ac steady-state analysis learning goals sinusoids review basic facts about sinusoidal signals...

64
AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits with sinusoidal independent sources and modeling of sinusoids in terms of complex exponentials PHASORS Representation of complex exponentials as vectors. It facilitat steady-state analysis of circuits. IMPEDANCE AND ADMITANCE Generalization of the familiar concepts of resistance and conductance to describe AC steady state circuit operation PHASOR DIAGRAMS Representation of AC voltages and currents as complex vectors BASIC AC ANALYSIS USING KIRCHHOFF LAWS ANALYSIS TECHNIQUES Extension of node, loop, Thevenin and other techniques

Upload: emil-campbell

Post on 12-Jan-2016

225 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

AC STEADY-STATE ANALYSISLEARNING GOALS

SINUSOIDS Review basic facts about sinusoidal signals

SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits with sinusoidal independent sources and modeling of sinusoids in terms of complex exponentials

PHASORS Representation of complex exponentials as vectors. It facilitates steady-state analysis of circuits.

IMPEDANCE AND ADMITANCE Generalization of the familiar concepts of resistance and conductance to describe AC steady state circuit operation

PHASOR DIAGRAMS Representation of AC voltages and currents as complex vectors

BASIC AC ANALYSIS USING KIRCHHOFF LAWS

ANALYSIS TECHNIQUES Extension of node, loop, Thevenin and other techniques

Page 2: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

SINUSOIDS

tXtx M sin)(

(radians)argument

(rads/sec)frequency angular

valuemaximumor amplitude

t

X M

Adimensional plot As function of time

tTtxtxT ),()(2

Period

)(cycle/sec Hertz infrequency 2

1

Tf

f 2

"by leads"

"by lags"

Page 3: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

BASIC TRIGONOMETRY

)cos(2

1)cos(

2

1coscos

)sin(2

1)sin(

2

1cossin

sinsincoscos)cos(

sincoscossin)sin(

IDENTITIES DERIVED SOME

cos)cos(

sin)sin(

sinsincoscos)cos(

sincoscossin)sin(

IDENTITIES ESSENTIAL

)sin(sin

)cos(cos

)2

cos(sin

)2

sin(cos

tt

tt

tt

tt

NSAPPLICATIO

)90sin()2

sin( tt

CONVENTION EE ACCEPTED

RADIANS AND DEGREES

(degrees) 180

(rads)

degrees 360 radians

2

Page 4: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLE

)45cos( t

)cos( t

Leads by 45 degrees

)45cos( t)18045cos( t

Leads by 225 or lags by 135

)36045cos( t

Lags by 315

Page 5: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLE

VOLTAGESBETWEEN ANGLEPHASE ANDFREQUENCY FIND

)301000cos(6)(),601000sin(12)( 21 ttvttv

Frequency in radians per second is the factor of the time variable 1sec1000

HzHzf 2.1592

)(

To find phase angle we must express both sinusoids using the sametrigonometric function; either sine or cosine with positive amplitude

)180301000cos(6)301000cos(6 tt

)180cos()cos( with sign minus of care take

)90sin()cos( with cosine into sine Change

)902101000sin(6)2101000cos(6 tt

We like to have the phase shifts less than 180 in absolute value

)601000sin(6)3001000sin(6 tt

)601000sin(6)(

)601000sin(12)(

2

1

ttv

ttv 120)601000()601000( tt120by leads 21 vv

120)601000()601000( tt120by lags 12 vv

Page 6: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXTENSION

by_____? leads

by_____? leads

31

21

3

2

1

)60377sin(25.0)(

)10377cos(5.0)(

)45377sin(2)(

ii

ii

tti

tti

tti

)90sin(cos )9010377sin(5.0)10377cos(5.0 tt

55)100377()45377( t

5521 by leads ii

16531 by leads ii

)180sin(sin )18060377sin(25.0)60377sin(25.0 tt

165)120377()45377( tt

Page 7: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

SINUSOIDAL AND COMPLEX FORCING FUNCTIONS

If the independent sources are sinusoidsof the same frequency then for anyvariable in the linear circuit the steadystate response will be sinusoidal and ofthe same frequency

)sin()()sin()( tBtitAtv SS

,B

parameters the determine to needonly we

solution statesteady the determine To

Learning Example

)()()( tvtRitdt

diL :KVL

tAtAtdt

di

tAtAti

tAti

cossin)(

sincos)(

)cos()(

21

21

or , statesteady In

R/*

L/*

tV

tRAALtRAAL

M

cos

cos)(sin)( 1221

MVRAAL

RAAL

12

21 0

algebraic problem

222221)(

,)( LR

LVA

LR

RVA MM

Determining the steady state solution canbe accomplished with only algebraic tools!

