ab initio spin-orbit coupling in spectroscopy and...

43
Department of Chemistry - Washington State University 01/02 WSU-PChem William R. Wiley Environmental Molecular Sciences Laboratory Kirk A. Peterson Department of Chemistry, Washington State University and the Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland, WA Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamics 1.5 2.0 2.5 3.0 3.5 4.0 3 4 5 6 7 8 X 1 Σ + 2 1 Σ + B 3 Π 2 3 Π 1 3 Σ Energy (eV) R (a.u.) AC1 AC2

Upload: others

Post on 23-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Kirk A. PetersonDepartment of Chemistry, Washington State Universityand the Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichland, WA

Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamics

1.5

2.0

2.5

3.0

3.5

4.0

3 4 5 6 7 8

X1Σ+

21Σ+

B3Π

23Π

13Σ–

Ener

gy (

eV)

R (a.u.)

AC1 AC2

Page 2: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Outline of Talk

• Methods of computing spin-orbit effects

• Basis sets and electron correlation

All-electron benchmark calculations: Atoms and light diatomics

Effective 1-electron operators: Pseudopotentials vs. all-electron

• Applications

BrO : low-lying electronic states: predissociation of A2Π3/2

HOBr: Singlet-triplet interactions in the UV/Vis absorption spectrum

BrCl: preliminary results for the B3Π(0+) ← X1Σ+ system

Page 3: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Spin-Orbit Coupling: It’s Not Just for Heavy Atoms

• Predissociation of excited electronic states by states of different spin multiplicity

• Intersystem crossing and phosphorescence of excited triplet states in organic molecules

• Altering the shape of potential energy surfaces in exit and/or entrance channels

• Fine structure in high resolution spectroscopy

• Altering ground state chemical reactions by inducing transitions between different potential energy surfaces

• Thermochemistry to within “chemical accuracy”

Page 4: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Options for Computing Spin-orbit Effects ab Initio

• 4-component methods based on the Dirac equation

– computationally very expensive; few programs available

• 2-component spin-orbit schemes

– incorporates SO effects into the orbitals

– requires significant work to implement into standard ab initio codes

• Perturbation treatments

– include SO when setting up the CI matrix

– calculate SO matrix elements between small number of spin-free states

operators:

1- and 2-electron Breit-Pauli; Douglas-Kroll-Hess; effective 1-electron

Page 5: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

HSO = A L . S^

A B

J→

L→ S

R→

Λ Σ

Ω

Angular momenta in a diatomic molecule

J (total) = L (orbital) + S (spin) + R (rotational)

Page 6: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Operators Used in the Present Work

HSO

Z

ri i i

i rij i i j

i ji ij

= ×( ) ⋅

∑ − ×( ) ⋅ +( )

∑≠

12

2 12

2 13 3

2α αλ

λλ

λr p s r p s s

1) The Breit-Pauli spin-orbit operator

123 1231-electron

Zλ is the actual nuclear charge2-electron

spin-same-orbit &spin-other-orbit

2) Effective 1-electron operator via quasi-relativistic pseudopotentials

Contains the difference between 2-component relativistic pseudopotentials

* Includes scalar relativistic & some 2-electron effects

HV r

lP i P iSO

l il i i l

l

L

i=

+∑

∑− 2

2 1

1 ∆ λλ λ

λλ

λ

( )( ) ( )l s

Page 7: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Calculation of Spin-Orbit Coupled Eigenstates

Diagonalize Hel + HSO in a basis of spin-free (Λ-S) eigenfunctions

use a basis of the lowest 5 valence states: X1A’, 21A’, 11A”, 13A’, 13A”(labeled by S and Ms)

