ab initio path integrals and applications of aimd to ... · new york university, 100 washington sq....

52
Ab initio path integrals and applications of AIMD to problems of aqueous ion solvation and transport Mark E. Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Sciences New York University, 100 Washington Sq. East New York, NY 10003

Upload: others

Post on 24-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Ab initio path integrals and applications of AIMD to problems of aqueous ion

solvation and transport

Mark E. Tuckerman

Dept. of Chemistry

and Courant Institute of Mathematical Sciences

New York University, 100 Washington Sq. East

New York, NY 10003

Page 2: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Illustration of hydride transfer in dihydrofolate reductaseFrom Agarwal, Billeter, Hammes-Schiffer, J. Phys. Chem. B (2002).

Nuclear quantum effects critical for describing this reaction!

Page 3: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

ˆ /( ) (0)iHtt e

ˆ /( ) (0)iHtx t x e

ˆ /( ) ' ' ' (0)iHtx t dx x e x x

ˆ /( , ) ' ' ( ',0)iHtx t dx x e x x

ˆ /( , '; ) 'iHtU x x t x e x

Time-dependent quantum mechanics

Real-time quantum propagator:

ˆ ˆ( ) ( )O t O t

Expectation value:

ˆ ( ) ( )H t i tt

Page 4: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Electron

source

x

1 2( ) ( ) ( )A x A x A x

1

2

2 2 2

1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) cos ( ) ( )P x A x A x A x A x A x A x x x 1 2 3 4( ) ( ) ( ) ( ) ( )A x A x A x A x A x

Heuristic Derivation of the Path Integral

Page 5: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Electron

source

x

Heuristic Derivation of the Path Integral

( ) ( )ii

A x A x

Page 6: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Electron

source

x

Heuristic Derivation of the Path Integral

( ) ( )ii

A x A x

x0

( )x t

0( ; ) [ ( )]A x x A x t0 pathpaths

( ; ) [ ( )]A x x A x t

Page 7: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

2ˆ ˆ ˆ ˆ ˆˆ( ) , 02

pH V x T V T V

m

ˆ ˆ ˆ( )Tr H T VZ e dx x e x

ˆ ˆ ˆ ˆ( ) / /limP

T V V P T P

Pe e e

ˆ ˆ/ /lim P

V P T P

PZ dx x e e x

Derivation of the path integral

Hamiltonian:

Trotter Theorem:

Page 8: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

ˆ ˆ/ /

1 1 1lim P

V P T P

PZ dx x e e x

1 1 1ˆlim P

PZ dx x x

1 1 1

factors

ˆ ˆ ˆ ˆlim P

P

Z dx x x

1 2 3 1 2 2 3 3 1ˆ ˆ ˆ ˆlim P P P

PZ dx dx dx dx x x x x x x x x

1 11 2 3 1

1

ˆlim P

P

P i i x xPi

Z dx dx dx dx x x

I dx x x

Derivation of the path integral (cont’d)

Coordinate-space completeness relation:

Page 9: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

ˆ ˆ/ /

1 1 T P T P

i i i ix e x dp x p p e x

2 /2

1

p mP

i idp x p p x e

2

1( )/ /21

2i iip x x p mPdp e e

2 2

1

1/2

/2

22i imP x xmP

e

ˆ ˆ/ /

1 1ˆ V P T P

i i i ix x x e e x

ˆ ( )//

1iV x PT P

i ix e x e

Derivation of the path integral (cont’d)

Matrix elements of Ω

Page 10: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

1 1

/2

2

1 12 21

lim exp ( )2 2

P

PP

P i i iP

ix x

mP mPZ dx dx x x V x

P

2 2

1

1/2

/2 ( )/

1 2ˆ

2i i imP x x V x P

i i

mPx x e e

2

12

1 1

1/2

( )/21 2 3 2

1

lim 2

i ii

P

mPP x xV x P

PP

ix x

mPZ dx dx dx dx e e

Derivation of the path integral (cont’d)

Reassemble:

Discrete path integral for the canonical partition function:

Page 11: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

. . .

...

...

.

.

...

Classical Isomorphism

1 2

3P

P-1( )V x

Chandler and Wolyner, J. Chem. Phys. 74, 4078 (1981)

Interaction between two

cyclic polymer chains

“Classical” cyclic polymer

chain in an potential V(x)

Page 12: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Ab initio path integrals

Partition function for N particles on ground-state surface (Path-integral BO approximation):

. ... . . .......