Page 8: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

FURTHER ANALYSIS OF THE SOLUTION

)cos()(

cos)(

sincos)( 21

tAti

tVtv

tAtAti

M

write can one purposes comparisonFor

is voltageapplied The

is solution The

sin,cos 21 AAAA

222221)(

,)( LR

LVA

LR

RVA MM

1

222

21 tan,

A

AAAA

R

L

LR

VA M

1

22 tan,)(

)tancos()(

)( 122 R

Lt

LR

Vti M

voltagethe lags WAYScurrent AL the For 0L

90by voltagethe lagscurrent the inductor) (pure If 0R

Page 9: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

SOLVING A SIMPLE ONE LOOP CIRCUIT CAN BE VERY LABORIOUSIF ONE USES SINUSOIDAL EXCITATIONS

TO MAKE ANALYSIS SIMPLER ONE RELATES SINUSOIDAL SIGNALSTO COMPLEX NUMBERS. THE ANALYSIS OF STEADY STATE WILL BECONVERTED TO SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS ...

… WITH COMPLEX VARIABLES

)(ty

)sin()(sin)(

)cos()(cos)(

tAtytVtv

tAtytVtv

M

M

identity)(Euler :IDENTITY ESSENTIAL sincos je j

tjjtjtjM eAeAeeV )(

add) (andj/*

jM AeV

If everybody knows the frequency of the sinusoidthen one can skip the term exp(jwt)

Page 10: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

Learning Example

tjM eVtv )(

)()( tjM eIti Assume

)()()( tvtRitdt

diL :KVL

)()( tjM eIjt

dt

di

tjjM

tjM

tjM

tjM

eeIRLj

eIRLj

eRIeLIjtRitdt

diL

)(

)(

)()(

)(

)()(

tjM

tjjM eVeeIRLj )(

RLj

VeI Mj

M

LjR

LjR

/*

22 )(

)(

LR

LjRVeI Mj

M

RL

eLRLjR

1tan22 )(

RL

MjM e

LR

VeI

1tan

22 )(

R

L

LR

VI M

M

1

22tan,

)(

)cos(}Re{)(

}Re{cos)()(

tIeIti

eVtVtv

Mtj

M

tjMM

sin,cos

tan, 122

ryrx

y

xyxr

rejyx

PCj

Page 11: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

PHASORSESSENTIAL CONDITIONALL INDEPENDENT SOURCES ARE SINUSOIDS OF THE SAME FREQUENCY

BECAUSE OF SOURCE SUPERPOSITION ONE CAN CONSIDER A SINGLE SOURCE)cos()( tUtu M

THE STEADY STATE RESPONSE OF ANY CIRCUIT VARIABLE WILL BE OF THE FORM)cos()( tYty M

SHORTCUT 1)(

)()( )(

tj

eYtyeUtu Mtj

M

}Re{}Re{)()(

tj

eYeU Mtj

M

NEW IDEA: tjjM

tjM eeUeU )( j

Mj

M eYyeUu

DEGREES IN ANGLES ACCEPTWE AND

WRITE WE WRITING OF INSTEAD

NOTATION IN SHORTCUT

...

Mj

M UueUu

)cos( tUU MM FOR TIONREPRESENTA PHASOR THE IS

)}cos(Re{)()cos()( tYtyYYUUtUtu MMMM

SHORTCUT 2: DEVELOP EFFICIENT TOOLS TO DETERMINE THE PHASOR OF THE RESPONSE GIVEN THE INPUT PHASOR(S)

Page 12: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

Learning Example

tj

M

Vev

VV

0

tj

M

Iei

II

tjtjtj VeRIeIejL

vtRitdt

diL

)(

)()(

LjR

VI

VRILIj

has one phasors of terms In

The phasor can be obtained usingonly complex algebra

We will develop a phasor representationfor the circuit that will eliminate the needof writing the differential equation

90)sin(

)cos(

AtA

AtA

It is essential to be able to move fromsinusoids to phasor representation

Learning Extensions

)425377cos(12)( ttv 42512 )2.42513sin(18)( tty 8.8518

2010

400

1V

Hzf Given)20800cos(10)(1 ttv

60122V )60800cos(12)(2 ttv

Phasors can be combined using therules of complex algebra

)())(( 21212211 VVVV

)( 212

1

22

11

V

V

V

V

Page 13: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

RESISTORS)()(

)()(

tj

Mtj

M eRIeV

tRitv

RIV

eRIeV jM

jM

Phasor representation for a resistor

Phasors are complex numbers. The resistormodel has a geometric interpretation

The voltage and currentphasors are colineal

In terms of the sinusoidal signals thisgeometric representation implies thatthe two sinusoids are “in phase”

