.11

1979

34hy

brid

213

8112

139

7[0

.3,5

.0]

[5.1

,60.

4]72

01.

939

...

1128

5767

hybr

id13

340

8641

6[0

.2,5

.0]

[5.0

,59.

7]64

9621

.061

...

1128

8686

hybr

id62

2233

316

[0.2

,4.6

][5

.3,4

1.1]

4053

18.4

87..

.11

3093

35hy

brid

146

2212

227

2[0

.3,4

.8]

[5.0

,59.

7]11

9123

.435

...

1144

5913

hybr

id16

718

144

328

[0.2

,4.2

][7

.2,5

0.4]

1654

31.5

58..

.11

5083

97hy

brid

9242

4814

5[0

.2,4

.9]

[5.1

,48.

2]34

011

.367

...

1157

2666

hybr

id44

1722

164

[0.2

,4.9

][5

.0,4

8.9]

976

18.2

79..

.11

6024

49hy

brid

8436

4031

0[0

.5,4

.9]

[6.4

,49.

7]13

9210

.579

...

1160

7193

hybr

id10

273

1439

6[0

.2,4

.9]

[5.0

,16.

5]71

61.

817

...

1170

0604

hybr

id20

144

66[0

.3,5

.0]

[5.0

,27.

0]51

527

.013

...

1171

4150

hybr

id13

91

28[0

.3,4

.1]

[6.0

,11.

0]30

70.

756

...

1171

8839

hybr

id16

749

115

235

[0.3

,4.9

][5

.1,4

2.4]

696

16.4

41..

.11

8226

66hy

brid

5131

2073

[0.4

,5.0

][5

.0,3

5.7]

298

2.05

0..

.11

8249

64hy

brid

2111

538

[0.4

,4.5

][5

.0,3

4.6]

125

2.16

0..

.12

1176

89hy

brid

2316

574

[0.3

,4.6

][5

.1,2

5.0]

1229

3.21

8..

.12

1220

75hy

brid

8054

2021

5[0

.3,5

.0]

[5.0

,31.

9]12

601.

116

•12

2168

17hy

brid

143

5584

609

[0.2

,5.0

][5

.2,5

2.6]

2200

78.

121

...

!D

orst

ars

0143

2149

!D

or8

80

56[0

.6,3

.5]

...

322

3.45

1..

.01

5711

52!

Dor

5757

018

9[0

.3,5

.8]

...

1061

0.39

4..

.02

0209

66!

Dor

1313

031

[0.3

,3.2

]..

.79

81.

735

...

0216

6218

!D

or17

170

42[0

.3,3

.2]

...

149

1.79

8..

.02

3001

65!

Dor

4747

021

9[0

.5,5

.5]

...

2500

1.67

9..

.02

5582

73!

Dor

2525

065

[0.3

,3.3

]..

.33

42.

015

...

0256

8519

!D

or6

60

21[0

.2,4

.1]

...

150

0.84

8..

.

A125, page 65 of 70

Page 66: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

3.co

ntin

ued.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)02

5751

61!

Dor

88

038

[0.6

,2.5

]..

.32

92.

245

...

0272

0582

!D

or34

340

70[0

.3,5

.6]

...

467

0.55

1..

.02

8357

95!

Dor

88

064

[0.4

,2.4

]..

.86

50.

359

...

0321

5800

!D

or16

160

51[0

.2,3

.7]

...

1696

1.50

6..

.03

2186

37!

Dor

8383

023

7[0

.2,6

.0]

...

4526

3.84

9..

.03

2223

64!

Dor

2323

093

[0.4

,3.7

]..

.49

62.

482

...

0332

7681

!D

or14

140

36[0

.3,1

.5]

...

301

1.01

1..

.03

3311

47!

Dor

2424

011

5[0

.3,5

.8]

...

4684

1.42

7..

.03

4244

93!

Dor

5454

020

4[0

.2,5

.9]

...

7606

2.70

9..

.03

4496

25!

Dor

1818

077

[0.3

,3.3

]..

.10

350.

942

...

0353

9153

!D

or10

910

90

373

[0.2

,6.0

]..

.45

122.

035

...

0365

5608

!D

or9

90

14[0

.5,2

.6]

...

770.

636

...

0366

3141

!D

or4

40

34[2

.3,5

.0]

...

135

2.78

8..

