aadm template

Upload: nemri-akram

Post on 06-Apr-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 AADM Template

    1/18

    v l le onl ne t http: pefm th etf rs

    . . . x (xxxx) xxx{xxx d 0.2298/AADMxxxxxxxx

    So e We hted Besov S aces n Quantu Ca cu us

    Ak a NEMRI & Bel ace SELMI

    n th s p per su sp ces ofLp re ene us ng q tr nsl t ons Tq;x oper torn erences c lle q Besov sp ces We prov e ch r cter z t on of these

    sp ces y the q convolut on

    Introduction

    M h r nt r r h t v t h f d n th th r nd ppl t n f Q ntC l l . Th br n h f th t nt n t nd n nd f l ppl -t n . F r x pl th - ll d - n l f p l f n t n nd h p r tr

    r , ll d - r h v n ppl t n n r th t th r , b n t r ,nt ph , r p th r [2], nd th r r f n nd th t .

    Appl t n f th th t n l d p p l t n b l [4], tr n l-[5], nt ll nt r b t ntr l [8], ppr x t n th r [20], nd n n l

    n n r n [ 9], n th r . O r nt r t n th p p r t h r t r zht d B v p n Q nt C l l , ll d ht d -B v p . In

    th l l th r r n t d n B v p ([3],[ 8],[23],[22]).In th p p r xpr -B v p n t r f nv l t n q ' t th d r nt

    nd f th f n t n ' :Th p n b d r b d b n f d r nd r nt l p r t r xq ( [ 3], [ 4], [2 ]).

    Thr h t th p p r q- ht w : Rq + ! R+ ll b q- r bl f n -t n, w > 0 . ., nd ll v h r t r z t n f q- ht d q-B v p .L t w b r bl p t v f n t n nd 1 p m nd p

    0m

    0t nd f r

    th nj t xp n nt . W h ll d n t b w q th p f v n f n t n

    20 0 M hem c ub ec C c n. 33D05, 33D 5, 33D90.e gh ed, Be v ce , u n um C cu u .

    1

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    2/18

    2 Akr m N M R Belg cem S M

    : Rq ! C h th t

    k k p;m ;w;q=n Z

    +1

    0

    k q k

    w(x)qxx

    om

    + (1 m )

    r

    k k p; ;w;q= nfn

    > 0; k q k w(x) a: :x 2 Rq +

    o(m = + )

    h r

    (1) q (y) = q (y) (y):

    P t A q nd A q f r th f ll n l

    (2) A q =n' 2 S q 0;

    Z +10

    (Fq' (t))2 qt

    t= 1 f r 2 Rq +

    o

    nd

    (3) A q =n' 2 A q; supp' [0 1]

    Z +10

    x' (x) qx = 0o

    h r S q 0 = f 2 S q;

    Z +10

    (x) qx = 0g:

    L t w ' b n S q 0 nd 1 p m + h ll d n t b w q

    th p f th v n f n t n : Rq ! C b l n n L (Rq +qx

    (1 + x2)) nd

    t f n

    k kBp;m

    ;w;' ;q=

    n Z +10

    k ' t q k

    w(t)

    qt

    t

    om

    + (1

    m + )

    nd

    k kBp; ;w;' ;q= nfn

    > 0; k ' t q k k w(x); a: : t 2 Rq +

    o(m = + )

    h r ' t(x) = t ' (t x) t 2 Rq + nd x 2 R+:

    O r bj t v t nd ht ( h h xt nd th t ! t ) h rn ( t ll) t h h r t r z t n f q- ht d B v p :

    w q = w q ( th v l nt n r ):

    F r th nd nl th q-C ld n' f r l [ 7] nd t l nt r S hur

    L . Ob rv th t th q-B v r nd p nd nt f th h f ' n A q:Th nt nt f th p p r r f ll . In S t n 2, ll t b d n -t n nd r lt b t q-h r n n l . In S t n 3, v nd t n b tq- ht nd pr v th nn t n b t n th p w q nd w q:

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    3/18

    Some We ghte Besov Sp ces n u ntum lculus 3

    2 Pr liminari s

    In ll th l, 0 q 1 nd d pt th n t t n n [7].

