ab-initio density functional theory: from quantum dots to solar cell saifful kamaluddin muzakir staf...

67
Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 [email protected] www.facebook.com/Saifful Kamaluddin

Upload: amos-higgins

Post on 18-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Ab-initio Density Functional Theory:from quantum dots to solar cell

Saifful Kamaluddin MuzakirStaf ID: 01009 019 276 3844

[email protected]/Saifful Kamaluddin

Page 2: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Simulation vs animationResult

Fundamental

Input

Calculation

Realistic

Usage

Investigative Technologies Inc.

Unknown Known

Scientific based

Fiction/imaginary

Fundamental parameter

Script/storyboard

Complicated Simple or none

Eq.’s accuracy dependency

Script’s dependency

Predict results

Tellresults

Page 3: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

The advantages of simulation

wet lab

Excited state

Absorption spectroscopy

Ground state

IR spectroscopy

Electron density

Cluster size

Page 4: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Ab initio

Dr. Izan

Experimental data

Crystallographic profile, number

of electrons, neutrons,

protons

OUTPUT Material

properties

1

2

…..

1,000,000

Mathsfunctions & functionals

Page 5: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Function

Vito Volterra “Theory of functionals and of Integral and Integro-Differential Equations” (1930)

OUTPUT y

y = f(x) = 2x+3

“y is a function of x”

Page 6: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Functional

“z is a functional of x”

z =g(x)+h(x)-i(x)

OUTPUT z

i(x)=x+2h(x)=4xg(x)=2x

Page 7: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Density Functional Theory

“Total ground state energy of a system is a functional of electron density”

ΣE= Σ(K.E)+ Σ(P.E)

OUTPUTTotal Ground State Energy

P.En-nP.Ee-eP.Ee-nK.Ee Exc

electron density, ρ ρ ρ ρ

K.En

ρ ρ

Page 8: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

From Schrödinger’s equation to DFT

Hψ= Eψ

H Ψ: Probability amplitude of particle in a state

E: Calculated Eigenvalue /

energy

Mathematical function that describe a system in the form of summation of K.E & P.E

Predicts the evolution behaviour of a dynamic system

Determine by Functional

Determine by Basis set

Page 9: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

DFT evolution

• Early DFT (1970s):• Hψ= Eψ• (ΣE)ψ=(ΣK.E + ΣP.E)ψ

=(K.Enuc + K.Eelec. + P.En-n + P.Ee-n + P.Ee-e)ψ

• Modern DFT (1990s):

(ΣE)ψ=[K.Eelec. + P.Ee-n + P.Ee-e + Exc]ψ

• (ΣE)ψ=[K.Ee(ρ)+ P.Ee-n(ρ) + P.Ee-e(ρ) + Exc(ρ)]ψ

Nucleus is heavy and ~static: K.E= ~0

Nucleus is neutralized:

Page 10: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Basis set & Functional (model)

Basis set:Set of wavefunction,

ψ

Functional:System modeling, H

Shape of each atom’s orbitals (AOs)

Calculations with approximations &

corrections

1. Molecular Orbitals (MOs)

2. Energy (Errol G. Lewars, 2011)

(Warren J. Hehre. Wavefunction Inc. 1996)

Page 11: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Choice of functionalSystem Size

Very big>250,000 atoms

Molecular mechanics

(<250,000 atoms) Big-Small

Qualitative result/ Short on time?

Yes No

Small <12 atoms

RHF

UHFSame orbital

spatial functions for all electrons

Different functions

ions, excited state…

paired e- species

Ab initio: HF

DFT: B3LYP

Semi empirical (G09 W)

PM3 ZINDO Etc..

There other models not listed. Here are the most common

DISCLAIMER: The accuracy of results also heavily depends on the basis set used!

Accu

racy

Incr

ease

sAccu

racy

Incr

ease

s

MORE FUNCTIONAL DETAILS:http://www.gaussian.com/g_tech/g_ur/k_dft.htm

Page 12: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Limitation of basis set

http://www.gaussian.com/g_tech/g_ur/m_basis_sets.htm

CdSe

Page 13: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Basis set choices

Narrow down choices: by limitation

Literature review: Any previous theoretical

work?

Use the same basis set Use all short-listed basis sets

Simulate resultsComparison with previous

experimental work. Any published work?