.03

7587

17!

Dor

1313

063

[0.6

,3.2

]..

.25

90.

871

...

0386

8032

!D

or8

80

39[0

.3,1

.7]

...

249

0.39

8..

.03

9663

57!

Dor

8787

034

9[0

.2,5

.3]

...

3706

1.59

5..

.04

0694

77!

Dor

7777

025

0[0

.2,5

.7]

...

3305

1.40

8..

.04

1643

63!

Dor

7373

030

0[0

.2,5

.9]

...

8312

1.38

1•

0467

7684

!D

or37

370

132

[0.3

,5.6

]..

.89

04.

496

...

0475

8316

!D

or12

612

60

416

[0.2

,5.9

]..

.44

890.

991

...

0502

4455

!D

or18

180

102

[0.5

,4.4

]..

.15

561.

341

•05

1057

54!

Dor

156

156

054

4[0

.2,5

.8]

...

1051

11.

687

...

0511

3797

!D

or26

260

114

[0.2

,5.1

]..

.43

12.

836

...

0516

4767

!D

or11

110

32[0

.2,2

.1]

...

109

0.95

8..

.05

1807

96!

Dor

2525

088

[0.3

,4.3

]..

.50

31.

890

...

0529

4571

!D

or66

660

176

[0.4

,4.9

]..

.11

381.

494

...

0537

1747

!D

or62

620

216

[0.2

,5.9

]..

.13

791.

128

...

0563

0362

!D

or69

690

210

[0.2

,5.8

]..

.68

214.

856

...

0572

4048

!D

or25

250

62[0

.2,4

.3]

...

269

2.13

1..

.05

7724

11!

Dor

1818

027

[0.3

,3.5

]..

.83

0.84

3..

.05

8803

60!

Dor

3636

013

9[0

.2,5

.8]

...

787

1.60

1..

.05

9542

64!

Dor

2727

066

[1.2

,4.0

]..

.14

421.

840

...

0630

1745

!D

or17

170

74[0

.3,5

.8]

...

1023

0.39

3..

.06

4620

33!

Dor

4646

013

7[0

.2,4

.5]

...

740

1.43

5..

.06

5005

78!

Dor

5050

012

6[0

.2,6

.0]

...

782

1.50

0..

.06

5198

69!

Dor

142

142

051

3[0

.2,5

.8]

...

5215

1.35

3..

.06

9234

24!

Dor

5757

014

4[0

.3,5

.7]

...

1948

2.73

5..

.07

0071

03!

Dor

8080

026

7[0

.2,5

.9]

...

1780

1.54

0..

.07

1066

48!

Dor

3838

010

3[0

.2,6

.0]

...

1335

2.35

5..

.07

2156

07!

Dor

2121

033

[0.3

,4.9

]..

.29

12.

231

...

0722

0356

!D

or23

230

42[0

.4,4

.4]

...

741.

261

...

0730

4385

!D

or14

714

70

774

[0.2

,5.4

]..

.23

271

1.26

9..

.07

4362

66!

Dor

4545

018

2[0

.2,4

.4]

...

1703

1.71

4..

.07

6941

91!

Dor

1616

017

[0.5

,5.3

]..

.92

2.65

8..

.07

7427

39!

Dor

5757

028

2[0

.2,5

.9]

...

2292

2.05

7..

.07

7675

65!

Dor

2626

012

7[0

.4,4

.9]

...

532

1.99

4..

.

A125, page 66 of 70

Page 67: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Tabl

e3.

cont

inue

d.

KIC

IDC

lass

NN!

Dor

N"S

ctN

tota

l(F

req

Ran

ge) !

Dor

(Fre

qR

ange

) "Sc

tA

mpl

itude

high

Freq

high

Flag

(d"1

)(d"1

)(p

pm)

(d"1

)07

7983

39!

Dor

80

04

[0.2

,4.9

]..

.38

0.45

0..

.07

8905

26!

Dor

2020

075

[0.2

,5.4

]..

.39

11.

353

...

0790

8633

!D

or11

110

18[0

.2,3

.0]

...

121

2.79

5..

.08

1045

89!

Dor

1818

039

[0.2

,2.1

]..

.12

90.

538

...

0812

3127

!D

or14

114

10

320

[0.2

,6.0

]..

.19

910.

774

...

0814

4674

!D

or18

180

39[0

.2,5

.2]

...