    A q- h ft d f t r l d n d b

    (4) (a; q)0 = 1 (a; q) ==0

    (1 aq ); n = 1 2

    nd r n r ll

    (a ar; q) =

    r

    =

    (a ; q) :(5)

    Th b h p r tr r r q-h p r tr r r v n f r r,nt r b

    r' s(a ar; b bs; q x) =1X=0

    [( 1) qn(n 1

    2 ] +s r(a ar; q)

    (b bs; q)

    x

    (q; q):

    Th q-d r v t v q f f n t n n n p n nt rv l v n b

    (6) q (x) =(x) (qx)

    (1 q)xx 6= 0

    nd ( q )(0) =0(0) pr v d d

    0(0) x t . Th q- h ft p r t r r d n d

    b

    (7) ( q )(x) = (qx) ( q )(x) = (q x):

    Rq = f q k 2 Zg; Rq + = f+q k 2 Zg; eRq + = f+q k 2 Zg [ f0g: Th q-J n nt r l fr 0 t ( r p t v l t + ) d n d b

    0

    (x) qx = (1 q)a+1X

    =0

    (aq )q1

    0

    (x) qx = (1 q)+1X1

    (q )q :(8)

    R mark 0 0 O erve th t ( ee [ ]) the q-inte r l (8) i Riem nn-tieltje inte r l with re pe t to tep n tion h vin innitely m ny point

    o in re e t the point q with the j mp t the pointq ein q : I we ll thi tep n tion q(t) then q(t) = qt:

    N t th t f r n 2 Z nd a 2 Rq, h v(9)

    1

    0

    (q x) qx =1

    q

    1

    0

    (x) qx0

    (q x) qx =1

    q

    qn

    0

    (x) qx:

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    4/18

    4 Akr m N M R Belg cem S M

    Th q2- nt r t n b p rt v n f r t bl f n t n nd g b :

    (10) (x) q g(x) qx = h (x)g(x)i (qx) q g(x) qx: Th f ll n d n t n f th q- n v n ( [9]) b

    (x; q2) = ' (0 q q2; (1 q)2x2) =1X=0

    ( 1) b (x; q2)(11)

    h r , h v p t

    b (x; q2) = b (1; q2)x2 = q ( )(1 q)2

    (q; q)2x2 :(12)

    Th f n t n b nd d nd f r v r x 2 Rq h v

    j (x; q2)j1

    (q; q2)21:(13)

    W r r th t f r 2 C, th f n t n x ! (x; q2) th nl t n f th q-d r nt l t

    (14)

    8 0 h th t

    (34)s

    0

    w(t)

    tqt w(s); a: : s 2 Rq +:

    A q- ht w d t b (b q)- ht f th r x t > 0 h th t

    (35)+1

    s

    w(t)

    t2qt

    w(s)

    s; a: : s 2 Rq +:

    W l p t W0 ;q th p f (b q)- ht t f q-D n nd t n.

    W l th n t t n A q nd A q f r th f ll n l

    A q = ' 2 S 0 q;+1

    0

    (Fq' (t))2 qt

    t= 1 or 2 Rq +

    o(36)

    A q = ' 2 A q; supp' [0 1]+1

    0

    x' (x) qx = 0o:(37)

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    8/18

    8 Akr m N M R Belg cem S M

    nition 0 0 3 Let" > 0, 0 ndw be q-weight.w i id to be ( "

    ;q)-weight if there exi t > 0 ch th t:

    (38)s

    0

    t"w(t)qt

    t s"w(s); .e. s > 0

    w i id to be (b;q) weight if there exi t > 0

    (39)+1

    s

    w(t)

    tqt

    t

    w(s)

    s; .e. s > 0:

    We write W" ;q = ( ";q) \ (b;q)

    Proposition 0 0 3 1: Ifw 2 ( ";q ) thenw 2 ( "0 ;q) for ny"0> ".

    2: Ifw 2 (b;q) thenw 2 (b0;q) for ny

    0> .

