acopladores opticos

77
Optocouplers Data Book 1996

Upload: jcfalchi

Post on 16-Oct-2014

338 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Acopladores Opticos

OptocouplersData Book

1996

Page 2: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

Contents

General Information 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selector Guide – Alphanumeric Index 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Product Information Card 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optocouplers – Isolators 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optocouplers – Optical Sensors 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Classification Chart for Opto Isolators 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conventions Used in Presenting Technical Data 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nomenclature for Semiconductor Devices According to Pro Electron 12. . . . . . . . . . . . . . . . . . .

Type Designation Code for Optocouplers 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type Designation Code for Optical Sensors 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Symbols and Terminology – Alphabetically 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example for Using Symbols According to DIN 41 785 and IEC 148 17. . . . . . . . . . . . . . . . . . . . . . . . . . .

Data Sheet Structure 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Description 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Absolute Maximum Ratings 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thermal Data – Thermal Resistances 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optical and Electrical Characteristics 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diagrams 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dimensions (Mechanical Data) 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Additional Information 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General Description 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basic Function 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Technical Description – Assembly 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conversion Tables – Optoelectronic General 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Measurement Techniques 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Measurements on Emitter Chip 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Measurements on Detector Chip 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static Measurements 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Switching Characteristics 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taping of SMD Couplers 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Technical Information 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Missing Devices 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Top Tape Removal Force 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ordering Designation 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assembly Instructions 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Soldering Instructions 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Heat Removal 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 3: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

Contents (continued)

Handling Instructions 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protection against ElectrostaticDamage 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mounting Precautions 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cleaning 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Quality Information 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General Quality Flow Chart Diagram 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Process Flow Charts 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assembly Flow Chart for Standard Opto-Coupler 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qualification and Release 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Statistical Methods for Prevention 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reliability 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average Outgoing Quality (AOQ) 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Early Failure Rate (EFR) 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean Time to Failure (MTTF) 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Activation Energy 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Safety 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Long-Term Failure Rate (LFR) 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optocouplers in Switching Power Supplies 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VDE 0884 - Facts and Information 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Layout Design Rules 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TEMIC Optocoupler Program 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Construction 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overview 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6–PIN STD Isolators 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Application of Optoelectronic Reflex Sensors TCRT1000, TCRT5000, TCRT9000, CNY70 51. . . . . . . .

Drawings of the Sensors 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optoelectronic Sensors 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

General Principles 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parameters and Practical Use of the Reflex Sensors 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coupling Factor, k 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Working Diagram 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Resolution, Trip Point 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sensitivity, Dark Current and Crosstalk 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ambient Light 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Application Examples, Circuits 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Application Example with Dimensioning 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Circuits with Reflex Sensors 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cross Reference List Opto 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data Sheets 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Opto Isolators 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Opto Sensors 313. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Addresses 419. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 4: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

2

Optoisolators

Characteristics

VIO CTR V(BRCEO) VCEsat @ IF and IC ton / toff @ IC

IF=10 mA IC=1 mA RL=100 �

Package Type VRMS % V V mA mA �s mA

6 Pin Optoisolators – with Transistor Output4N252) 3750 100(>20) >32 <0.5 50 2 4 10

4N262) 3750 100(>20) >32 <0.5 50 2 4 10

4N272) 3750 100(>10) >32 <0.5 50 2 4 10

4N282) 3750 100(>10) >32 <0.5 50 2 4 10

4N352) 3750 150(>100) >32 <0.3 10 0.5 <10 2

4N362) 3750 150(>100) >32 <0.3 10 0.5 <10 2

4N372) 3750 150(>100) >32 <0.3 10 0.5 <10 22) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no. (e.g., 4N25(G)VS)

6 Pin Optoisolators – with Darlington Output

4N322) 3750 >500 >55 <1 8 2 50 50

4N332) 3750 >500 >55 <1 8 2 50 50

2) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no. (e.g., 4N25(G)VS)

Multichannel Optoisolators – with Transistor OutputMCT6 2800 >60

CNY74–2 2800 50–600 1) >70 <0.3 10 1 6 2

MCT62 2800 >100 1)

K827P 2800 50–600 1) >70 <0.3 10 1 6 2

CNY74-4 2800 50–600 1) >70 <0.3 10 1 6 2

K847P 2800 50–600 1) >70 <0.3 10 1 6 2

1) IF = 5 mA Surface Mount Optoisolators – with Transistor Output

MOC205 40–80

MOC206 2500 63–125 >90 <0.3 10 1 6 5

MOC207 100–200

TCMT1020 <40TCMT1020 <40

TCMT1021 40–80TCMT1021 40–80

TCMT1022 2500 63 125 >90 �0 3 10 1 6 5TCMT1022 2500 63–125 >90 �0.3 10 1 6 5

TCMT1023 100–200

TCMT1024 160–320

Page 5: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

3

Characteristics

VIO CTR V(BRCEO) VCEsat @ IF and IC ton / toff @ IC

IF=10 mA IC=1 mA RL=100 �

Package Type VRMS % V V mA mA �s mA

Surface Mount Optoisolators – with Transistor OutputMOC211 >20

MOC212 >50

MOC2132500

>100>90 <0 3 10 1 6 5

MOC2152500

>20 1)>90 <0.3 10 1 6 5

MOC216 >50 1)