520.

494

...

0819

7761

!D

or56

560

274

[0.2

,5.3

]..

.64

071.

097

...

0822

2685

!D

or35

350

104

[0.2

,4.0

]..

.43

302.

010

...

0823

0025

!D

or50

500

232

[0.2

,5.9

]..

.87

83.

659

...

0826

4061

!D

or70

700

321

[0.2

,5.9

]..

.53

501.

400

...

0826

4075

!D

or34

340

157

[0.2

,5.9

]..

.22

381.

201

...

0826

4274

!D

or34

340

135

[0.2

,5.3

]..

.21

021.

483

•08

2645

88!

Dor

4343

018

9[0

.2,5

.9]

...

5540

5.00

2..

.08

2646

17!

Dor

126

126

046

3[0

.3,5

.8]

...

2975

31.

242

•08

3300

56!

Dor

3232

010

4[0

.2,5

.5]

...

974

2.53

7•

0835

5130

!D

or16

516

50

636

[0.2

,5.8

]..

.10

314

1.37

5..

.08

4897

12!

Dor

4646

012

8[0

.2,6

.0]

...

257

0.55

5..

.08

6514

52!

Dor

9191

035

6[0

.2,5

.8]

...

1028

52.

434

...

0876

6619

!D

or39

390

158

[0.3

,5.6

]..

.11

222.

047

•08

8384

57!

Dor

3939

010

7[0

.2,5

.9]

...

743

2.25

6..

.08

8693

02!

Dor

114

114

077

2[0

.2,4

.0]

...

5990

0.64

7..

.08

8713

04!

Dor

136

136

054

6[0

.2,5

.6]

...

3742

0.97

0..

.09

0201

57!

Dor

2929

011

8[0

.3,2

.8]

...

1323

1.23

4..

.09

1178

75!

Dor

55

08

[0.6

,1.4

]..

.13

30.

667

...

0914

7229

!D

or98

980

311

[0.2

,5.4

]..

.41

721.

984

...

0949

0042

!D

or10

710

70

280

[0.2

,5.8

]..

.67

51.

621

...

0949

0067

!D

or68

680

150

[0.2

,5.9

]..

.68

62.

240

...

0959

4100

!D

or33

330

181

[0.2

,5.9

]..

.19

871.

052

...

0965

4789

!D

or75

750

313

[0.2

,5.7

]..

.59

130.

992

...

0965

5151

!D

or32

320

197

[0.9

,6.0

]..

.23

281.

418

•09

6558

00!

Dor

6464

026

8[0

.2,4

.1]

...

4462

1.94

4..

.09

7161

07!

Dor

3030

016

1[0

.7,6

.0]

...

1755

2.15

2•

0990

9300

!D

or94

940

372

[0.2

,5.8

]..

.70

731.

496

...

1006

9934

!D

or12

512

50

333

[0.2

,6.0

]..

.46

691.

082

...

1007

3601

!D

or21

210

46[0

.2,2

.2]

...

901.

220

...

1009

6499

!D

or18

180

83[0

.2,6

.0]

...

484

2.66

8..

.10

2813

60!

Dor

2323

011

0[0

.8,5

.6]

...

490

1.96

1..

.10

3854

59!

Dor

9494

042

8[0

.2,5

.8]

...

1142

62.

596

...

1058

6837

!D

or48

480

189

[0.2

,5.9

]..

.13

171.

569

...

1065

2134

!D

or78

780

546

[0.2

,3.5

]..

.47

570.

766

...

1119

9412

!D

or12

120

53[0

.4,5

.7]

...

2856

0.68

5..

.11

4478

83!

Dor

6161

020

9[0

.2,3

.0]

...

1871

1.36

7..

.11

6122

74!

Dor

2929

010

7[0

.2,5

.4]

...

2638

2.54

0..

.11

8748

98!

Dor

1717

010

0[0

.2,5

.2]

...

1971

0.98

9..

.12

0188

34!

Dor

103

103

030

9[0

.3,5

.7]

...

2834

1.76

2..

.12

0584

28!

Dor

6868

026

1[0

.2,5

.9]

...

2812

1.59

8..

.12

1021

87!

Dor

6969

024

6[0

.2,6

.0]

...

4821

0.92

9..

.