Example: HOBr

Page 8: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

J

J

JJ

H

HH

H

B

BB

B

F

FF

F

SCF 2p +2s +1s385

390

395

400

405

J

J

J

JJ J

H

H

H

HH H

B

B

B

B

B B

F

F

F

F

F F

SCF

3p

+3s

+2p

+2s

+1s

780

800

820

840

860

880

900

J

J

J

J

JJ

J J J

H

H

H

H

HH

H H H

B

B

B

B

BB

B B B

F

F

F

F

FF

F F F

SCF

4p

+4s

+3d

+3p

+3s

+2p

+2s

+1s

3100

3200

3300

3400

3500

3600

3700

cc-pCVDZ

cc-pCVTZ

cc-pCVQZ

cc-pCV5ZExpt

The all-electron Breit-Pauli operator: Basis Set and Electron Correlation Effects for the Spin-Orbit Splittings of F, Cl, Br

Splittings in cm-1 , CISD wavefunctions

F Cl Br

SCF

+2p

+2s

+3s

3p

+1s

+3p

+3d

+4s

4p

+2p

+2s

+3s

+1s

SCF

Page 9: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

180

200

220

240

CASSCF Valence Val+2p

Basis Set and Electron Correlation Effects for the Spin-Orbit Splittings of Small (Light) Molecules

cc-pCVDZ

cc-pCVDZ

cc-pCVTZ

cc-pCVTZ

cc-pCVQZ

cc-pCVQZExpt’l

Expt’l

X2Πr NS X2Π i ClO

(Splittings in cm-1)

Effects ofValence-state Spin-Orbit CI:

240

260

280

300

320

340

CASSCF Valence Val+2p

+0.01 cm-1 +10.4 cm-1

Page 10: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

500

600

700

800

900

1000

CASSCF Valence +3d +2p3s3p3d

All-electron Breit-Pauli vs. pseudopotentials: The X ΠΠΠΠ state of BrO2Sp

littin

g (c

m-1)

Expt’l

cc-pCVDZ

cc-pCVTZ

cc-pCVQZ

Effects ofValence-state + 60–70 cm-1Spin-Orbit CI:

Atomic Br(2P) results:

“best” all-electron*: 3583 cm-1

Rel. Pseudopotential: 3670 cm-1

Expt’l: 3685 cm-1

* cc-pCV5Z, all electrons corr.

1-e- pseudopotential results (cc-pVnZ)

Page 11: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Bromine Monoxide: low-lying valence electronic states

Previous Experimental Work:

(i) Numerous high-res. studies on the X2Π3/2 state (JPL, NOAA, Ottawa)

→ equil. geom., IR freq., SO splitting, etc.

(ii) near-UV region dominated by the A2Π3/2 ← X2Π3/2 transition

emission, absorption → UV cross sections for atmospheric monitoring

• with high res.: Barnett et al. (Ottawa), Wheeler et al. (Bristol), and

Wilmouth et al. (Harvard)

Previous Theoretical Work:

Nothing on the excited states of BrO. Recent calculations on ClO by

Orr-Ewing and co-workers (Bristol) and Toniolo et al (Milan).

( >50% of all stratospheric bromine is in the form of BrO )

Page 12: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Valence States of BrO

12

31

23

Λ-S State Ω = |Λ+Σ|

2 x 2Σ- 1/2

1 x 2Σ+ 1/22 x 2Π 3/2, 1/2

Br(2Pu) + O(3Pg) 1 x 2∆ 5/2, 3/22 x 4Σ- 3/2, 1/21 x 4Σ+ 3/2, 1/22 x 4Π 5/2, 3/2, 1/2, 1/21 x 4∆ 7/2, 5/2, 3/2, 1/2

(27 total)1 x 2Σ- 1/2

2 x 2Σ+ 1/2Br(2Pu) + O(1Dg) 3 x 2Π 3/2, 1/2

2 x 2∆ 5/2, 3/21 x 2Φ 7/2, 5/2

(42 total)

Page 13: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

2.5 3 3.5 4 4.5 5 5.5 6 6.5

The Doublet States (ΛΛΛΛ-S) of BrO

(obtained via MRCI+Q/aug-cc-pVQZ calculations)

X2Π

A2Π

32Π 42Π

12∆

22∆

12Σ–

22Σ –

12Σ+

22Σ+

Br(2P) + O(3P)

Br(2P) + O(1D)

Ener

gy (

eV)

R (a.u.)