MOC217 >100 1)

TCMT1030 >10 1)

TCMT1031 >20 1)

TCMT1032 2500 >50 1) >90 <0.3 10 1 6 5

TCMT1033 >100 1)

TCMT1034 >200 1)

1) IF = 1 mA

Metal Can OptoisolatorsCNY18III 500 25–50 >32 <0.2 10 1 5 5

CNY18IV 500 40–80 >32 <0.2 10 1 5 5

CNY18V 500 60–120 >32 <0.2 10 1 5 5

K120P 800 50 (>25) >35 <0.3 20 2.5 5 3

3C91C 1000 100 (>40) >50 <0.3 20 2.5 10 2

3C92C 800 100 (>40) >50 <0.3 20 2.5 6 2

Characteristics

VIO CTR V(BRCEO) VCEsat @ IF and IC ton / toff @ IF

IF=10 mA IC=1 mA RL=100 �

Package Type VDC % V V mA mA �s mA

Optoisolators – for Intrinsic Safety Requirements, with Transistor Output

CNY21ExiEx-90.C.2106U 10000 80(>50) >32 <0.3 10 1 5 5

CNY65ExiEx-81/2158U 11600 63–125 >32 <0.3 10 1 5 5

Page 6: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

4

Characteristics

VIO CTR V(BRCEO) VCEsat @ IF and IC ton / toff @ IF

IF=10 mA IC=1 mA RL=100 �

Package Type VDC % V V mA mA �s mA

VDE 0884 Approved OptoisolatorsStandard Optoisolators – with Transistor Output

4N25(G)V1) 6000 100(>20) >32 <0.5 50 2 4 10

4N35(G)V1) 6000 150(>100) >70 <0.3 10 0.5 10 2

1) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no. (e.g., 4N25(G)VS)

No Base Connection

TCDT1110(G) 6000 150(>100) >70 <0.3 10 0.5 10 2

Order “G” devices e.g., TCDT1110(G) with wide spaced 0.4 lead form, for 8 mm PC board spacing safety requirements!

– With CTR RankingCQY80N(G)1) 6000 90(>50) >32 <0.3 10 1 9 5

CNY17(G)-11) 6000 40–80 >32 <0.3 10 1 9 5

CNY17(G)-21) 6000 63–125 >32 <0.3 10 1 9 5

CNY17(G)-31) 6000 100–200 >32 <0.3 10 1 9 51) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no., e.g., 4N25(G)VS

No Base ConnectionTCDT1100(G) 6000 90(>50) >32 <0.3 10 1 9 5

TCDT1101(G) 6000 40–80 >32 <0.3 10 1 9 5

TCDT1102(G) 6000 63–125 >32 <0.3 10 1 9 5

TCDT1103(G) 6000 100–200 >32 <0.3 10 1 9 5

– With CTR Ranking and High Output VoltageCNY75(G)A1) 6000 63–125 >90 <0.3 10 1 4 10

CNY75(G)B1) 6000 100–200 >90 <0.3 10 1 6 10

CNY75(G)C1) 6000 160–320 >90 <0.3 10 1 7 101) Water-proof construction: Suitable for cleaning process with pure water. For your orders, attach “S” to the order-no. (e.g., 4N25(G)VS)

Page 7: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

5

Characteristics

VIO CTR V(BRCEO) VCEsat @ IF and IC ton / toff @ IF

IF=10 mA IC=1 mA RL=100 �

Package Type VDC % V V mA mA �s mA

No Base ConnectionTCDT1120(G) 6000 63 >90 <0.3 10 1 4 10

TCDT1122(G) 6000 63–125 >90 <0.3 10 1 5 10

TCDT1123(G) 6000 100–200 >90 <0.3 10 1 6 10

TCDT1124(G) 6000 160–320 >90 <0.3 10 1 7 10

Order “G” devices, e.g., CNY75GA with wide spaced 0.4” lead form, for 8 mm PC board spacing safety requirements!