A125, page 67 of 70

Page 68: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)Ta

ble

4.C

lass

ifica

tion

ofth

est

ars

that

dono

tbel

ong

toth

e"

Sct,!

Dor

orhy

brid

grou

ps.

KIC

IDC

lass

Flag

KIC

IDC

lass

Flag

KIC

IDC

lass

Flag

Star

sw

ithno

clea

rper

iodi

csi

gnal

inth

e"

Scta

nd!

Dor

regi

ons

0216

3434

...

•09

3862

59..

...

.10

9201

82so

lar-

like

...

0231

1130

...

•09

4587

50..

.•

1092

0273

sola

r-lik

e..

.02

5782

51..

...

.09

5148

79..

...

.11

0679

72so

lar-

like

...

0297

0244

...

...

0952

0434

sola

r-lik

e..

.11

0694

35so

lar-

like

...

0299

7802

...

...

0959

3997

...

...

1112

2763

sola

r-lik

e..

.03

1114

51..

...

.09

7036

01so

lar-

like

...

1112

8041

...

...

0311

9825

...

...

0976

4712

sola

r-lik

e..

.11

1281

26so

lar-

like

...

0322

0783

...

...

0999

1621

sola

r-lik

e..

.11

1292

89so

lar-

like

...

0342

7365

...

...

0999

1766

sola

r-lik

e..

.11

1827

16so

lar-

like

...

0373

3735

...

...

0999

4789

sola

r-lik

e..

.11

2305

18so

lar-

like

...

0375

9814

...

...

1005

6217

sola

r-lik

e..

.11

2329

22so

lar-

like

...

0376

0826

...

...

1006

2593

...

...

1123

3189

sola

r-lik

e..

.04

5884

87..

...

.10

0903

45..

...

.11

2348

88so

lar-

like

...

0485

0899

...

...

1014

0665

sola

r-lik

e..

.11

2357

21so

lar-

like

...

0502

4150

sola

r-lik

e•

1020

8303

sola

r-lik

e..

.11

2362

53so

lar-

like

...

0502

4454

sola

r-lik

e•

1025

4547

sola

r-lik

e..

.11

2532

26..

...

.05

0244

56..

.•

1026

6959

sola

r-lik

e•

1129

0197

sola

r-lik

e..

.05

1129

32so

lar-

like

•10

2732

46so

lar-

like

...

1139

3580

sola

r-lik

e..

.05

1994

64so

lar-

like

•10

2739

60so

lar-

like

...

1139

4216

sola

r-lik

e..

.05

2010

88..

.•

1033

9342

sola

r-lik

e..

.11

3950

18so

lar-

like

...

0598

0337

...

...

1034

0511

sola

r-lik

e..

.11

3950

28so

lar-

like

...

0733

8125

...

...

1034

1072

sola

r-lik

e..

.11

4461

43so

lar-

like

...

0766

2076

...

...

1038

3933

sola

r-lik

e..

.11

4461

81so

lar-

like

...

0766

9848

sola

r-lik

e..

.10

4505

50so

lar-

like

...

1144

8266

sola

r-lik

e..

.08

1439

03so

lar-

like

...

1045

0675

sola

r-lik

e..

.11

4499

31..

...

.08

1591

35..

...

.10

4512

50so

lar-

like

•11

4540

08..

...

.08

2184

19so

lar-

like

...

1045

3475

...

...

1149

9354

sola

r-lik

e..

.08

2239

87so

lar-

like

...

1046

7969

sola

r-lik

e..

.11

5020

75so

lar-

like

...

0829

3302

...

...

1052

6137

...

...

1150

9728

...

...

0832

3104

...

...

1052

6615

sola

r-lik

e•

1154

9609

sola

r-lik

e..

.08

3558

37..

...

.10

5335

06so

lar-

like

...

1155

1622

sola

r-lik

e•

0846

0025

...

•10

5346

29so

lar-

like

...

1165

1083

sola

r-lik

e..

.08

4825

40..

...

.10

6478

60so

lar-

like

...

1165

1147

sola

r-lik

e..

.08

4880

65..

...

.10

6638

92so

lar-

like

...

1165

3958

sola

r-lik

e..

.09

0739

85so

lar-

like

...

1070

9716

sola

r-lik

e..

.11

6542

10so

lar-

like

...

0920

4672

...

...

1072

3718

sola

r-lik

e..