Page 14: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

+ Quartet States

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

2.5 3 3.5 4 4.5 5 5.5 6 6.5

14Σ–

24Σ–14Π 24Π

4∆ 4Σ+

Page 15: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

2.5 3 3.5 4 4.5 5 5.5 6

ΩΩΩΩ=1/2 States [ Case (c) coupling throughout ]

Br(2P) + O(3P)

Br(2P) + O(1D)

X2Π

a4Σ–

A2Π

Ener

gy (

eV)

R (a.u.)

Page 16: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

ΩΩΩΩ=3/2 States [ Case (c) coupling throughout ]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

2.5 3 3.5 4 4.5 5 5.5 6

Br(2P) + O(3P)

Br(2P) + O(1D)

X2Π

a4Σ–

A2Π

Ener

gy (

eV)

R (a.u.)

Page 17: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Spectroscopic Constants of the X ΠΠΠΠ3/2 and A ΠΠΠΠ3/2 states2 2

Te re ωe ωexe(eV) (Å) (cm-1) (cm-1)

X2Π 0 1.726 729 4.9

X2Π3/2 0 1.724 734 4.9(1.717) (733)

∆(1/2–3/2) 848 cm-1 +0.007 –13.0 +0.2(968) (+0.007) (-15)

A2Π 3.42 1.941 533 5.6

A2Π3/2 3.28(3.27)

All values at the MRCI+Q/aug-cc-pV5Z level of theory

Page 18: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Predissociation of the BrO A ΠΠΠΠ3333////2222 State2

The 3 high resolution studies performed to date indicate that:

• The only bands showing rotational structure are the v’,v”=7,0 & 12,0 and perhaps higher v’,0

• Bands with v’=0 & 1 are very diffuse; v’=1 is strongly perturbed

• With increasing J, the 7,0 band tunes towards a crossing while the 12,0 band first tunes away and then into another crossing (linewidth minimum at 3.887 eV) ;

12,0 has a slightly shorter lifetime than the 7,0 (2 vs. 2.5 ps)

• D0(A) = 1.107±0.017 eV ; D0(X) = 2.394±0.017 eV (Wilmouth et al.)

Page 19: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

3.0

3.5

4.0

4.5

3 3.5 4 4.5 5

The A ΠΠΠΠ1/2 State with possible ΩΩΩΩ=1/2 perturbers2

Ener

gy (

eV)

R (a.u.)

a4Σ–

A2Π1/2

2Σ –

2Σ –

4Σ –

2Σ+

4Σ+

4∆

2Σ+

Page 20: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

3.0

3.5

4.0

4.5

3 3.5 4 4.5 5

The A ΠΠΠΠ3/2 State with possible ΩΩΩΩ=3/2 perturbers2

Ener

gy (

eV)

R (a.u.)

a4Σ–

4Σ –

4Σ+

2∆

4Π2Π

4∆

2∆

v=1

7

12

A2Π3/2

Page 21: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

At the crossing (r=4.34 bohr) θ=52º

and H12 = cosθ sinθ [E(32Π) – E(A2Π)] = 200 cm-1(d)

Interaction of the A2ΠΠΠΠ and 32ΠΠΠΠ states: a weakly avoided crossing

• non-adiabatic coupling matrix elements (NACMEs) were calculated as a function of R by numerical differentiation of the MRCI wavefunctions with an aug-cc-pV5Z basis set

• These were integrated to yield the mixing angles θ(R), i.e., the transformation between the adiabatic and diabatic basis.

