acelerador de partículas

6

Click here to load reader

Upload: ricardobuitron

Post on 24-Jun-2015

265 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Acelerador de partículas

Acelerador de partículas

Aceleradores de partículas, dispositivos empleados para acelerar partículas elementales e iones hasta altas energías. Son los instrumentos de mayor tamaño y más costosos utilizados en física. Todos tienen los mismos componentes básicos: una fuente de partículas elementales o iones, un tubo donde existe un vacío parcial en el que las partículas pueden desplazarse libremente y un sistema para aumentar la velocidad de las partículas.

Las partículas cargadas se aceleran mediante un campo electrostático. Por ejemplo, situando electrodos con una gran diferencia de potencial en los extremos de un tubo en el que se había hecho el vacío, los científicos británicos John D. Cockcroft y Ernest Walton consiguieron acelerar protones hasta 250.000 electronvoltios (eV). Otro acelerador electrostático es el acelerador Van de Graaff, desarrollado a principios de la década de 1930 por el físico estadounidense Robert Jemison van de Graaff. Este acelerador emplea el mismo principio que el generador de Van de Graaff, y establece un potencial entre dos electrodos transportando cargas mediante una cinta móvil. Los aceleradores Van de Graaff modernos aceleran partículas hasta energías de 15 MeV (un megaelectronvoltio, o MeV, equivale a un millón de eV).

EL ACELERADOR LINEAL, también llamado “linac”, fue concebido a finales de la década de 1920. Utiliza tensiones alternas elevadas para impulsar partículas a lo largo de una línea recta. Las partículas atraviesan una serie de tubos metálicos huecos situados dentro de un cilindro en el que se ha hecho el vacío. La tensión alterna se sincroniza de forma que la partícula sea impulsada hacia delante cada vez que pasa por un hueco entre dos tubos metálicos. En teoría, pueden construirse aceleradores lineales de cualquier energía. El más grande del mundo, situado en la Universidad de Stanford (Estados Unidos), tiene una longitud de 3,2 km. Puede acelerar electrones hasta una energía de 50 GeV (un gigaelectronvoltio, o GeV, corresponde a mil millones de eV). El acelerador lineal de Stanford está diseñado para hacer colisionar dos haces de partículas acelerados de forma consecutiva por el linac y mantenidos temporalmente en anillos de almacenamiento (véase el apartado de este artículo “Colisionadores con anillo de almacenamiento

El físico estadounidense Ernest O. Lawrence obtuvo el Premio Nobel de Física en 1939 por un avance en el diseño de aceleradores llevado a cabo a principios de la década de 1930. Lawrence desarrolló el ciclotrón, el primer acelerador circular. Es una especie de acelerador lineal arrollado en una espiral. En vez de tener muchos tubos, la máquina sólo tiene dos cámaras de vacío huecas, llamadas des, cuya forma es la de dos D mayúsculas opuestas entre sí (así: D). Un campo magnético producido por un potente electroimán hace que las partículas se muevan en una trayectoria curva. Las partículas cargadas se aceleran cada vez que atraviesan el hueco entre las des. A medida que las partículas acumulan energía, se mueven en espiral hacia el borde externo del acelerador, por donde acaban saliendo.

Cuando las partículas aceleradas en el ciclotrón alcanzan una velocidad próxima a la de la luz, su masa aumenta de modo apreciable, tal como predice la teoría de la relatividad. Esto hace que sea más difícil acelerarlas, y lleva a que los pulsos de aceleración en los huecos entre las des queden desfasados. En 1945, el físico soviético Vladímir Y. Veksler y el físico estadounidense Edwin

Page 2: Acelerador de partículas

M. McMillan sugirieron una solución a este problema. El aparato propuesto, el sincrociclotrón, se denomina a veces ciclotrón de frecuencia modulada. En este instrumento, el oscilador (generador de radiofrecuencias) que acelera las partículas alrededor de las des se ajusta automáticamente para mantenerse en fase con las partículas aceleradas; a medida que la masa de las partículas aumenta, la frecuencia de aceleración disminuye un poco para seguir su ritmo. Según aumenta la energía máxima de un sincrociclotrón, se incrementa su tamaño, porque las partículas tienen que tener más espacio donde moverse en espiral. El mayor sincrocinclotrón es el fasotrón de 6 metros del Instituto Conjunto de Investigación Nuclear de Dubna, en Rusia; acelera los protones hasta más de 700 MeV y tiene unos imanes que pesan unas 7.000 toneladas.

El ciclotrón más potente del mundo, el K1200, empezó a funcionar en 1988 en el National Superconducting Cyclotron Laboratory, de la Universidad Estatal de Michigan (Estados Unidos). Este aparato es capaz de acelerar núcleos hasta una energía cercana a los 8 gigaelectronvoltios.