Realistic molecular/cluster model

Produce own experimental results

YES NO

YES

NO

Page 14: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Basis set accuracy:comparison with experimental data

Dye 1

Ligand-QD

Dye 2

CdSe QD

Literature

List of basis set: http://www.gaussian.com/g_tech/g_ur/m_basis_sets.htm

Page 15: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Application: Quantum dot solar cell

A. Electron injections:Is it POSSIBLE & EFFICIENT?

QDLigand

e-

Wor

king

ele

ctro

deLigand

Ligand

Ligand

Ligand

Ligand

Ligand

Ligand

Quantum dot

TiO2

TiO2

Electrolyte

Coun

ter e

lect

rode

e-

e-

e-

e-

e-

B. Ligand-QD adsorptionIs it POSSIBLE & HOW STRONG?

Page 16: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Series of simulation

Structure optimization

Frequency simulation

Energy calculation

Full population simulation

Size calculation

INPUT Optimization of: Bond length, Angle and Dihedral angle

Positive vibrational frequency: A realistic molecular/cluster model

Energy: Ground state & excited state

Visualization of excited and ground state’s electron density

Size of modeled molecule/cluster

With estimated parameters (to be optimized)

PROCESSES RESULTS

Page 17: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input preparations

• Input:– Molecules (i.e., ligand molecules)– Quasi-Crystals (Quantum dots semiconductor)

• Drawing Tools:– ChemDraw– Chem3D– Gaussview

• Ab initio DFT Tool: Gaussian 09W

Page 18: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input: Ligand molecule

What is a molecule?A group of atoms bonded together, representing the smallest

fundamental unit of a chemical compound that can take part in a chemical reaction

A single molecule can represents a system consists of ten/hundreds/thousands/millions/billions of

them

Merriam-Webster Dictionary

Page 19: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 1: Draw molecule

OHHO

OO

HS

OHHO

OO

HS

Select All, Grab & Drag to

Draw using Chemdraw

Chemdraw 3D & release

Save As *.mol2

Molecule

Page 20: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 2: Labeling molecule

Open *.mol2 file using Gaussview 5.0

1. Right click2. Select “View”

Molecule

Page 21: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 3: Rearrange numbers

• Click “edit” – “Atom list”• A new interface appears: showing labels.

Rearrange the numbers in a nice flow.

Before & After

Computer generated Z-Matrix:Pro: Can be straight away use as simulation input.Con: Tested & may cause longer simulation time.Solution: Spend time building our own Z-Matrix

Molecule

Page 22: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 4: Building z-matrix• Define all atoms using:

– Bond length– Angle– Dihedral angle

• 1H need no definition: starts from here• 2O is connected to 1H by A BOND• 3C is connected to 2O by A BOND is bent from 1H by AN ANGLE• 4O is connected to 3C by A BOND is bent from 2O by AN ANGLE is twisted from 1H by a DIHEDRAL ANGLE• 5C is…next slide

Molecule

Page 23: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 5: Defining bond, angle & dihedral angle

• 5C is connected to by a bond is bent from by an angle is twisted from by a dihedral angle

?

?

?

3C

2O

1H

3C

1H

5C

2O

3C

1H

2O5C

3C5C

1H

2O

Molecule

Page 24: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 6: Z-matrix, the format1H 2O is connected to 1H by A BOND3C is connected to 2O by A BOND is bent from 1H by AN ANGLE4O is connected to 3C by A BOND is bent from 2O by AN ANGLE is twisted from 1H by a DIHEDRAL ANGLE

HO 1 B1C 2 B2 1 A1O 3 B3 2 A2 1 D1

A description of an atom must be:1. In 1 LINE2. Each line is meant for 1 atom’s description ONLY3. May use any symbol for bond, angle and dihedral4. B1, B2, A1…D1….must be stated as simulation parameters and the value will be

optimized OR as CONSTANTi. stated in DECIMAL POINT as INDICATION of CONSTANT, i.e., 1.546

ii. stated in the form of 1. ONLY as INDICATION of TO BE OPTIMIZED (Will show the full format later)

Molecule

Page 25: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 7: Estimating bond length

HO 1 B1C 2 B2 1 A1C 3 B3 2 A2 1 D1

If we want to:(a) Make it as constant, change B1 with “0.96” in the Z-Matrix(b) Optimize the value, write “B1=1.”