NA

CM

E

Mixing A

ngle, θ

R (Bohr)

0

5

10

15

0

15

30

45

60

75

90

3 3.5 4 4.5 5 5.5 6

∂∂

= ∂∂

θR R

ad adΨ Ψ2 1

ΨΨ

ΨΨ

1

2

1

2

d

d

ad

ad

=

cos sin

sin cos

θ θθ θ

θ θ( )RR

dRRad ad

R

R= + ∂

∂ ′∫ ′0

0

2 1Ψ Ψ

Page 22: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

3.0

3.5

4.0

4.5

3 3.5 4 4.5 5

400

200

80

40

650220

70

The A ΠΠΠΠ3/2 State with possible ΩΩΩΩ=3/2 perturbers & coupling ME's2

Ener

gy (

eV)

R (a.u.)

a4Σ–

4Σ –

4Σ+

2∆

4Π2Π

4∆

2∆

A2Π3/2

3.0

3.5

4.0

4.5

3 3.5 4 4.5 5

Page 23: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

The Low-Lying Electronic States of BrCl: preliminary results

3-4 excited electronic states are involved in the UV and near-UV spectrum

– the A3Π(1), B3Π(0+), C1Π(1) & D(0+) states (~550 - 235 nm)

Several non-adiabatic interactions have been observed

Recent Experimental Work

Cao et al. (1994)

Cooper et al. (1998)

Park et al. (2000)

At λ~235 nm: D(0+) absorption 3 product channels observed:

Br*+Cl (0.6), Br+Cl*(0.2), Br+Cl(.2) (||) (⊥ ) (||)

λ~310-410 nm: C1Π(1) absorption; Br+Cl formed

λ>410 nm: absorption via B3Π(0+) with a ⊥ contribution; Cl*/Cl branching ratio increases

Page 24: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Expected Low-Lying Electronic States of BrClFor the Homonuclear Halogens, e.g., Br2:

p5 p5

↑σg

σu*

πu

πg*↑

↑↑

↑↑

2440 X1Σ+g

2440

2431

2341

2422

1Σ+g

3Πu

3Πg

1Πu

1Πg

3Σg–

1∆g

1Σ+g

1g

1u2u

2g

0g+

0g–

0u–

0u+

1u

0g+

1g

0g+

1g2g

0g+

2P1/2 + 2P1/2

2P1/2 + 2P3/2

2P3/2 + 2P3/2

X

A

B

1u, 0g, 0u

2g, 2u, 1g, 1u, 1g,1u, 0g, 0u, 0g, 0u

3u, 2g, 2u, 1u, 1g,1u, 0g, 0u, 0g, 0u

+ –

+ –+ –

+ –+ –

23 total Ω states

Mulliken label

Page 25: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

3 4 5 6 7 8

The Singlet States (ΛΛΛΛ-S) of BrCl(MRCI+Q/aug-cc-pVQZ)

X1Σ+

21Σ+

11Σ–

11Π

21Π

11∆

Br(2P) + Cl(2P)

Ener

gy (

eV)

R (a.u.)

Page 26: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Triplet States

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

3 4 5 6 7 8

Page 27: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

The ΩΩΩΩ=0+ states of BrCl

Br + ClBr + Cl*

Br* + ClBr* + Cl*

1.5

2.0

2.5

3.0

3.5

4.0

3 4 5 6 7 8

X1Σ+

21Σ+

B3Π

23Π

13Σ–

Ener

gy (

eV)

R (a.u.)

AC1 AC2

Page 28: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

1.5

2.0

2.5

3.0

3.5

4.0

3 4 5 6 7 8

The ΩΩΩΩ=1 states of BrCl

13Π

11Π

23Π

21Π

13Σ+

23Σ+

13Σ–

13∆

Ener

gy (

eV)

R (a.u.)

