accelerator physics and engineering

Upload: pulkit-arora

Post on 03-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 accelerator physics and engineering

    1/22

    EuCARD-PRE-2012-004

    European Coordination for Accelerator Research and Development

    PUBLICATION

    Beam-beam simulations: dynamicaleffects and beam-beam limit for LEP3

    Ohmi, K (KEK, Tsukuba, Japan)

    07 December 2012

    The research leading to these results has received funding from the European Commissionunder the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

    This work is part of EuCARD Work Package 4: AccNet: Accelerator Science Networks.

    The electronic version of this EuCARD Publication is available via the EuCARD web site

    or on the CERN Document Server at the following URL :

  • 7/29/2019 accelerator physics and engineering

    2/22

    Beam-

    beam

    simulations:

    dynamicaleffects

    and

    beam-b

    eamlimitfo

    rLEP3

    K.O

    hmi

    KEK-A

    CCEL

    4Dec,2012

  • 7/29/2019 accelerator physics and engineering

    3/22

    Paramete

    rsofLEP3

    givenbyF.Zimmerm

    ann

  • 7/29/2019 accelerator physics and engineering

    4/22

    ParametersofTLEP-H

    givenby

    F.Z

    immer

    mann

  • 7/29/2019 accelerator physics and engineering

    5/22

    3Db

    eam-beam

    inter

    action

    !y=1mm,"z=

    2.3(LEP3)-1.7

    (TLEP-h)mm.For"z>!y,the

    beam-beamf

    orcevariessig

    nificantlyalon

    gthebunchlength.

    Abunchisd

    ividedintoseveralslices

    whichcontain

    manymacro

    -particles.

    Collisioniscalculatedslicebyslice.

    Strong-strong

    V0(s)

    V0(s,0

    )=

    Sexp

    :

    s

    0

    H0ds:

    =

    i=

    exp

    :

    p2 x

    ,i

    +

    p2 y

    ,i

    2

    s:,

    Nsl,

    i=1

    exp

    :V1

    0,+

    (s,i

    ),i

    (+,

    s,i

    )V0,+

    (s,i

    )s:

    Nsl,

    +

    j=1

    exp

    :V1

    0,

    (s+,j

    )+,j

    (,

    s+,j

    )V0,

    (s+,j

    )s:

    driftbetweenslices

  • 7/29/2019 accelerator physics and engineering

    6/22

    3D

    symple

    cticintegratorforslice-

    by

    -sliceco

    llision

    !P

    otentialisc

    alculatedatsfandsb.

    !P

    otentialisinterpolated

    tosibetweensfandsb.

    sf

    sb

    s

    i

    !Sincetheintera

    ctiondependsonz,energykickshouldbe

    takenintoaccountd!/dz.

    !Werepeatthes

    ameprocedu

    reexchangingparticleand

    slice.

    sf

    sb

    s

    i

  • 7/29/2019 accelerator physics and engineering

    7/22

    Potentia

    landlin

    earkick

    ofhe

    slice

    -by-slicecollision

    potentialisinterp

    olated.

    potentialatcente

    rof

    slice,BAD

    metho

    d

    KEKBcase

    K.Ohmietal.,PRST7,104401

    (2004)

    ky

    =

    2

    (s)/y

    2

    =

    py

    /x

    j

    (s)=

    j(sb)+

    j(sf)

    j(sb)

    sf

    sb

    (s

    sb)

    j

    (s)=

    j

    (sc

    )

  • 7/29/2019 accelerator physics and engineering

    8/22

    C

    onvergen

    ceforthe

    slicenum

    ber

    Allparticlesini-thsliceare

    kickedb

    ycp

    Interpo

    lation

    ByM.Tawada

    KEKBcase

  • 7/29/2019 accelerator physics and engineering

    9/22

    S

    imulatio

    n

    !R

    adiationdampingrate

    !

    LEP3!xy/T0

    =0.036,!s/T

    0=0.043

    !

    TLEP-H

    !xy/T0=0.013,!s/T0=0.00875

    !T

    rackpartic

    les1000tu

    rns(2000turnsforha

    lf

    ring),>10xT0/!xy.

    !T

    argetlumin

    ositypercollision

    !

    LEP3

    L=2.675x1033cm

    -2s-1

    !