    Proposition 0 0 4 1:Ifw(t) = w(t ); thenw 2 (b"; q) if nd only if, w 2 ( "; q ):

    2: Ifw 2 W" ;q; thenw(t) n(t" t ); > 0:

    L t n v n x pl

    ampl 0 0 Ifw(t) = t ; > 0 thenw 2 W" ;q for ny > nd" > :

    L mma 0 0 Let 2 S q then we h ve:

    (40) (x) =+1

    0

    q ' t q ' t(x)qt

    t; for l l ' 2 A q:

    Proof. L t g(x) =+1

    0q ' t q ' t(x) qt

    tth n

    Fqg() =+1

    0

    +1

    0

    q ' t q ' t(x)t (x; q2) qx qt

    =+1

    0

    Fq( q ' t q ' t)()t qt

    =+1

    0

    Fq( )()(Fq(' t)())2t qt

    = Fq( )()+1

    0

    (Fq(' )(t))2 qt

    t= Fq( )():

    Fr th f t th t ' 2 A q nd th f Th r 0.0.2 bt n th r lt. Proposition 0 0 5 Let' 2 A q nd 2 S q then for 2 Rq +

    (41) Fq () =+1

    0

    Fq(' t q ' t q )()qt

    t:

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    9/18

    Some We ghte Besov Sp ces n u ntum lculus 9

    Ind d, n ' 2 A q

    1 =+1

    0

    (Fq' (t))2 qt

    t

    =+1

    0

    Fq(' t q ' t)()qt

    t

    th n fr L 0.0.1, nd th r t r l t n n Pr p t n 0.0.2, n lth t

    Fq () =+1

    0

    Fq (' t q ' t)()Fq ()qt

    t

    =+1

    0

    Fq (' t q ' t q )()qt

    t

    :

    R mark 0 0 2 The l t propo ition how th t

    " ;q =

    "

    ' t q ' t qqt

    tconverge to inS q " ! 0 nd ! :

    On th r ll th q-C ld rn' f r l v n n [ 7]:

    Th or m 0 0 4 Let 2 L (Rq +q

    ( + 2)) nd' 2 A q:For 0 " dene

    (42) " ;q(x) =

    "

    (' t q ' t q )(x)qt

    t:

    Then " ;q converge to inS0q

    0" ! 0 nd ! :

    T n h th pr l n r t n l t t t q-v r n f S h r l th tll b f l f r r p rp .

    L mma 0 0 2 Let 1 p nd1

    p+

    1

    p0 = 1:Let ( ) nd ( 2 2 2)

    be two -nite me re p ce nd let K: 2 ! R+ be me r ble f nctionnd write ( ) for

    ( )(w2) = 1

    K(w w2) (w ) (w ):

    If there exi t > 0 nd me r ble f nctionhi : i ! R+(i = 1 2) ch th t

    1

    K(w w2)h0(w ) (w ) h

    02 (w2); 2 a:(43)

    2

    K(w w2)h2(w2) 2(w2) h (w ); a: :(44)

    Then dene bo nded oper tor fromL ( ) into L ( 2 2):

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    10/18

    10 Akr m N M R Belg cem S M

    Proof. Fr (43) nd H ld r n l t h v

    j ( )(w2)j h2(w2)( 1

    K(w w2)h (w )j (w )j (w ))1p :

    Appl n (44) nd F b n ' th r t t

    k ( )k (( 1 2

    K(w w2)h2(w2) 2(w2))h (w )j (w )j (w ))1p

    2k k :

    3 haract rization ofq-B sov spac s

    W b n r t b t bl h n r l t hn l r lt th t n b d t r l tpr p rt b t q-d r n q nd q- nv l t n ' t q :

    L mma 0 0 3 For ll jyj 1 we h ve

    (45) k yq'k q (1 + q)jyj+1

    0

    j q y( q y' (x))j qx:

    Proposition 0 0 6 Let1 p , % 0 nd' 2 A q:Then there exi t q > 0

    ch th t if 2 L (Rq +q

    ( + 2)) then we h ve th t

    (46) k ' t q k q q

    1

    0

    n((x

    t) (

    t

    x) ) k q k q

    qx

    x

    nd

    (47) k q k q q

    1

    0

    n((x

    t) 1) k ' t q k q

    qx

    x:

    Proof. S n+1

    0

    ' (x) qx = 0 t f ll th t

    ' t q (y) =+1

    0

    ' t(x) q (y) qx

    fr q-M n ' n l t n t

    k' t q k q = (

    +1

    0j

    +1

    0' t(x) q (y) qxj qy)

    1p

    +1

    0

    j' t(x)j(+1

    0

    j q (y)j qy)1p

    qx

    +1

    0

    jxj

    tj' (

    x

    t)jk q k q

    qx

    x:

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    11/18

    Some We ghte Besov Sp ces n u ntum lculus 11

    H n , th r l t n (46) f ll fr th tr v l t t

    jyj + j' (y)j q f jyj 1

    j' (y)j q f jyj 1:

    T pr v (47) r ll th t f r 0 "

    (48) q " (y) =

    "

    ( q' t) q ' t q (y)qt

    t

    H n q-M n ' n l t nd q-Y n ' n l t v

    k q " k q

    "

    k q' tk qk' t q k qqt

    t

    S n

    kyq' k q 2k'k q jyj 1

    nd L 0.0.3 n h

    k q' tk q = kt

    q 'k q q n(1x

    t):

    Th r f r , n th pr v t t r l t n (48), L 0.0.3, L 0.0.2nd pl l t n r nt h (47).