1

2

3

P-1

P

MET, et al. JCP 99, 2796 (1993); Marx and Parrinello, JCP 104, 4077 (1996); MET, et al. JCP 104, 5579 (1996)

3 /2

2

, 1 , 0 1, ,2 21 11

lim exp ,...,2 2

PN P N

NPI II k I k k N k

Pk II

M P M PZ d E

P

R R R R R

Trace condition:, 1 ,1I P I R R

Page 13: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

MET and D. Marx, Phys. Rev. Lett. 86, 4946 (2001)

c

Page 14: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Proton transfer in malonaldehydeMET and D. Marx, Phys. Rev. Lett. 86, 4946 (2001)

Classical

Page 15: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Proton transfer in malonaldehydeMET and D. Marx, Phys. Rev. Lett. 86, 4946 (2001)

Quantum

Page 16: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase
Page 17: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase
Page 18: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase
Page 19: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase
Page 20: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

1d 2d

1 2d d Reaction coordinate:

Page 21: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Path integral molecular dynamics

• Path integrals can be evaluated via Monte Carlo or molecular

dynamics.

• Molecular dynamics offers certain advantages in terms of

parallelization since in each step, the entire system is moved.

• Ab initio path integrals (path integrals with potential energies and

forces derived “on the fly” from electronic structure calculations are

considerably more efficient with molecular dynamics.

• Naïve molecular dynamics suffers from severe sampling problems,

so how to we create a molecular dynamics approach that is as

efficient as Monte Carlo?

Page 22: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Time scales in path integral molecular dynamics

Write the partition function as follows:

P

P

1 1

222

11

1 1( )

2 2P

Pi

P i i ii i x x

pm x x V x

m P

H

Naïve choice of Hamiltonian for molecular dynamics

1 1

222

11

1 1exp ( )

2 2P

PP P i

P i i ii i

x x

pZ d pd x m x x V x

m P

Page 23: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Problems with naïve approach

• As the system becomes more quantum, P → ∞ and ωP → ∞.

However, potential is attenuated by a factor of 1/P , and harmonic

term dominates. System will stay close to closed orbits and not

sample configuration space.

• Harmonic term has a spectrum of frequencies. Highest frequency

determines the time step, which means slow, large-scale chain

motions and breathing modes will not be sampled efficiently.

• Need to sample the canonical distribution, so, at the very least, the

system needs to be coupled to a thermostat.

Page 24: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Path integral molecular dynamics

Martyna, Tuckerman, Berne JCP 99, 2796 (1993)

The path integral is just a bunch of integrals, so we can just change variables.

Introduce a linear transformation:

k kl ll

u T x

whose effect is to diagonalize the harmonic nearest-neighbor coupling:

22 2 2

11 1

P P

P k k k M kk k

m x x m u

• Ensure all modes move on same time scale by choosing: 1 k km m m m

• Couple each degree of freedom to a heat bath (Langevin, Nosé-Hoover chains,….)

Page 25: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Transformations

1 11 1

( 1) k

k k

k x xu x u x

k

Staging:

1 0 1

k

km m m

k

Normal Modes:

1

2 ( 1)( 1)exp

P

k ll

i k lx a

P

1 11

( 2)/2 2 2 2 1

1 2 1 2 2

1

Re Im

2 ( 1)0 2 1 cos

P

kk

P P k k k k

k k k k

u a xP

u a u a u a

km m m P

P

Page 26: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Results for harmonic oscillator2

2 21

2 2

15.8 0.03 400

pH m x

m

mP

No transformations

PIMD (staging)

PIMC (staging)

Page 27: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

1806:

Page 28: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

PEM vs. AAEM fuel cells

(AAEM=Alkali-anion exchange membrane)

From Varcoe and Slade,

Fuel Cells 5, 198 (2005)

Page 29: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Structures of the excess proton in water

Page 30: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Structures of the excess proton in water

H9O4+

H5O2+

H3O+

Page 31: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

+ + +

Grotthuss Mechanism (1806)

Vehicle Mechanism

Page 32: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

DFT (BLYP) proton diffusion constants

D(H3O+) = 7.2 x 10-9 m2/s complete DVR basis

[Berkelbach, Lee, Tuckerman (in preparation)]

D(H3O+) = 6.7 x 10-9 m2/s

(Exp: Halle and Karlström, JCSFT II 70, 1031

(1983))

Complete DVR basis set:

System specifics: 31 H2O + 1 H3O+ in a 10 Å periodic box

60 ps simulation

DVR grid size = 753

Troullier-Martins pseudopotentials

Page 33: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase
Page 34: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

The Grotthuss mechanism in waterMET, et al,JPC, 99, 5749 (1995); JCP 103, 150 (1995)

D. Marx, MET, J. Hutter, M. Parrinello, Nature 397, 601 (1999).

N. Agmon, Chem. Phys. Lett. 244, 456 (1995)

T. J. F. Day, et al. J. Am. Chem. Soc. 122, 12027 (2000)

Solvent coordinate view:

P. M. Kiefer, J. T. Hynes

J. Phys. Chem. A 108, 11793 (2004)

Page 35: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

The Grotthuss mechanism in water

Second solvation shell H-bond breaking followed

by formation of intermediate Zundel complex:

P

Presolvation Concept:

Proton-receiving species must be

“pre-solvated” like the species into

which it will be transformed in the

proton-transfer reaction.