B3Π(0+)

Page 29: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Near Re the 13ΠΠΠΠ state has large SO matrix elements withlow-lying singlets:

At AC2 the composition of the two 0+ states are:

II 0+ : 62% 13Σ- 1% 13Π 32% 21Σ+ 2% 23Π

III 0+ : 54% 13Π 2% 13Σ- 27% 21Σ+ 16% 23Π

<13Π | HSO | X1Σ+> = 601 cm-1

<13Π | HSO | 11Π > = 937 cm-1

<13Π | HSO | 21Π > = 453 cm-1

<13Π | HSO | 21Σ+> = 371 cm-1

<X1Σ+ | µ | 13Σ-(0+)> = 0.017 Debye

<X1Σ+ | µ | A3Π(1)> = 0.024 Debye

<X1Σ+ | µ | B3Π(0+)> = 0.071 Debye

<X1Σ+ | µ | C1Π(1)> = 0.148 Debye

Page 30: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Hypobromous Acid (HOBr)UV/Vis Absorption Spectrum and Photodissociation Dynamics

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0 100 200 300 400 500 600

Orlando & Burkholder

Crowley et al.

λ (nm)

Important contributor to both homogeneous and heterogeneous removalprocesses of stratospheric ozone

• Several studies of UV-Vis absorption X-sections

• First observation of the lowest triplet state of HOBr by Sinha and co-workers

• Photodissociation study of OH+Br (product distributions, vector correlation, etc.) by Sinha and co-workers at ~500 nm

a3A” state borrows intensity from B1A’

Dissociation is rapid →

B1A’

a3A”

A1A”

Page 31: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

HOBr Computational Details

Correlation treatment : full valence CAS-reference multireference CI with Davidson correction

• 246 reference configurations, all single and double excitations wrt to these

• Davidson correction added for approximate treatment of higher excitations

• Calculate a total of 5 electronic states: X1A′, a3A′′ , B1A′′ , b3A′, and A1A′

• Relativistic effective core potential on Br

Basis set(s) : series of 3 correlation consistent basis sets:

cc-pVDZ + diffuse + spd/sp : 54 contracted functions

cc-pVTZ + diffuse + spd/sp : 95 contracted functions

cc-pVQZ + diffuse + spd/sp : 161 contracted functions (~2 hrs CPU per point)

!! pointwise extrapolate to complete basis set (CBS) limit

Grid: ~1000 points calculated with each of the 3 basis sets (~3000 calculations)

ROH (ao) = 1.4 – 3.0; RBrO (ao) = 2.6 – 10.0; θHOBr = 0 – 180º

+ near-equilibrium data for HOBr, HBrO, and the HOBr → HBrO TS

+ additional ROH for θ ≤ 80º

Page 32: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

0.0

2.0

4.0

6.0

8.0

4 0 6 0 8 0 100 120 140 160 180

0.0

2.0

4.0

6.0

8.0

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

The low-lying excited states of HOBr (ΛΛΛΛ-S states)

r(OH)=1.83 ao

θ = 103.2o

R(BrO), ao θ (deg.)

X1A'

a3A"

B1A'

A1A"

b3A'

X1A'

A1A"

b3A'

a3A"

B1A'

1Σ+

r(OH)=1.83 ao

r(BrO)=3.474 ao

(MRCI+Q/CBS, energies in eV)

1Σ–

3Σ–

3Σ+

1,3∆

Br(2P) +

OH(2Π)

Page 33: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

3.0 4.0 5.0 6.0 7.0 8.0

180

160

140

120

100

80

60

40

20

0

0 20 40 60 80 100120140160180200220240

50

45 65

80

5

ROH = 1.82 ao The X1A’ state of HOBr

RBrO, ao

θ, d

eg.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

8.0

7.0

6.0

5.0

4.0

3.0

5

55

105

155

RBr

O, a o

ROH, ao

θ = 102.8o

2.0 3.0 4.0 5.0 6.0 7.0

180

160

140

120

100

80

60

40

20

0

0 25 50 75 100 125 150 175 200 225

90

15

65

110

105

RBrO = 3.10 ao

ROH, ao

θ, d

eg.