Molecule

Page 26: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 8: Estimating angle

HO 1 B1C 2 B2 1 A1C 3 B3 2 A2 1 D1

B2=1.43A1=109.47122

Molecule

Page 27: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 9: Estimating dihedral angle

HO 1 B1C 2 B2 1 A1C 3 B3 2 A2 1 D1

B3=1.2584A2=120.0

D1=30.0

Molecule

Page 28: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 10: Full Z-Matrix

• TEST the z-matrix:– Open Gaussian 09W– Click “File” & “New”– Key in %section,route section and title as indicated– Copy & Paste the Z-matrix in the “Molecule Specification” field– Save Job As….(any name)– Open the file using Gaussview 5.0– If the Z-Matrix is CORRECT, it will show the same molecule

model as the reference

FULL Z-MATRIX

Molecule

Page 29: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input: DoneBuild

reference molecule

Build Z-matrix

YES

Is the model similar to the reference molecule?

ERROR/NO

ChemdrawGaussview

GaussviewWord

processing

GaussianZ-matrix testing

RUN the simulation on

Gaussian

Rearrange labelsWrite down z-matrix

From 2D to 3DBuilding z-matrix

REFINE THE MODEL:Check Z-matrix andGaussian setting

WHICH PROCESS?

Key in setting, z-matrix & save the MODEL

Molecule

Page 30: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Series of simulation

Structure optimization

Frequency simulation

Energy calculation

Full population simulation

Size calculation

INPUT Optimization of: Bond length, Angle and Dihedral angle

Positive vibrational frequency: A realistic molecular/cluster model

Energy: Ground state & excited state

Visualization of excited and ground state’s electron density

Size of modeled molecule/cluster

With estimated parameters (to be optimized)

PROCESSES RESULTS

Molecule

Page 31: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

%Section fieldMolecule

Page 32: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

%Section field

• The directory to save “.chk” file (a file that records all calculations, achievable at any simulation process by using “check” command in “Route Section”):%chk= C:\g09w\PbTe.chk

• Stating the amount of memory usage in MW (megawords). 1 MW=3.81 MBytes%mem=200MW

Molecule

Page 33: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Route Section fieldMolecule

Page 34: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Route Section 1: Geometry opt.

• Stating the command line of simulation:

• # opt b3lyp/lanl2dz direct optcyc=100

Functional Basis set

Geometry optimization command

Max number of optimization

No calculation storage required (faster process)

Job initiation

Molecule

Page 35: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Route Section 2: Frequency

• Stating the command line of simulation:

• #n b3lyp/lanl2dz direct freq geom=check guess=check

Frequency command Retrieve molecular orbitals data from

“.chk” file (previous geometry opt.)

Default:Normal print level of output

Retrieve internal coordinate from “.chk” file (previous geometry opt.)

Molecule

Without “geom=check” and “guess=check” command:Have to state “Optimized Z-matrix” in the “Molecule Spec” field

Page 36: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Route Section 3: Energy

• Stating the command line of simulation:

#n b3lyp/lanl2dz direct TD (direct, singlet, root=1, Nstates=50)geom=check guess=check

Singlet excited state Number of each type of state to be solved. Default=3

Time dependent

State of interest. Default is 1 (first excited state)

Molecule

Page 37: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Route Section 4: Full population

• Stating the command line of simulation:

#n b3lyp/lanl2dz pop=full geom=check guess=check

Molecular orbitals visualization, total atomic charge and orbital energies

Molecule

Page 38: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Route Section 5: Cluster size estimation

• Stating the command line of simulation:

#p b3lyp/lanl2dz scrf=pcm geom=check

• Choices of solvent (to be specified in command line): http://www.gaussian.com/g_tech/g_ur/k_scrf.htm

Additional output (execution timing, messages etc)

Use with energy, geometry opt, freq calc to model systems in solution

Calculate volume & surface area of cluster in solution. Default: Water

Molecule

Page 39: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Charge & MultiplicityMolecule

Page 40: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Charge & multiplicity

• Charge: total charge of the molecule OR cluster = 0

NUMBER CHARGE TOTALC 4 4 16O 4 -2 -8H 6 -1 -6S 1 -2 -2

TOTAL CHARGE 0

Molecule

Page 41: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Charge & multiplicity

• Multiplicity/spin multiplicity: describes how the electrons of the system exist