Page 14: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

INDUCTORS )( )()( tjM

tjM eI

dt

dLeV

)( tjM eLIj

LIjV

The relationship betweenphasors is algebraic

90901 jej

For the geometric viewuse the result

90LIV

The voltage leads the current by 90 degThe current lags the voltage by 90 deg

jM

jM eLIjeV

Learning Example

)().20377cos(12)(,20 tittvmHL Find

Lj

VI

V

2012

377)(

90

2012A

LI

)(701020377

123 AI

)70377cos(1020377

12)( 3

tti

Relationship between sinusoids

Page 15: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

CAPACITORS )( )()( tjM

tjM eV

dt

dCeI

jjM CejeI

CVjI

The relationship betweenphasors is algebraic

90CVI

In a capacitor thecurrent leads thevoltage by 90 deg

The voltage lagsthe current by 90 deg

CVjI

V

15100

314

15100901CI

)(10510010100314 6 AI

))(105314cos(14.3)( Atti

Relationship between sinusoids

Learning Example

)().15314cos(100)(,100 tittvFC Find

Page 16: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXTENSIONS

inductor the across voltagethe Find

HzfAIHL 60),(304,05.0

1202 fLIjV

30490105.0120V 6024V

)60120cos(24)( tv

inductor the across voltagethe Find

HzfIFC 60,1456.3,150

1202 f

Cj

IVCVjI

90110150120

1456.36

V

235200

V

)235120cos(200

)( ttv

Now an example with capacitors

Page 17: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

IMPEDANCE AND ADMITTANCE

For each of the passive components the relationship between the voltage phasor and the current phasor is algebraic. We now generalize for an arbitrary 2-terminalelement

zivM

M

iM

vM ZI

V

I

V

I

VZ

||)(

(INPUT) IMPEDANCE

(DRIVING POINT IMPEDANCE)

The units of impedance are OHMS CjZ

LjZ

ICj

V

LIjV

C

L

RZRIVR

11

ImpedanceEq.Phasor Element

Impedance is NOT a phasor but a complexnumber that can be written in polar or Cartesian form. In general its value dependson the frequency

component Reactive

component Resistive

)(

)(

)()()(

X

R

jXRZ

R

X

XRZ

z1

22

tan

||

Page 18: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

KVL AND KCL HOLD FOR PHASOR REPRESENTATIONS

)(1 tv

)(3 tv

)(2 tv)(0 ti

)(1 ti )(2 ti )(3 ti

0)()()( 321 tvtvtv :KVL

3,2,1,0,)(

0)()()()()(

3210

keIti

titititi

ktjMkk

:KCL

3,2,1,)( )( ieVtv itjMii

0)( 321321 tjj

Mj

Mj

M eeVeVeV :KVL

0332211 MMM VVV

Phasors! 0321 VVV

1V

3V

2V0I

1I 2I 3I

03210 IIII

The components will be represented by their impedances and the relationshipswill be entirely algebraic!!

In a similar way, one shows ...

Page 19: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

SPECIAL APPLICATION:IMPEDANCES CAN BE COMBINED USING THE SAME RULES DEVELOPEDFOR RESISTORS

I 1V

1Z

2V

2ZI

21 ZZZs 1Z 2Z

V

I I

V

21

21

ZZ

ZZZ p

kks ZZ

kk

p ZZ

11

LEARNING EXAMPLEcurrent and impedance equivalent Compute

)30cos(50)(,60 ttvHzf

63

1050120

1,1020120

25,3050,120

jZjZ

ZV

CL

R

05.53,54.7 jZjZ CL

51.4525 jZZZZ CLRs

)(51.4525

3050A

jZ

VI

s

)(22.6193.51

3050A

))(22.91120cos(96.0)()(22.9196.0 AttiAI

RZR

LjZL

CjZC

1

Page 20: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING ASSESSMENT )(ti FIND

377

)9060(120V

20RZ

08.151040377 3 jjZL

05.531050377 6 j

jZC

)(|| LRCeq ZZZZ 239.9963.3097144561630 . + j.Zeq

)(924.39876.3239.9963.30

30120A

Z

VI

eq

Page 21: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

(COMPLEX) ADMITTANCE

eSuceptanc

econductanc

(Siemens)