HOBr: 708 bound statesHBrO: 74 localized states

Page 34: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

2.40

3.40

3.00

4.00

3.80

3.75 5.00 6.25 7.50 8.75 10.00

175

150

125

100

75

50

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0r1t_ev_fit__1__3_rs

2.20

2.40

2.40

3.00

3.00

3.40

3.75 5.00 6.25 7.50 8.75 10.00

175

150

125

100

75

50

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5r1t_ev_fit__1__3_rs

2.40

3.40

3.40

4.20

2.40

3.75 5.00 6.25 7.50 8.75 10.00

175

150

125

100

75

50

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0r1t ev fit 1 3 rs

5.20

4.80

4.00

2.802.40

3.75 5.00 6.25 7.50 8.75 10.00

175

150

125

100

75

50

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5r1t ev fit 1 3 rs

a3A" b3A'

A1A" B1A'

r(BrO), bohr

The

ta, d

egs.

The

ta, d

egs.

The

ta, d

egs.

The

ta, d

egs.

r(BrO), bohr

r(BrO), bohrr(BrO), bohr

Page 35: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

3.20

3.20

4.80

3.60

4.00

2.60

2.20

3.75 5.00 6.25 7.50 8.75 10.00

3.00

2.75

2.50

2.25

2.00

1.75

1.50

2 2 2 3 3 3 4 4 4 4 4 5 5 5 6 6 6 6 6 7r1r2_ev_fit__1__3_rs

a3A"

3.20

5.00

5.40

4.60

3.40

3.402.40

3.75 5.00 6.25 7.50 8.75 10.00

3.00

2.75

2.50

2.25

2.00

1.75

1.50

2 3 4 4 4 5 6 6 6 7 8 8 8 9 10r1r2_ev_fit__1__3_rs

b3A'

3.40

4.004.80

4.60

3.002.40

3.75 5.00 6.25 7.50 8.75 10.00

3.00

2.75

2.50

2.25

2.00

1.75

1.50

2 3 4 4 4 5 6 6 6 7 8 8 8 9 10 1010r1r2 ev fit 1 3 rs

B1A'4.60

5.20

5.00

3.00

3.80

3.20

2.40

3.75 5.00 6.25 7.50 8.75 10.00

3.00

2.75

2.50

2.25

2.00

1.75

1.50

3 4 5 6 7 8 9 10r1r2 ev fit 1 3 rs

A1A"

r(BrO), bohr

r(O

H),

boh

r

r(O

H),

boh

rr(

OH

), b

ohr

r(O

H),

boh

r

r(BrO), bohr

r(BrO), bohrr(BrO), bohr

Page 36: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

2 3 4 5 6 7 8-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

2 3 4 5 6 7 8

Transition dipole moments

The oscillator strengths for both the singlet-singlet and singlet-triplettransitions are governed at least in part by the transition dipole momentfunctions

For HOBr, these turn out to be strongly dependent on the level of theory

X A A Ax

1 1′ ′′µ

X A B Ay z1 1′ ′µ ,

y

z

re

–– ACPF--- MRCI.... CAS

H O

Br

z

y

R(BrO), ao

re

r(OH)=1.83 ao

θ = 103.2º

–– ACPF--- MRCI.... CAS

x

Page 37: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

-1000

-800

-600

-400

-200

0

200

60 80 100 120 140 160 180

Representative Spin-Orbit Matrix Elements (cm-1)

-600

-400

-200

0

200

400

600

800

60 80 100 120 140 160 180-1000

-500

0

500

1000

60 80 100 120 140 160 180

x-component y-component z-component

Theta (deg.)

<X1A’|HSO|b3A’>

<X1A’|HSO|a3A”>

<21A’|HSO|b3A’>

<21A’|HSO|a3A”>

<11A”|HSO|a3A”>

r(OH)=1.83 ao

r(BrO)=3.474 ao

<11A”|HSO|b3A’>

<21A’|HSO|a3A”>

<X1A’|HSO|a3A”>

<11A”|HSO|b3A’>

Page 38: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

3.0

3.5

4.0

4.5

5.0

80 100 120 140 160 180

Influence of Spin-Orbit Coupling on the Potential Energy Surfaces

Theta (deg.)