• 2S+1=spin multiplicity, where S is total spin quantum number

• S=n(1/2) where n=unpaired electron

OO

OO

S

H H

H

H

HH

Inorganic ChemistryJ.E. House, Academic Press 2008

mercaptosuccinic acid molecule

Molecule

Page 42: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

The rough model: mercaptosuccinic acid

H

H

H

H

H

H

O O

OO C C

CCS

Element Config. Valence e-

H 1 1

C 2.4 4

O 2.6 6

S 2.8.6 6

O O

OO

SHH

HH

HH

C

CC

C

UNPAIRED ELECTRON, n=0Spin multiplicity, 2S+1=2(n(1/2))+1=2(0)+1=1

Molecule

Page 43: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Running the simulation

1. Click RUN2. Pop up

message: specifying output directory

Molecule

Specify *.chk directory & memory

Command line

Your desired title

Molecule/cluster charge & spin multiplicity

Molecule/cluster’s Z-Matrix

Page 44: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Extracting result:Structure optimization

Optimization complete

Input for NEXT SIMULATION

Double click the output

Open in Gaussview

Save as Gaussian Input Files (.gjf)

Frequency simulation

Energy calculation

Full population simulation

Size calculation

Work doesn’t kill,But worry does

-unknown post graduate student

Molecule

Page 45: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input for Frequency, Energy, Full Population & Size

1. Open Gaussian2. Click File3. Click Open4. Select the saved

“Structure optimization output” which saved as .gjf

5. A new interface appears (as shown)

6. Change “Route Section” to frequency/energy/full population/size command

7. Leave “Molecule Specification” blank

8. Click RUN9. Specify output directory

Molecule

Page 46: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Analyzing result:Frequency simulation

Completed Freq. simulation

Double click the output

Open in Gaussview

REALISTIC MOLECULAR MODEL:Positive frequencies

Molecule

Page 47: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Analyzing result:Energy simulation

Completed Energy calculation

Double click the output

Open in Gaussview

Absorption curve Oscillator strength

Molecule

Page 48: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Analyzing result:Full Population

Completed Full Population

Double click the output

Open in Gaussview

Excited state energy, LUMO=-0.14320 H x 26.211=-3.753 eVGround state energy, HOMO: -0.26601 H x 26.211=-6.972 eV

LUMO

HOMO

Molecule

Page 49: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Analyzing result:Molecule size

Completed Size calculation

Double click the output

Open in GaussviewSurface area (sphere)= 4πr2

197.708 Å2 = 12.568 r2

r = 3.966 Åd = 7.932 Å

Molecule

Page 50: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input: QD semiconductor

• BULK semiconductor:– Crystal– Bond length, angle and dihedral angle are constant

• QUANTUM DOT semiconductor:– Quasi-crystal– Bond length, angle & dihedral angle

change due to surface relaxations– FULL OPTIMIZATION (bond length, angle & dihedral)

Crystal

Puzder et al Phys. Rev. Lett. 92, 217401 (2004) Self-Healing of CdSe Nanocrystals: First-Principles Calculations

Page 51: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 1: Download CIF

• Download (example: CdSe) CIF file from: www.crystallography.net

• Based on the CIF, build our own cluster

Crystal

Page 52: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 2: Open PBC Crystal

Page 53: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 3: Make bigger clusterCrystal

Page 54: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 4: Making smallest meaningful cluster

Crystal

Jose et. al J. Am. Chem. Soc. 2006, 128, 629-636

SaveClick “Results”

Click “View Files”Delete “TV”

SaveClose & open again

(CdSe)3

Page 55: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Spin multiplicity

• Singlet State: 2S+1=1– 2(nx1/2)+1=1– n=0 (no unpaired electrons/all electrons are paired)– No resultant magnetic moment– Magnetic moment produced by electron spin +1/2 and

-1/2 cancel out each other– The materials becomes diamagnetic– Produce slight magnetic field opposing external

magnetic field– Bulk CdSe is a diamagnetic material

Crystal

Neeleshwar et. al. Physical Review B, 2005

Page 56: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Spin multiplicityState 2S+1 S=nx1/2 n

Doublet 2 ½ 1

Triplet 3 1 2

Quadruplet 4 3 ½ 3

Pentuplet… 5… 2… 4…

Material properties: Paramagnetic, Ferromagnetic, Antiferromagnetic, FerrimagneticBACK TO LITERATURE REVIEW

Crystal

Page 57: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Input Step 5: Z-Matrix Preparation & Start

Crystal

SIZE 1 cluster

Rearrange labels

Z-matrix constructions

Z-matrix testing

GEOMETRY optimization

SIZE 2 cluster SIZE n cluster

FREQUENCYsimulation FULL POP SIZE

calculation

HOW can we say our cluster is a REALISTIC cluster model?