.11

6578

40so

lar-

like

•09

2643

99..

...

.10

7306

18so

lar-

like

...

1170

6449

sola

r-lik

e•

0926

4462

sola

r-lik

e..

.10

7775

41so

lar-

like

•11

7073

41so

lar-

like

...

0927

2082

...

...

1077

8640

sola

r-lik

e•

1191

0256

...

...

0927

4000

...

...

1086

1649

sola

r-lik

e..

.11

9106

42..

...

.09

3362

19..

...

...

...

...

...

...

...

.B

inar

ies

0129

4756

bina

ry+"

Sct

...

0667

8614

EB+"

Sct

...

0976

0531

bina

ry..

.

A125, page 68 of 70

Page 69: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.Ta

ble

4.co

ntin

ued.

KIC

IDC

lass

Flag

KIC

IDC

lass

Flag

KIC

IDC

lass

Flag

0216

2283

EB+"

Sct

...

0738

5478

EB+!

Dor

...

0985

1142

EB+!

Dor

...

0255

7430

EB+!

Dor

...

0759

6250

EB+!

Dor

...

0991

3481

EB+!

Dor

...

0258

4908

EB

...

0804

3961

EB+"

Sct

...

0994

4730

bina

ry..

.02

7185

96bi

nary

...

0814

5477

EB

...

1011

9517

EB

...

0323

0227

EB+!

Dor

...

0822

3568

bina

ry..

.10

2063

40E

B+!

Dor

...

0415

0611

EB+

hybr

id..

.08

3300

92E

B+"

Sct

...

1027

4244

EB+!

Dor

...

0457

0326

EB+"

Sct

...

0847

9107

EB

•10

9716

74E

B..

.05

0883

08E

B+!

Dor

...

0854

5456

EB

...

1108

2830

bina

ry..

.05

1972

56E

B+"

Sct

...

0920

4718

bina

ry+"

Sct

...

1118

0361

EB

...

0529

6877

EB

...

0921

6367

EB+!

Dor

...

1134

2032

bina

ry..

.05

5138

61E

B..

.09

4515

98E

B..

.11

4479

53E

B..

.05

9881

40bi

nary+"

Sct

...

0963

0640

bina

ry+"

Sct

...

1197

3705

bina

ry+

SPB+"

Sct

...

Stel

lara

ctiv

ity/r

otat

iona

lmod

ulat

ion

0157

3064

rota

tion/

activ

ity..

.08

2837

96ro

tatio

n/ac

tivity

...

1014

0513

rota

tion/

activ

ity..

.01

9954

89ro

tatio

n/ac

tivity

...

0833

0463

rota

tion/

activ

ity•

1033

8279

rota

tion/

activ

ity..

.02

4239

32ro

tatio

n/ac

tivity

...

0870

3413

rota

tion/

activ

ity..

.10

3943

32ro

tatio

n/ac

tivity

...

0256

9639

rota

tion/

activ

ity..

.08

7424

49ro

tatio

n/ac

tivity

•10

6487

28ro

tatio

n/ac

tivity

...

0258

3658

rota

tion/

activ

ity..

.08

7482

51ro

tatio

n/ac

tivity

...

1079

7849

rota

tion/

activ

ity..

.03

3483

90ro

tatio

n/ac

tivity

...

0907

7192

rota

tion/

activ

ity..

.11

0174

01ro

tatio

n/ac

tivity

•03

5285

78ro

tatio

n/ac

tivity

...

0926

8087

rota

tion/

activ

ity..

.11

0205

21ro

tatio

n/ac

tivity

...

0364

3717

rota

tion/

activ

ity..

.09

5827

20ro

tatio

n/ac

tivity

...

1102

7270

rota

tion/

activ

ity..

.04

0755

19ro

tatio

n/ac

tivity

...

0963

2537

rota

tion/

activ

ity..

.11

1833

99ro

tatio

n/ac

tivity

...

0416

0876

rota

tion/

activ

ity..

.09

6402

04ro

tatio

n/ac

tivity

...

1124

0653

rota

tion/

activ

ity..

.04

8576

78ro

tatio

n/ac

tivity

...

0964

3982

rota

tion/

activ

ity..

.11

4457

74ro

tatio

n/ac

tivity

...

0520

0084

rota

tion/

activ

ity•

0965

5487

rota

tion/

activ

ity•

1149

4765

rota

tion/

activ

ity..