B

G

jBGZ

Y1

jXRZ

1122 XR

jXR

jXR

jXR

22

22

XR

XB

XR

RG

CjYCj

Z

LjYLjZ

ICj

V

LIjV

C

L

GR

YRZRIVR

1

1

1

1AdmittanceImpedanceEq.Phasor Element

k

kp YY

es Admittancof nCombinatio Parallel

k ks YY

11

es Admittancof nCombinatio Series

SYR 1.0 )(11

1Sj

jYC

)(11.0 SjYp

1010

1.0

1

1.0

11

j

jYs

SjY

j

jY

j

j

j

jY

s

s

s

05.005.0

200

1010

1010

1

1.01.0

1.01.0

1.01.0

)1.0)(1.0(

S1.0

Sj 1.0

Page 22: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLE

IY

VV

p

S

,

)(4560

FIND

42

42

j

jZ p

)(25.05.0

8

42Sj

j

jYp

)(4560)25.05.0( AjVYI p

)(4560565.26559.0 AI

)(435.1854.33 AI

)(5.075.025.015.05.0 SjjjYp

)(69.339014.0 SYp

)(79.53014.9

201069.339014.0

AI

VYI p

25.05.0 j

YYY LRp

LEARNING EXTENSION

Page 23: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLE SERIES-PARALLEL REDUCTIONS

243 jZ

4/1

25.05.025.0

44

4

jYZ

jjjY

2

8

24

)2(44 jjj

jjZ

422622 jjjZ

21

)2(11 j

jZ

5.01

11 j

Z

2434 jZ

342

342234 ZZ

ZZZ

13 j

)(1.03.0

1.02.0

)(2.01.0

234

34

2

SjY

jY

SjY

)(4.08.0

)5.0(1

5.01

1

21

jZ

jZ

973.8847.36.08.32341 jZZZeq

222)4()2(

42

42

1

j

jY

20

24

24

134

j

jY

1.0

1.03.0

1.03.0

11

234234

j

jYZ

Page 24: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXTENSION TZ IMPEDANCE THE FIND

24

464

1

1

jZ

jjZ

222 jZ

565.26472.4)( 1ZPR 565.26224.01Y

45828.2)( 2ZPR 45354.02Y

100.0200.0)( 1 jYRP

250.0250.0)( 2 jYRP

35.045.02112 jYYY 875.37570.0)( 12YPR

875.37754.112Z077.1384.1)( 12 jZRP

222)2()2(

22

22

1

j

jY

077.1383.3)1077384.1(2 jjZT 221

)2()4(

24

24

1

j

jY

325.0

35.045.0

35.045.0

11

1212

j

jYZ

1212

2112

1

YZ

YYY

Page 25: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLESKETCH THE PHASOR DIAGRAM FOR THE CIRCUIT

PHASOR DIAGRAMS

Display all relevant phasors on a common reference frame

Very useful to visualize phase relationships among variables.Especially if some variable, like the frequency, can change

Any one variable can be chosen as reference.For this case select the voltage V

CVjLj

V

R

VIS

:KCL

|||| CL II

INDUCTIVE CASE

|||| CL II

CAPACITIVE CASE

e)(capacitiv

)(inductive

CVjIC

lj

VIL

Page 26: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLE DO THE PHASOR DIAGRAM FOR THE CIRCUIT

CLRS

C

L

R

VVVV

ICj

V

LIjV

RIV

1

It is convenient to selectthe current as reference

1. DRAW ALL THE PHASORS

)(377 1 s 2. PUT KNOWN NUMERICAL VALUES

|||| RCL VVV

90212SV REFERENCE WITH DIAGRAM

Read values fromdiagram!

s)(Pythagora

)(4512 VVR )(453 AI

456CV

)(13518 VVL

|||| CL VV

Page 27: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING BY DOING

PHASE IN ARE

AND WHICH ATFREQUENCY THE FIND )()( titv

)(tv

lineal-co are for phasors the i.e., )(),( tvti

RILIjICj

V 1

C

L

R

I

LIj

ICj

1 RI

RILIjICj

V 1

PHASOR DIAGRAM

01

Cj

LjIV

iff lineal-co are and LC

12

)/(10162.3101010

1 4963

2 srad

Hzf 310033.52

Notice that I waschosen as reference

Page 28: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXTENSIONDraw a phasor diagram illustrating all voltages and currents