NOT OK

OK

ENERGYcalculations

FREQUENCYsimulation

SIZEcalculation

ENERGYcalculations

POSITIVE

COMPARE with experimental work

Calculated sizeAbsorption

Page 58: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Analysis: A realistic cluster model

R. Jose et.al. J. Am. Chem. Soc. 2006

Crystal

Experiment Simulation

Size Matching

Absorption is structure correlated

Realistic Cluster Model?

NOYES

Meaningful simulated results

1st excitonic peak-oscillator strength

comparison

Page 59: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

QD+Ligand model:Reference model preparation

CrystalMolecule

OPTIMIZATION PARAMETER:1. The bond between QD and Ligand2. The angle & dihedral angle in ligand

1. Open Ligand & QD model in Gaussview2. Copy Ligand model3. Left click on the QD model to add ligand model4. Adjustment of position needed5. Link “H” in –SH functional group to Cd atom of

QD using: (from literature)6. Save reference model

Page 60: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

QD+Ligand model:z-matrix preparations

1. Change ligand’s Z-matrix numbering by adding 26 to the current reference number

2. Ligand’s atom number 1 will be = 1+26=27

3. 2 will be 2+26=28…so on & so forth

This Se is the 26th defined atom

QD’s Z-matrix: With pre-optimized bond length, angle & dihedral angle

Ligand’s Z-matrix: With fixed bond length. Angle & dihedral angle are to be optimized

CrystalMolecule

Page 61: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

QD+Ligand model:The new Z-matrix

QD

Ligand

REDEFINE THE FIRST THREE ATOM OF LIGAND’S MOLECULE

H, 8, X1, 14, Y1, 20, Z1S, 27, 1.31, 8, Y2, 6, Z2C, 28, 1.78, 27, Y3, 8, Z3

X1=3.Y1=86.Y2=147.Y3=109.Z1=-113.Z2=-173.Z3=92.

FINALIZED Z-MATRIX

CrystalMolecule

Page 62: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Result analyses: Magic size cluster

• Determination of electronically stable QD structure for synthesis. (1.5nm in CdSe):– Largest quantities with identical properties– Efficient electron injections

SC

WHICH ONE OF THESE CLUSTERS, ELECTRONICALLY STABLE?R. Jose et al & Saifful et al

(CdSe)6 (CdSe)13 (CdSe)16

Page 63: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Result analyses: LUMOQD-LUMOligand comparison

SC

QDLigand

e-

LUMO=-3.897 eVLUMO=-4.188 eV

HOMO=-6.529 eVHOMO = -7.238 eV

ELECTRON INJECTIONS:

INEFFICIENT

Page 64: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Result analyses:Electron injection efficiency

SC

Electron population at ligand

Electron populations at QDELECTRON INJECTIONS:

INEFFICIENT

Page 65: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Result analyses:QD-Ligand adsorption & strength

SC

QDLigand

Energy: X Energy: Y

QDLigand

Energy: ZAdsorption Energy Ead=Z-(X+Y)

B3LYP/LANLDZ B3LYP/LANLDZ

B3LYP/LANLDZ

EXOTHERMIC

ENDOTHERMIC

Ead=+ΔH=Ereleased – Eused=NEGATIVEEnergy released (bond making) > Energy used (bond breaking)

ΔH=Ereleased – Eused=POSITIVEEnergy released (bond making) <Energy used (bond breaking)

Physisorption Chemisorption

<0.4 eV >0.4 eV

Ead=-

Page 66: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

Result analyses:Adsorption: Basis Set Superposition Errors

SC

QDLigand

Energy: X

QDLigand

Energy: ZAdsorption Energy Ead=(Z+ΔBSSE)-(X+Y)

B3LYP/LANLDZ B3LYP/LANLDZ

B3LYP/LANLDZ

Zhanpeisov et. al. J. Am. Chem. Soc. 2004

Will not be covered, for the time being

Page 67: Ab-initio Density Functional Theory: from quantum dots to solar cell Saifful Kamaluddin Muzakir Staf ID: 01009 019 276 3844 skmuzakir@yahoo.com

DFT Kick Start(David S. Sholl et. al.2009)