.05

4364

32ro

tatio

n/ac

tivity

...

0969

6853

rota

tion/

activ

ity..

.11

4985

38ro

tatio

n /ac

tivity

...

0547

6495

rota

tion/

activ

ity..

.09

7163

50ro

tatio

n/ac

tivity

...

1149

9453

rota

tion/

activ

ity..

.06

2798

48ro

tatio

n/ac

tivity

...

0977

7532

rota

tion/

activ

ity..

.11

5156

90ro

tatio

n/ac

tivity

...

0644

0930

rota

tion/

activ

ity..

.09

8819

09ro

tatio

n/ac

tivity

...

1162

2328

rota

tion/

activ

ity..

.06

4481

12ro

tatio

n/ac

tivity

...

0994

4208

rota

tion/

activ

ity..

.11

7081

70ro

tatio

n/ac

tivity

...

0798

5370

rota

tion/

activ

ity..

.10

0045

10ro

tatio

n/ac

tivity

...

1206

2443

rota

tion/

activ

ity..

.08

2115

00ro

tatio

n/ac

tivity

...

1006

4111

rota

tion/

activ

ity..

.12

2172

81ro

tatio

n/ac

tivity

...

Bty

pest

ars

0521

7733

Bst

arSP

B..

.10

0309

43B

star

cand

idat

e&

Cep

...

1065

8302

Bst

arSP

B..

.08

5837

70B

star

...

1053

6147

Bst

arSP

B..

.10

7975

26B

star

SPB

...

0871

4886

Bst

arSP

B..

...

...

...

...

...

...

.C

andi

date

red

gian

ts02

3064

69re

dgi

ant

...

0299

5525

red

gian

t..

.08

7468

34re

dgi

ant

•02

3067

16re

dgi

ant

...

0324

8627

red

gian

t..

.09

3279

93re

dgi

ant

...

0231

0479

red

gian

t..

.03

3540

22re

dgi

ant

...

0952

0864

red

gian

t..

.02

4430

55re

dgi

ant

...

0335

5066

red

gian

t..

.09

8858

82re

dgi

ant

...

0244

4598

red

gian

t..

.03

4271

44re

dgi

ant

...

0999

5464

red

gian

t..

.02

5562

97re

dgi

ant

...

0344

9373

red

gian

t..

.10

0061

58re

dgi

ant

...

0255

6387

red

gian

t..

.03

4580

97re

dgi

ant

...

1005

7129

red

gian

t..

.

A125, page 69 of 70

Page 70: simonmurphy.infosimonmurphy.info/images/Uytterhoeven_et_al_2011.pdf · A&A 534, A125 (2011) DOI: 10.1051/0004-6361/201117368!c ESO 2011 Astronomy & Astrophysics The Kepler characterization

A&A 534, A125 (2011)

Tabl

e4.

cont

inue

d.

KIC

IDC

lass

Flag

KIC

IDC

lass

Flag

KIC

IDC

lass

Flag

0255

7115

red

gian

t..

.03

5259

51re

dgi

ant

...

1006

8892

red

gian

t..

.02

5842

02re

dgi

ant

...

0354

6061

red

gian

t..

.10

1346

00re

dgi

ant

...

0283

4796

red

gian

t..

.03

6290

80re

dgi

ant

...

1038

9037

red

gian

t..

.02

8556

87re

dgi

ant

...

0363

3693

red

gian

t..

.10

9027

38re

dgi

ant

...

0286

0123

red

gian

t..

.03

8369

11re

dgi

ant

...

1134

0063

red

gian

t..

.02

9691

51re

dgi

ant

...

0414

4300

red

gian

t..

.11

7065

64re

dgi

ant

...

0297

2401

red

gian

t..

.05

0247

50re

dgi

ant

...

1175

3169

red

gian

t•

0298

9746

red

gian

t..

.05

1127

86re

dgi

ant

...

...

...

...

Cep

heid

0754

8061

Cep

heid

...

...

...

...

...

...

...

Con

tam

inat

edst

ars

0345

7434

cont

amin

ated

•04

9372

57co

ntam

inat

ed•

0965

5433

cont

amin

ated

•04

0484

88co

ntam

inat

ed•

0572

4810

cont

amin

ated

•..

...

...

.

A125, page 70 of 70