MET, et al ,Nature 417, 925 (2002)

Page 36: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

The Grotthuss mechanism in water

Computed transfer timeτ = 1.5 ps

NMR: 1.3 ps

Transfer of proton resulting in “diffusion’’ of

solvation structure:

A. Chandra, MET, D. Marx

Phys. Rev. Lett. 99, 145901 (2007)

Page 37: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Probability distribution functions

Quantum Classical(P=8 Trotter points)

Page 38: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase
Page 39: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Quantum delocalization of structural defect

D. Marx, MET, J. Hutter and M. Parrinello Nature 397, 601 (1999)

Page 40: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

“Proton hole” mechanism of hydroxide mobility

N. Agmon, Chem. Phys. Lett. 319, 247 (2000)

OH-

H+

Page 41: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Spectra of 14 M KOH

IR

Raman

Librovich and Maiorov, Russian J. Phys. Chem. 56, 624 (1982)

Page 42: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Identified in neutron scattering of concentrated NaOH and KOH solutions:

A. K. Soper and coworkers, JCP 120, 10154 (2004); JCP122, 194509 (2005).

Also in other CPMD studies: B. Chen, et al. JPCB 106, 8009 (2002); JACS 124, 8534 (2002).

And in X-ray absorption spectroscopy: C. D. Cappa, et al. J. Phys. Chem. A 111, 4776 (2007)

System specifics:

31 H2O + 1 OH- in 10 Å periodic box

Plane-wave basis, 70 Ry cutoff

Simulation time: 60 ps

BLYP functional, Troullier-Martins PPs

Page 43: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Weak H-bond donated by hydroxide also identified in neutron scattering of concentrated NaOH and KOH solutions:

A. K. Soper and coworkers, JCP 120, 10154 (2004); JCP122, 194509 (2005).

M. Smiechowski and J. Stangret, JPCA 111, 2889 (2007).

T. Megyes, et al. JCP 128, 044501 (2008).

B. Winter, et al. Nature (2008)

Page 44: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Hydronium:

Page 45: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Water:

Page 46: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Hydroxide:

Page 47: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

d1 d2 = d1 - d2

> 0.5 Å < 0.1 Å

O*

H’

O*H/O*O

H’O

MET, D. Marx, M. Parrinello

Nature 417, 925 (2002)

(P=8 Trotter points)

Page 48: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase
Page 49: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

90o

105o

Geometry of relevant solvation complexes

H 9O5-

H7O4-

Page 50: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

θ

MET, et al. Science 275, 817 (1997)

Classical Quantum

Page 51: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase
Page 52: Ab initio path integrals and applications of AIMD to ... · New York University, 100 Washington Sq. East New York, NY 10003. Illustration of hydride transfer in dihydrofolate reductase

Selected References

1. M. E. Tuckerman, et al. J. Chem. Phys. 103, 150 (1995); J. Phys. Chem. 99, 5749 (1995)

2. N. Agmon, Chem. Phys. Lett. 244, 456 (1995).

3. M. E. Tuckerman, et al. J. Chem. Phys. 99, 2796 (1993)

4. D. Marx and M. Parrinello, Z. Phys. B 95, 143 (1994)

5. D. Marx and M. Parrinello, J. Chem. Phys. 104, 4077 (1996)

6. M. E. Tuckerman, et al. J. Chem. Phys. 104, 5579 (1996)

7. D. Marx, et al. Nature 367, 601 (1999)

8. N. Agmon, Chem. Phys. Lett. 319, 247 (2000).

9. M. E. Tuckerman, et al. Nature 417, 925 (2002)

10. M. E. Tuckerman, et al. Acc. Chem. Res. 39, 151 (2006)

11. A. Chandra, et al. Phys. Rev. Lett. 99, 145901 (2007)

12. A. K. Soper, et al., J. Chem. Phys. 120, 10154 (2004); J. Chem. Phys. 122, 194509 (2005)

13. M. Smiechowski and J. Stangret, J. Phys. Chem. A 111, 2889 (2007).

14. C. D. Cappa, et al. J. Phys. Chem. A 111, 4776 (2007)

15. T. Megyes, et al. J. Chem. Phys. 128, 044501 (2008).

16. E. F. Aziz, et al. Nature, 455 89 (2008).