454435.63472.4

904

42

41 I

j

jI

)(435.18578.31 AI

Currentdivider

454

435.63472.4

02

42

12 I

jI

435.108789.12I 12 III thanSimpler

)(435.18156.72 1 VIV

DRAW PHASORS. ALL AREKNOWN. NO NEED TO SELECT A REFERENCE

Page 29: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

BASIC ANALYSIS USING KIRCHHOFF’S LAWS

PROBLEM SOLVING STRATEGY

For relatively simple circuits use

divider voltage and CurrentKVL and KCL

and combining for rules The i.e., analysis; AC for law sOhm'YZ

IZV

For more complex circuits use

theorems sNorton' and sThevenin'tiontransforma Source

ionSuperpositanalysis Loopanalysis Node

Page 30: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLE COMPUTE ALL THE VOLTAGES AND CURRENTS

)48||6(4 jjZeq

28

4824832

28

48244

j

jj

j

jZeq

)(964.30604.9036.14246.8

45196.79

28

5656

j

jZeq

)(036.29498.2964.30604.9

60241 A

Z

VI

eq

S

)(036.29498.2036.14246.8

906

28

613 AI

j

jI

)(036.29498.2036.14246.8

565.26944.8

28

4812 AI

j

jI

3221 904906 IVIV

10582.158.1171.206.295.2 321 III

)(1528.7

)(42.7826.16

2

1

VV

VV

21

32

1

Vfor V law sOhm'

IIfor divider current Use

I Compute

,

,

Page 31: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXTENSIONSO VV COMPUTE , IF 458

S

12

1

3

VCOMPUTE

II COMPUTE

VCOMPUTE

I COMPUTE

,

THE PLAN...

)(454)(23 AA

VI O

454458)22( 31 IjV

)(0314.111 VV

)(90657.5902

0314.11

21

2 Aj

VI

45490657.5321 III

))(828.2828.2(657.51 AjjI

)(829.2828.21 AjI

0314.11)829.2828.2(22 11 jVIVS

)(658.597.16 VjVS

439.18888.17SV

Page 32: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

ANALYSIS TECHNIQUES

PURPOSE: TO REVIEW ALL CIRCUIT ANALYSIS TOOLS DEVELOPED FOR RESISTIVE CIRCUITS; I.E., NODE AND LOOP ANALYSIS, SOURCE SUPERPOSITION,SOURCE TRANSFORMATION, THEVENIN’S AND NORTON’S THEOREMS.

0I COMPUTE

1. NODE ANALYSIS

0111

0211

221

j

VV

j

V

0621 VV

)(12

0 AV

I

011

0211

06 22

2

j

VV

j

V

11

62

11

11

11

12 jjj

V

11

6)11(2

)11)(11(

)11()11)(11()11(2 j

j

jj

jjjjV

281

42 j

jV

2

)1)(4(2

jjV

NEXT: LOOP ANALYSIS

)(2

3

2

50 AjI

96.3092.20I

Page 33: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

2. LOOP ANALYSIS

SOURCE IS NOT SHARED AND Io IS DEFINED BY ONE LOOP CURRENT

021I :1 LOOP

0))(1(06))(1( 3221 IIjIIj :2 LOOP

3I FIND MUST

30 II

0))(1( 332 IIIj :3 LOOP

)2)(1(6)1(2 32 jIjI

0)2()1( 32 IjIj )2(/*

)1(/*

j

)28)(1()2(2)1( 32 jjIjj

4

6103

jI )(

2

3

2

50 AjI

ONE COULD ALSO USE THE SUPERMESHTECHNIQUE

2I

0)1()(

0)(06)1(

02

323

321

21

IjII

IIIj

II

:3 MESH

:SUPERMESH

:CONSTRAINT

320 III

NEXT: SOURCE SUPERPOSITION

Page 34: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

Circuit with currentsource set to zero(OPEN)

1LI

1LV

Circuit with voltage sourceset to zero (SHORT CIRCUITED)

2LI

2LV

SOURCE SUPERPOSITION

= +

The approach will be useful if solving the two circuits is simpler, or more convenient, than solving a circuit with two sources

Due to the linearity of the models we must have2121LLLLLL VVVIII Principle of Source Superposition

We can have any combination of sources. And we can partition any way we find convenient

Page 35: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

3. SOURCE SUPERPOSITION

1)1()1(

)1)(1()1(||)1('

jj

jjjjZ

)(01'0 AI

)1(||1" jZ

)(061"

""

1 VjZ

ZV

)(06

1"

""0 A

jZ

ZI

)(61

21

21

"0 A

jjj

jj

I

6

3)1(

1"0 jj

jI

)(4

6

4

6"0 AjI

)(2

3

2

5"0

'00 AjIII

NEXT: SOURCE TRANSFORMATION

"Z

"0I COMPUTE TO

TIONTRANSFORMA SOURCE USE COULD

Page 36: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

Source transformation is a good tool to reduce complexity in a circuit ...