Ener

gy (

eV)

13A”

21A’

11A”13A’

Spin-free state

SO-coupled state

r(OH)=1.83 ao

r(BrO)=3.474 ao

Page 39: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

0.0

0.0050

0.010

0.015

0.020

100 200 300 400 500 600

totalB1A′ ← X1A′

A1A″ ← X1A′

wavelength (nm)

H O

BrR

• CASSCF transition dipoles and SO matrix elements• Effective 1-D potentials:

0.0

0.0020

0.0040

0.0060

0.0080

0.010

100 200 300 400 500 600

A1A″ ← X1A′

B1A′ ← X1A′

b3A′ ← X1A′

a3A″ ← X1A′

(x 5)

Approximate Spectra with and without Spin-Orbit Effects

Cross sections obtained from 1-d wavepacket propagations (Å2)

w/o SO w/ SO

σ ω ω

tot ( ) ( )∝ ∫−∞

+∞dt S t ei t

S t tf f( ) ( ) ( )= Ψ Ψ0

Ψ Ψf fi i iE( ) ( )0 = µ

Page 40: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Preliminary absorption cross sections from 3-dimensional calculations

wavelength (nm)

0

5

10

15

20

25

200 250 300 350 400 450 500 550 600

xyztotal

0

5

10

15

20

25

30

35

200 250 300 350 400 450 500 550 600

Crowley & co-workers

Burkholder & Orlando

Theory: no spin-orbit couplingExperimental spectrum

• in collaboration with Dr. Dimitris Skouteris and Prof. Hans-Joachim Werner at Univ. Stuttgart

• wavepacket propagations carried out on a total of 8 excited states constructed from 4 spin-free

(diabatic) states with spin-orbit off-diagonal couplings (ACPF transition dipoles and MRCI SO)

• diagonalization of Hel + Hso currently does not include the ground state

Page 41: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Inclusion of spin-orbit coupling

0

5

10

15

20

25

-1.5

-1

-0.5

0

0.5

1

200 250 300 350 400 450 500

Total w/ SO

Total w/o SO

diff(SO-noSO)

0.0

0.2

0.4

0.6

0.8

1.0

350 400 450 500 550

xyz

Enlarged region near 450 nm

SO coupling between A1A" and b3A' states broaden the 2nd peak

The intensity of the X1A' → a3A" transition is strongly underestimated

Page 42: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Calculations in progress

• Include the 41A' state to provide a source for more intensity

borrowing by the a3A" state

– the 41A' state lies at 9 eV, but its transition moment with

the ground state is ~1 a.u. (10x greater than the 21A' state)

a3A" oscillator strength:

w/o 41A' or X1A' : 4.3 x 10-6

w/ 41A' & X1A' : 1.7 x 10-5 (factor of 4)

• Use a partially adiabatic representation, with dynamics run on the same number of states (8) as before

(i.e., block diagonalize X1A', 21A', 41A' and a3A')

Page 43: Ab Initio Spin-Orbit Coupling in Spectroscopy and Dynamicstyr0.chem.wsu.edu/~kipeters/Chem537/pdfs/SO.pdf · Options for Computing Spin-orbit Effects ab Initio ¥ 4-component methods

Department of Chemistry - Washington State University

01/02 WSU-PChem

William R. Wiley

Environmental Molecular Sciences Laboratory

Dr. Andreas Nicklass (halogen atoms, BrCl)

Prof. Joe Francisco, Purdue Univ. (BrO)

Dr. Dimitris Skouteris and Prof. H.-J. Werner, Univ. Stuttgart (HOBr)

Acknowledgments

National Science Foundation (Career program)

U.S. Dept of Energy (Basic Energy Sciences)$$$$