    Alth h f r th p rp f th p p r nl p rt l r f th f ll npr p t n ll b d, h ll t t n r l v r n f t th t nd nt r t nn t n r ht.

    Proposition 0 0 7 Given 0 " 1 p nd w q-weight, letcon ider

    (49) " (s t) =w(s)

    w(t)n((

    s

    t)" (

    t

    s) ):

    If w(s) = 1

    p0

    (s)1p (s ) for ome p ir of q-weight 2 W" ;q then there

    exi t q > 0 ndg : Rq + ! R+ q-me r ble ch th t

    (50)

    1

    0 " (s t)g

    0(s)

    qs

    s qg

    0(t)

    nd

    (51)1

    0

    " (s t)g (t)qt

    t qg (s):

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    12/18

    12 Akr m N M R Belg cem S M

    Proof. L t t g(t) = 0(t)

    0(t ):Th n g

    0(s) = (s)=w(s) nd g (t) =

    w(t)(t ).

    Th r f r ,

    +1

    0

    " (s t)g0(s)

    qs

    s=

    1

    w(s)

    +1

    0

    (s) n((s

    t)" (

    t

    s) )

    qs

    s

    =1

    t"w(t)

    t

    0

    s"(s)qs

    s+

    t

    w(t)

    +1

    t

    (s)

    sqs

    s

    q(t)

    w(t)= qg

    0(t):

    On th th r h nd,

    +1

    0 " (s t)g (t)

    qt

    t = w(s)

    +1

    0(t ) n((

    s

    t )" (

    t

    s ) )

    qt

    t

    =w(s)

    s

    s

    0

    t(t )qt

    t+ s"w(s)

    +1

    s

    (t )

    t"qt

    t

    =w(s)

    s

    1

    s 1(t)

    tqt

    t+ s"w(s)

    s 1

    0

    t"(t)qt

    t

    q(s )w(s) = qg (s):

    W n d th f ll n L th t ll ft r n v r l f th r n npr f .

    L mma 0 0 4 For ll x y 2 Rq we h ve

    (52) q y(1

    1 + x2)

    1

    1 + x2(1 + q

    1 q

    12 y):

    Proof. L t x y 2 Rq , fr (27) pl r rr n n n 2 l d

    (53) q (1

    1 + x2)

    1 + q1 q

    11 + x2

    :

    Appl n n (11), n d d th r lt. Proposition 0 0 8 Let1 p nd let be q-me r ble f nction.

    If k q k q2 L (Rq +qx

    (1 + x2)) then 2 L (Rq +

    qx

    (1 + x2)):

    Proof. L t 2 L0(Rq + qx) h th t > 0 . . Th n q-H ld r' n l t nd

    q-F b n ' th r v

    +1

    0

    +10

    j q (y) (y)j

    (1 + x2)qx

    (y) qy :

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    13/18

    Some We ghte Besov Sp ces n u ntum lculus 13

    Th r f r ,

    +1

    0

    j q (y) (y)j(1 + x2)

    qx f r a: : y 2 Rq +:

    S n x ! (1 + x2) 2 L (Rq + qx) t h n

    +1

    0

    j q (y)j

    (1 + x2)qx f r a: : y 2 Rq +:

    F n ll , fr L 0.0.4 nd r l t n (13) th r x t q = (q q2)2 > 0 h

    th t f r ll y 2 Rq +, q y(1

    (1 + x2)) q

    1

    (1 + x2)th n n h

    +1

    0

    j q (y)j

    (1 + x2)qx =

    +1

    0

    j (x)j q y(1

    (1 + x2)) qx

    q

    +1

    0

    j (x)j

    (1 + x2)qx :

    N t rt th n r lt f th p p r th th q = h h l

    f ll fr Pr p t n 0.0.6.