WHEN IT CAN BE APPLIED!!

Source Transformationcan be used to determine the Thevenin or Norton Equivalent...

BUT THERE MAY BE MORE EFFICIENT TECHNIQUES

“ideal sources” are not good models for real behavior of sources

A real battery does not produce infinite current when short-circuited

+-

Im proved m odelfo r vo ltage source

Im proved m odelfo r current source

SVVR

SI

IRa

b

a

bSS

IV

RIV

RRR

WHEN SEQUIVALENT AREMODELS THE

VZIZ

SS

IV

ZIV

ZZZ

Page 37: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

4. SOURCE TRANSFORMATION

jV 28'

j

jIS

1

28

1)1(||)1( jjZ

j

jII S

1

4

20

Now a voltage to current transformation

2

35

)1)(1(

)1)(4( j

jj

jj

NEXT: THEVENIN

Page 38: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LINEAR C IRC U ITM ay contain

independent anddependent sources

with their contro ll ingvariablesPART A

LINEAR C IRC U ITM ay contain

independent anddependent sources

with their contro ll ingvariablesPART B

a

b_Ov

i

THEVENIN’S EQUIVALENCE THEOREM

LINEAR C IRC U IT

PART B

a

b_Ov

i

THR

THv

PART A

Thevenin Equivalent Circuit

for PART A

Resistance Equivalent Thevenin

Source Equivalent Thevenin

TH

TH

R

v Impedance

THZ

Phasor

Page 39: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

5. THEVENIN ANALYSIS

2

610 j

1)1(||)1( jjZTH

)(2

350 A

jI

)28(

)1()1(

1j

jj

jVOC

Voltage Divider

j28

NEXT: NORTON

Page 40: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LINEAR C IRC U ITM ay contain

independent anddependent sources

with their contro ll ingvariablesPART A

LINEAR C IRC U ITM ay contain

independent anddependent sources

with their contro ll ingvariablesPART B

a

b_Ov

i

NORTON’S EQUIVALENCE THEOREM

Resistance Equivalent Thevenin

Source Equivalent Thevenin

N

N

R

i

LINEAR C IRC U IT

PART B

a

b_Ov

i

NRNi

PART A

Norton Equivalent Circuit

for PART A

Phasors

Impedance

NZ

NZ

Page 41: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

6. NORTON ANALYSIS

)(1

28

1

0602 A

j

j

jISC

ONSUPERPOSTIBY

Possible techniques: loops, sourcetransformation, superposition

1)1(||)1( jjZTH

j

jII SC

1

4

20 2

35

)1)(1(

)1)(4( j

jj

jj

Page 42: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

Notice choice of ground

LEARNING EXAMPLE NORTON THEVENIN, LOOPS, NODES, USING FIND 0V

WHY SKIP SUPERPOSITION AND TRANSFORMATION?

NODES

01231 VV :constraint Supernode

011

04 3212303

j

V

j

VVVVVV

Supernode @KCL

01

2 3212

VV

Ij

VVx

2KCL@V

00411

300

VVV

0 VKCL@

103 VV

I x

variablegControllin

42 03 VV

162

12

01

31

VV

VV

4003 VVV

0)42()4(2)162( 02002 VVVVVj

4)42()4()42()162( 000202 VjVVVVVj

j

jV

21

480

:Adding

Page 43: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LOOP ANALYSIS

xII

I

2

04

3

2

MESH CURRENTS DETERMINED BY SOURCES

0)(1012 311 IIjI

:1 MESH

0)(1)(1 34424 IIjIII

:4 MESH

24 III x : VARIABLEGCONTROLLIN

)(1 40 VIV :INTEREST OF VARIABLE

0))4(2(4 4444 IIjII

)4(2 43 II

j

jIjIj

2

84)84()2( 44 j

j

j

jV

21

480

MESH CURRENTS ARE ACCEPTABLE

Page 44: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

FOR OPEN CIRCUIT VOLTAGE

THEVENIN

04'xI

08

2 xI

)(84 VjVOC

Alternative procedure to compute Theveninimpedance:1. Set to zero all INDEPENDENT sources2. Apply an external probe

"x

testTH

I

VZ

"xI

KVL

)(1"" jZjIIV THxxtest

jZTH 1

))(84(2

10 Vj

jV

Page 45: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

NORTON

SCI

4''' xSC II

)(13''' A

VI x

USE NODES

01231 VV

constraint Supernode

00411

212333

j

VVVV

j

VV

Supernode KCL@

01

2: 1232'''

j

VVVVI X2 VKCL@

13''' V

I x : VariablegControllin

1231 VV

)(/ j

0)12()(2 32323 VVVVjjV12)31()1( 32 VjVj

j/

jjVVj

jVVjVjVVj

4122)1(

4)12()1(

32

23233

j

jVjVj

1

44)1( 33 j

jISC

1

84

j

j

jj

jjISC

1

48

)1(

)84(

Now we can draw the NortonEquivalent circuit ...