    TLEP-H

    L=

    6.125x1032cm-2s-1

    !N

    macrop=1,00

    0,000nzslice=16

    8

  • 7/29/2019 accelerator physics and engineering

    10/22

    Sim

    ulation

    I(firsttrial)

    #x=0.52

    ,#y=0.5

    8

    Comparisonbetwe

    enIP=1and

    2.

    ExpectLgeo~2.6

    75x1033

    Shortterm

    behavior

    Linit=Lgeo

  • 7/29/2019 accelerator physics and engineering

    11/22

    Beam

    size

    #x=0.5

    2,#

    y=0.5

    8

    IP=1

    IP=

    2

    Dynam

    icbeta

  • 7/29/2019 accelerator physics and engineering

    12/22

    Firstimpre

    ssionofthe

    simulationresults

    Dynamicbetaworkswellf

    orIP=1inthis

    operating

    point,(

    0.52

    ,0.5

    8),b

    utd

    oesnotfor

    IP=2.

    Thisisreasonab

    leresult.

    Luminosit

    yforIP=1isnotverygood.

    Usually

    this

    operating

    pointshowedhigherlu

    minositytha

    n

    targetoneinKEKB.

    Verticalbeams

    izeinc

    reasesinshorttime.

    Largesynchrotrontuneaffects.

  • 7/29/2019 accelerator physics and engineering

    13/22

    Syste

    maticst

    udy:Tun

    escan

    IP=2,#x=0.5

    2,scan#y

    Head-tailtypeofcoh

    erentmotionappear

    #y

    >0.8.

    Incohere

    nt#y~0.7

    5?

    Lgeo~2.6

    75x1033

  • 7/29/2019 accelerator physics and engineering

    14/22

    Tune

    scanII

    IP=2,#y=0.5

    8(0.29

    x2),s

    can#x

    Co

    herentmotio

    nappearsat#

    y>0.8

    Lgeo~2.67

    5x1033

  • 7/29/2019 accelerator physics and engineering

    15/22

    Slightuppe

    rofinteger

    BestL

    uminosity,

    butlo

    werthan

    deisgn

    .

    Lgeo~2.67

    5x1033

    #x

  • 7/29/2019 accelerator physics and engineering

    16/22

    Bunch

    populat

    ionand

    specific

    luminosity

    L=2.6x1033c

    m-2s-1

    isachievedatNe=1.1x1

    012.

    Lgeo~

    2.6

    75x1033

  • 7/29/2019 accelerator physics and engineering

    17/22

    T

    LEP-H

    #y=0.58

    (0.2

    9x2),sc

    an#x

    16

  • 7/29/2019 accelerator physics and engineering

    18/22

    TLEP-H

    !D

    esignluminosity

    6

    .1x1032isreachable.

    !B

    etterresultthanLEP3.

    !"

    sislowerthanLEP3. 17

  • 7/29/2019 accelerator physics and engineering

    19/22

    S

    ynchrot

    rontune(LEP3)

    !L

    uminositydegradationatlarges

    ynchrotron

    tuneisseen.

    #x=0.0

    2,#

    y=0.1

    9

    IP=2

    18

  • 7/29/2019 accelerator physics and engineering

    20/22

    S

    ummary

    !B

    eam-beam

    simulationshasbee

    nperforme

    d

    forLEP3an

    dTLEP-H.

    !R

    oughtune

    scanwas

    done.

    !Toachieve

    thedesign

    luminosity

    inLEP3,

    1

    0%morebunchpopu

    lationisne

    cessaryat

    least.TLEP

    -Hcanach

    ievethedesign.

    !T

    helargesynchrotron

    tunedegra

    desthe

    luminosityp

    erformance.

    !

    Thetreatme

    ntofsynchrotronmotion

    andz

    dependenceofthebeam

    -beamforce

    shouldbe

    checked.

    19

  • 7/29/2019 accelerator physics and engineering

    21/22

    20

  • 7/29/2019 accelerator physics and engineering

    22/22

    C

    hoiceofoperatingpoin

    t

    !

    ("x,"y)=(0.5

    1,0.55-0.5

    9)isthebe

    stfordyna

    mic

    betainhorizontaland

    integrabilityinvertica

    lin

    everye+e-

    collidersw

    ithsingleIP.

    !

    ("x,"y)=(0.0

    2,0.10-0.1

    8)for2IP.Thehorizontal

    tunemayn

    otbeacceptable.

    !

    Luminosity

    dependenceintunespaceis

    showninth

    ispresentation.(Nos

    trategyfor

    optimizationnow.)

    21