    Th or m 0 0 5 Let 1 p ' 2 A q ndw 2 W0 ;q:Then

    (54) 1 w q =1

    w q with e iv lent eminorm:

    Proof. L t 2 1 w q th n n h

    +1

    0

    k q k q

    (1 + x2)qx q

    1

    0

    w(x)(1 + x2)

    qx

    q

    0

    w(x)qx

    x+

    1

    w(x)qx

    x2

    h t b n d th Pr p t n 0.0.8 v

    1

    0

    j (x)j

    (1 + x2)qx :

    L t pr v th t k' t q k q qw(t):Fr (46) n Pr p t n 0.0.6 f r % = 1n h

    k' t q k q q1t

    t

    0

    k q k q qx + t1

    t

    k q k qqx

    x2

    q t

    0

    x

    tw(x)

    qx

    x+ t

    1

    t

    w(x)qx

    x2

    qw(t):

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    14/18

    14 Akr m N M R Belg cem S M

    C nv r l f 2 1 w q th n fr (47) n h

    k q k q q0

    k' t q k qqtt

    + x1

    k' t q k qqtt2

    q

    0

    w(t)

    tqt + x

    w(t)

    t2qt

    qw(x):

    W pr v n th n Th r n th q = 1:

    Th or m 0 0 6 Let 1 p ' 2 A q nd w 2 W0 ;q ch th t (t) =w (t ):Then

    (55) w q = w q with e iv lent eminorm:

    Proof. A 2 w q . L t r t pr v th t1

    0

    j (x)j

    (1 + x2)qx :

    Fr Pr p t n 0.0.4 h v

    1

    xw(x)q

    1

    xn(1

    1

    x) q

    1

    xn(x

    1

    x)

    q

    (1 + x2):

    H n1

    0

    k q (x)k q

    (1 + x2)qx q

    1

    0

    k q k q

    w(x)qx

    x

    nd ppl Pr p t n 0.0.8 n.

    W ll pr v th t k kBp;1 ;w;' ;q qk k p;1 ;w;q:

    U n (46) n Pr p t n 0.0.6 th % = 1 h v

    1

    0

    k' t q k q

    w(t)qt q

    1

    0

    10

    n(x

    t

    t

    x)k q k q

    w(t)qx

    x

    qtt

    = q

    1

    0

    k q k q 1

    0

    n(x

    t

    t

    x)(t )

    qt

    t

    qxx

    = q1

    0

    k q k q

    0

    t(t )

    x

    qt

    t+

    1 x(t )

    t

    qt

    t

    qxx

    q

    1

    0k q k q

    1x

    1

    1(t) qt

    t2+

    1

    0

    (t) qtt

    qxx

    q

    1

    0

    k q k q(x )qx

    x

    q

    1

    0

    k q k q

    w(x)qx

    x:

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    15/18

    Some We ghte Besov Sp ces n u ntum lculus 15

    L t 2 w q fr (47) n Pr p t n 0.0.6 nd q-F b n ' th rt

    1

    0

    k q k q

    w(x)qx

    x q

    1

    0

    k' t q k q 1

    0

    (x ) n(1x

    t)

    qx

    x

    qtt

    = q1

    0

    k' t q k q 1

    0

    (s) n(11

    st)

    qs

    s

    qtt

    = q1

    0

    k' t q k q t 1

    0

    (s)

    s+

    1

    t 1(s)

    s2qs qt

    t

    q

    1

    0

    k' t q k q(t )qt

    t

    = q

    1

    0

    k' t q k q

    w(t)qt:

    Th or m 0 0 7 Let 1 p 1 m ' 2 A q nd w be q-weight

    ch th tw(t) =

    1

    m0 (t)

    1m (t )

    for ome p ir ofq-weight 2 W0 ;q:Then

    (56) w q = w q with e iv lent eminorm:

    Proof. A th t 2 w q:W ll r t h th t

    1

    0

    j (x)j

    (1 + x2) qx :

    W d n t

    (x) =x

    (1 + x2)w(x)

    nd r th pt n 2 W0 ;q n h 2 L0(Rq +

    q ):Ind d,

    1

    0

    0(t)

    qt

    t

    1

    0

    (t)m

    0m (t )

    t0

    (1 + t20)

    qt

    t:

    U n Pr p t n 0.0.4 h v (s) q n(1 s):Th r f r

    1

    0

    0(t)

    qt

    t

    1

    0

    (t) x(1 t0

    )t

    0

    (1 + t20)

    qt

    t

    q

    0

    (t)qt

    t+

    1

    0

    (t)

    t

    qt

    t

    :

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    16/18

  • 8/2/2019 AADM Template

    17/18

    Some We ghte Besov Sp ces n u ntum lculus 17

    h r

    (x t) = w(t)w(x)

    n(1 xt

    ):

    N t

    ( ) = (Rq +qx

    x)

    nd

    ( 2 2) = (Rq +qx

    x):

    C b n n n Pr p t n 0.0.7 nd L 0.0.2 t t th b nd dn f

    fr L (Rq + qxx

    ) nt L (Rq + qtt

    ):Th r f r ,

    k k p;m ;w;q qk (k' t q k q

    w(t))k

    m(Rq;+dqx

    x)

    qkk' t q k q

    w(t)k

    m(Rq;+dqt

    t)

    qk kBp;m ;w;' ;q:

    REFERENCES

    A reu unct ons q orthogon l w th respect to the r own zeros Proc AmerM th Soc 134( 6) 6 5 7

    An rews q Ser es: the r evelopment n n lys s num er theory com ntor cs phys cs n computer lge r BMS Ser es Amer M th Soc Prov enceR 66( 86) 3 4

    3 O Besov On f m ly of funct on sp ces n connect on w th em e ngs n extent ons Tru y M th nst Steklov 60 ( 66) 4 8

    4 M B ohr M n n Zh ng Per o c ty of sc l r yn m c equ ton n ppl c t onto popul t on mo e ls M th An l ppl 330 ( 7)

    5 M Bohr T u son uler typ e oun ry v lue pro lems n qu ntum c lculus ntern t on l ourn l of Appl e M them t cs n St t st cs 9( 7) 3

    6 h ou l k mel n A touh Pos t v ty of q even tr nsl t on n nequ l tyn q our er n lys s PAM nequ l Pure Appl M th 171( 6) 4

    7 sper n M R hm n B s c ypergeometr c ser es ncyclope of m them t csn ts ppl c t ons 35 m r ge un vers ty press

    NON-ACTIVATEDVERSIONwww.avs4you.com

  • 8/2/2019 AADM Template

    18/18

    18 Akr m N M R Belg cem S M

    8 r v gne v s n R M rks ow eterm n st c must re l t me controllere Procee ngs of 5 RS ntern t on l onference on ntell gent Ro ots n

    Systems Al ert Aug 6 ( 5) 3856 386

    A touh n Bouzeour q cos ne our er Tr nsform n q e t qu t on Rm nju n n press

    A touh h ou n l K mel nequ l t es n q our er n lys snequ l Pure Appl M th 171( 6) 4

    A touh M mz n Bouze our The q J Bessel funct on Approx Theory115( ) 4 6

    A touh n A Nemr str ut on An onvolut on Pro uct n u ntum lculus Afr spor M th 7( 8) 3 58

    3 T M lett psch tz sp ces of funct ons on the c rcle n the sc M th An l

    n ppl 39( 7 ) 5 58

    4 T M lett Temp er tures Bessel p otent ls n psch tz sp ces Pro c on onM th Soc 20( 7 ) 74 768

    5 ckson on q e n te ntegr ls u rt Pure Appl M th 41( ) 3 3

    6 A Nemr n B Selm So olev Type Sp ces n u ntum lculus M th An lAppl 359( ) 588 6

    7 A Nemr n B Selm On l eron's ormul n u ntum lculus Su m tte

    8 Peetre New Thoughts on Besov Sp ces uke Un v M th Ser es N ( 76)

    S S ny l Stoch st c yn m c qu t on Ph ssert t on M ssour Un vers ty of Sc ence n Technology ( 8)

    Sheng M g en erson n v s An xplo r t on of om ne yn m c er v t ves on t me Sc les n The r Appl c t ons Nonl ne r An lys s: Re lWorl Appl c t ons 7( 6) 3 5 4 3

    M T leson On the theory of psch tz sp ces of str ut ons on eucl e n n sp ce

    A Torch nsky Re l v r le M etho s n rmon cs An lys s Ac em c P ress( 86)

    3 Tr e el Theory of functon sp ces Monogr phs n M th vol 78 B rkuser erl gB sel ( 83)

    NON-ACTIVATEDVERSIONwww.avs4you.com