Page 46: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

THZ

SCI

)(1

48

2

1)()1( 00 V

j

j

j

jVIV

Current Divider

j

j

)1)(21(

)1)(48(

jj

jj

j

jV

3

4120

j

jV

21

480

j

jV

2

840

Using Norton’s method

Using Thevenin’s

Using Node and Loop methods

EQUIVALENCE OF SOLUTIONS

NORTON’S EQUIVALENT CIRCUIT

Page 47: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXTENSION

USE NODAL ANALYSIS

0V COMPUTE

1V

0212

3012 01111

j

VV

j

VVV

01010

V

j

VV01 )1( VjV

0)(22)3012( 01111 VVVjVVj

j2/

3012)1)(221(2 00 jVjjjV 3012901))1)(31(2( 0Vjj

jV

44

120120

)(7512.2

4566.5

12012V

USE THEVENIN

232

34

2||1||2j

jjZTH

j

j

62

4

3012)2||1(2

2||1

j

jVOC

3012

2)21(2

2

jj

j

40

)62(4 jj

jjVOC 31

12012

62

12024

+-

OCV

THZ 1j

1

0V

OCTH

VjZ

V

1

10

Page 48: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXTENSION ANALYSISMESH USING COMPUTE 0V

90221 II

CONSTRAINT

0222024 221 IjII

SUPERMESH

jII 221

24)22()2(2 22 IjjI jIj 424)24( 2

03.3686.1057.2624.2

46.933.24

2

4242 20 j

jIV

USING NODES1V

022

9022

024 11

j

VV

10 22

2V

jV

024222

20 j

V V

USING SOURCE SUPERPOSITION

90224

220 j

V I

IV VVV 000

Page 49: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXTENSION0V COMPUTE

1. USING SUPERPOSITION

'0V

"0V

"0

'00 VVV

1V

)012()22||2(2

)22(||21

jj

jV

1'

0 22

2V

jV

2V

024

)22(||2(2

)22(||)2(2 jj

jjV

2"

0 22

2V

jV

)22(||2 j

Page 50: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

2. USE SOURCE TRANSFORMATION

012 2 906

2j

2

0V1I

2j

2||2 jZ

eqIZ

j2

2

0V1I

eqIjZ

ZI

221

10 2IV

jIeq 612906012

Page 51: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

USE NORTON’S THEOREM

2||2 jZTH

SCI

012

906

SCI THZ

2j

2

0V1I

SCTH

TH IjZ

ZI

221

10 2IV

Page 52: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

Frequency domain

LEARNING EXAMPLEFind the current i(t) in steady state

The sources have different frequencies!For phasor analysis MUST use source superposition

SOURCE 2: FREQUENCY 20r/s

Principle of superposition

Page 53: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

USING MATLAB

Unless previously re-defined, MATLABrecognizes “i” or “j” as imaginary units

» z2=3+4j

z2 =

3.0000 + 4.0000i

» z1=4+6i

z1 =

4.0000 + 6.0000i

In its output MATLAB always uses “i” forthe imaginary unit

MATLAB recognizes complex numbersin rectangular representation. It doesNOT recognize Phasors

» a=45; % angle in degrees» ar=a*pi/180, %convert degrees to radiansar = 0.7854» m=10; %define magnitude» x=m*cos(ar); %real partx = 7.0711» y=m*sin(ar); %imaginary party = 7.0711» z=x+i*yz = 7.0711 + 7.0711i

4510zrRectangulaPhasors

z = 7.0711 + 7.0711i;» mp=abs(z); %compute magnitudemp = 10» arr=angle(z); %compute angle in RADIANSarr =0.7854» adeg=arr*180/pi; %convert to degresadeg = 45x=real(z)x= 7.0711y=imag(z)y= 7.70711

Page 54: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLECOMPUTE ALL NODE VOLTAGES