El sincrotrón es el miembro más reciente y con mayor potencia de la familia de aceleradores. Está formado por un tubo en forma de un gran anillo, por el que se desplazan las partículas; el tubo está rodeado de imanes que hacen que éstas se muevan por el centro del tubo. Las partículas entran en el tubo después de haber sido aceleradas a varios millones de electronvoltios. En el anillo son aceleradas en uno o más puntos cada vez que describen un círculo completo alrededor del acelerador. Para mantener las partículas en una órbita constante, las intensidades de los imanes del anillo se aumentan a medida que las partículas ganan energía. En un par de segundos, las partículas alcanzan energías superiores a 1 GeV y son expulsadas, bien para su análisis experimental directo o para lanzarlas contra blancos que producen diversas partículas elementales al ser golpeados por las partículas aceleradas. El principio del sincrotrón puede aplicarse a protones o electrones, aunque la mayoría de los grandes aparatos son sincrotrones de protones.

El primer acelerador que superó la barrera de 1 GeV fue el cosmotrón, un sincrotrón de protones del Brookhaven National Laboratory (Estados Unidos). El cosmotrón alcanzó energías de 2,3 GeV en 1952 y posteriormente llegó a 3 gigaelectronvoltios. A mediados de la década de 1960 había dos sincrotrones en funcionamiento que aceleraban protones regularmente hasta energías de unos 40 GeV: el sincrotrón de gradiente alterno del Brookhaven National Laboratory y un aparato similar situado cerca de Ginebra (Suiza), controlado por el CERN, la Organización Europea para la Investigación Nuclear. A principios de la década de 1980, los dos mayores sincrotrones de protones eran un aparato de 500 GeV del CERN y otro similar del Fermi National Accelerator Laboratory (Fermilab), situado cerca de Batavia, en Estados Unidos. La capacidad de este último, denominado tevatrón, aumentó hasta un límite potencial de 1 TeV (un teraelectronvoltio, o TeV, equivale a un billón de voltios) en 1983 al instalar imanes superconductores, lo que lo convirtió en el acelerador más potente del mundo. Desde 1989 hasta finales de 2000 estuvo funcionando en el CERN el gran colisionador de electrones-positrones (LEP, siglas en inglés), un anillo de 27 km que consiguió acelerar electrones y positrones hasta una energía de unos 200 gigaelectronvoltios.

APLICACIONES

Los aceleradores se utilizan para explorar los núcleos atómicos, lo que permite a los científicos investigar sobre la estructura y el comportamiento de los átomos. Para estudiar las partículas fundamentales que componen el núcleo se emplean aparatos con energías superiores a 1 GeV. Se han identificado varios

Page 3: Acelerador de partículas

cientos de estas partículas. Los físicos de altas energías confían en descubrir reglas o principios que permitan una clasificación ordenada de las partículas subnucleares. Una clasificación así sería tan útil para la ciencia nuclear como lo es la tabla periódica de los elementos para la química. Los colisionadores permiten a los científicos generar violentas colisiones entre partículas que reproducen la situación del Universo en sus primeros microsegundos de existencia. Un estudio continuado de sus hallazgos debería aumentar el conocimiento científico de la estructura del Universo.

El círculo grande marca la situación del túnel del LEP, el gran colisionador de electrones-positrones del CERN (Organización Europea para la Investigación Nuclear), que estuvo en funcionamiento hasta finales de 2000. El túnel, que se encuentra a 100 m de profundidad y tiene una circunferencia de 27 km, albergará el gran colisionador de hadrones LHC.

Ciclotrón y sincrotrón

En física se emplean aceleradores de partículas para estudiar la naturaleza de la materia. Estas enormes máquinas aceleran partículas cargadas (iones) mediante campos

Page 4: Acelerador de partículas

electromagnéticos en un tubo hueco en el que se ha hecho el vacío, y finalmente hacen colisionar cada ion con un blanco estacionario u otra partícula en movimiento. Los científicos analizan los resultados de las colisiones e intentan determinar las interacciones que rigen el mundo subatómico. (Generalmente, el punto de colisión está situado en una cámara de burbujas, un dispositivo que permite observar las trayectorias de partículas ionizantes como líneas de minúsculas burbujas en una cámara llena de líquido.) Las trayectorias de las partículas aceleradas pueden ser rectas, espirales o circulares. Tanto el ciclotrón como el sincrotrón utilizan un campo magnético para controlar las trayectorias de las partículas. Aunque hacer colisionar las partículas unas contra otras puede parecer inicialmente un método un tanto extraño para estudiarlas, los aceleradores de partículas han permitido a los científicos aprender más sobre el mundo subatómico que ningún otro dispositivo.

Acelerador LEPEl acelerador LEP del CERN estaba instalado en un túnel situado a varias decenas de metros bajo tierra, atravesando la frontera entre Suiza y Francia, en las proximidades de Ginebra. El esquema muestra el acelerador y las instalaciones de los experimentos DELPHI, L3, ALEPH y OPAL, unidas por grandes ascensores a las respectivas áreas experimentales de la superficie, donde están ubicados los instrumentos de recogida de datos. El LEP se cerró a finales de 2000, y su túnel de 27 km será ocupado por el gran colisionador de hadrones LHC (Large Hadron Collider).

Esta fotografía fue tomada durante la construcción del cosmotrón del Brookhaven National Laboratory (Estados Unidos). El imán en forma de anillo, utilizado para acelerar protones, tiene un diámetro interior de unos 18 m y pesa 2.000 t, aproximadamente.