30121V

0211

523212

j

VV

j

VVVV

012135323

VVV

j

VV

0112

45414

j

VVVVV

01221

452 5352545

j

VVV

j

VVVV

05.0)5.01(

3012

5321

1

jVjVVjjV

V

452)5.05.01(5.05.0

0)15.0(5.0

05.0)15.0(

5432

541

532

VjjVVjV

VVjV

VVjjV

452

00

0

3012

5.05.11

115.1

5.0

0

5.0

0

0

5.05.0015.110

5.0015.011

00001

5

4

3

2

1

V

VV

V

V

j

j

j

jj

jjj

RIYV

RIYV 1

Page 55: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

%example8p18%define the RHS vector. ir=zeros(5,1); %initialize and define non zero valuesir(1)=12*cos(30*pi/180)+j*12*sin(30*pi/180);ir(5)=2*cos(pi/4)+j*2*sin(pi/4), %echo the vector%now define the matrixy=[1,0,0,0,0; %first row -1,1+0.5j,-j,0,0.5j; %second row 0,-j,1.5+j,0,-0.5; %third row -0.5,0,0,1.5+j,-1; %fourth row 0,0.5i,-0.5,-1,1.5+0.5i] %last row and do echov=y\ir %solve equations and echo the answer

Echo of RHS

ir = 10.3923 + 6.0000i 0 0 0 1.4142 + 1.4142iy = Columns 1 through 4 1.0000 0 0 0 -1.0000 1.0000 + 0.5000i 0 - 1.0000i 0 0 0 - 1.0000i 1.5000 + 1.0000i 0 -0.5000 0 0 1.5000 + 1.0000i 0 0 + 0.5000i -0.5000 -1.0000 Column 5 0 0 + 0.5000i -0.5000 -1.0000 1.5000 + 0.5000i

Echo of Matrix

v =

10.3923 + 6.0000i 7.0766 + 2.1580i 1.4038 + 2.5561i 3.7661 - 2.9621i 3.4151 - 3.6771i

Echo of Answer

Page 56: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING EXAMPLE FIND THE CURRENT I_o

6 meshes and two current sources5 non-reference nodes and two voltage sources… slight advantage for nodes

Page 57: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

NODE EQUATIONSMATRIX FORM

Page 58: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

MATLAB COMMANDS

LINEAR EQUATION

ANSWER

Page 59: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

AC PSPICE ANALYSIS

Select and place components

Wire and set correct attributes

Circuit ready to be simulated

Ground set, meters specified

VAC

R L

C

Page 60: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

**** AC ANALYSIS TEMPERATURE = 27.000 DEG C

******************************************************************************

FREQ VM($N_0003) VP($N_0003)

6.000E+01 2.651E+00 -3.854E+01

**** 05/20/01 09:03:41 *********** Evaluation PSpice (Nov 1999) **************

* C:\ECEWork\IrwinPPT\ACSteadyStateAnalysis\Sec7p9Demo.sch

**** AC ANALYSIS TEMPERATURE = 27.000 DEG C

******************************************************************************

FREQ IM(V_PRINT2)IP(V_PRINT2)

6.000E+01 2.998E-03 5.146E+01

Results in output file

Page 61: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING APPLICATION NOISE REJECTION

Noise has much higher frequency (700kHz) than signal.Find a way to ‘block’ high frequencies

Reduce amplitude of noise by 10

Impedance X should have low (zero) value at low frequencies and very high at noise frequency

Page 62: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

EXAMPLE A GENERAL IMPEDANCE CONVERTER (GIC)

(ideal OpAmp)A C IN

V V V

@A:

@C:

@E:

Suitable choices of impedancesPermit to create any desired equivalent

A 1kOhm resistor coverts to 1 H equivalent inductance!!

Page 63: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

LEARNING BY DESIGN

USING PASSIVE COMPONENTS TO CREATE GAINS LARGER THAN ONE

PRODUCE A GAIN=10AT 1KhZ WHEN R=100

2 1LC 15.9C F

1.59L mH

Page 64: AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits

PROPOSEDSOLUTION

LEARNING BY DESIGN PASSIVE SUMMING CIRCUIT - BIAS T NETWORK

( ) 2.5 2.5cos , 2 ; 1O

v t t f f GHz

B should have zero impedance for DC and block high frequencies

A should block DC and have very low impedance at 1GHz

91; 10 ; 2 10C L k PROPOSE

JUST MAKE THE IMPEDANCES VERY DIFFERENT

9( ) 2.5 2.50025cos 2 10O

v t t

end

AT DC THE CAPACITOR IS ALWAYS OPEN CIRCUITBUT AT 1GHz ONE WOULD NEED INFINITE INDUCTANCE.