Optoisolators – for High Isolation VoltagesCNY21N 8000 60(>25) >32 <0.3 10 1 5 5

CNY64 50–300

CNY64A 8000 63–125 >32 <0.3 10 1 5 5

CNY64B 100–200

CNY65 50–300

CNY65A 8000 63–125 >32 <0.3 10 1 5 5

CNY65B 100–200

CNY66 8000 50–300 >32 <0.3 10 1 5 5

Characteristics

VIO VDRM ITRMS IFT VTM dv/dtPackage Type

VIOVIOTM

VDRMV

ITRMSmA

IFTmA

VTMV

dv/dtV/�s

Optoisolators – with Triac Driver OutputK3010P(G) <15

K3011P(G) 250 100 <10 <3 10

K3012P(G) <5

K3020P(G) 6000 <30

K3021P(G)500 100

<15<3 10

K3022P(G)500 100

<10<3 10

K3023P(G) <5

Order “G” devices e.g., K3011PG with wide spaced 0.4 ” lead form, for 8 mm PC board spacing safety requirements!1) VDE 0884 certificate is applied

Page 8: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

6

Optical Sensors

Characteristics

IC CTR @ IFV(BR)CEO@ 1 mA VCEsat @ IF and IC

Package Type mA % mA V V mA mA

Reflective Optical Sensors

CNY70

TCRT1000 >0.3 >1.5 20 >32 <0.3 20 0.1

TCRT1010

TCRT5000 >0.35 >3.5 10 >32 <0.4 10 0.1

Transmissive Optical Sensors– with Aperture – with Transistor Output

TCST1103 4(>2) 20(>10) 20 70 3.2 0.6 1

TCST2103 4(>2) 20(>10) 20 70 3.2 0.6 1

TCST1202 2(>1) 10(>5) 20 70 3.2 0.4 0.5

TCST2202 2(>1) 10(>5) 20 70 3.2 0.4 0.5

TCST1300 0.5(>0.25) 2.5(>1.25) 20 70 3.2 0.2 0.25

TCST2300 0.5(>0.25) 2.5(>1.25) 20 70 3.2 0.2 0.25*)TCST2103 /TCST2202 /TCST2300

– without Aperture – with Transistor Output

TCST1000 0.5(>0.25) 2.5(>1.25) 20 70 3.1 0.8 –

TCST2000 0.5(>0.25) 2.5(>1.25) 20 70 3.1 0.8 –

Miniature Transmissive Optical Sensors – with Transistor OutputTCST1230 1(>0.5) 5(>2.5) 20 70 3 0.8 –

TCST1030 2.5(>1.2) 25(>12) 10 70 3 0.8 –

TCST5123 5(>2.4) 25(>12) 20 70 2.8 0.8 –

Miniature Optical Encoder – with Transistor Output (Dual Channel)

TCVT1300 0.6(>0.4) 2(>1.3) 30 70 1.5 0.2 0.2

Page 9: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

7

Characteristics

IC CTR @ IFV(BR)CEO@ 1 mA Gap Resolution Aperture

Package Type mA % mA V mm mm mm

Matched Pairs (Emitter and Detector)

TCZT8012 2(>1) 10(>5) 20 70 <0.4 20 0.1

TCZT8020 0.5(>0.25) 2.5(>1.25) 20 70 <0.4 20 0.025

Characteristics

IFT ton / toff tr / tf VCC Gap Resolution Aperture

Package Type mA �s �s V mm mm mm

Transmissive Optical Sensors – with Schmitt Trigger Logic1)

TCSS1100 <10 2 0.03 5 3.2 0.6 1

TCSS2100 <10 2 0.03 5 3.2 0.6 1

Matched Pairs (Emitter and Detector) – with Schmitt Trigger Logic1)

TCZS8000 <20 2 0.03 5 – – –

TCZS8100 <10 2 0.03 4.5–16 – – –

1) Inverted, open collector output

Optical Sensors with Wires and Connectors

Characteristics

IFT VOL IS VCC Gap Resolution Aperture

Package Type mA V mA V mm mm mm

Transmissive Optical Sensors – with Schmitt Trigger Logic Output

TCYS5201 – 0.35 30 5 5 0.4 0.5

TCYS6201 – 0.35 30 5 5 0.4 0.5

Page 10: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

8

Product Information CardOptocouplers – Isolators

Market Segment,Recommended TEMIC

DevicesDescription Applications

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Switchmode power supplyCQY80N/ TCDT1101-03CNY75A-C/ TCDT1121-23CNY64 or CNY65 for largercreepage distances

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

On-off external control circuit, feedback circuit,overvoltage detection circuit.Main features: Insulation input-to-output and smalltransformers are replaced.Key features: Isolation test voltage(std is 3.750 KV RMS) and CTR (ratio outputcurrent/ input current). Different models requestdifferent CTR rank. Coupler with no baseconnection is very popular because it preventsinterferences.Most usable parts: CQY80N/ TCDT1100 andCNY75/ TCDT1120 all couplers also available in“G” version. “G” stands for extended creepagedistance of 0.4� lead to lead.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Power supply in monitors,computers, copymachines, printers, faxmachines, TV, VCR,medical equipment,washing machines etc.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Control equipmentplease recommend:4N35-4N37

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Isolation of dc input circuit, isolation of dc outputcircuit, signal serve motor control circuit.Isolation for signal transfer system for automaticdoor control, circuit lamp and relay drive circuit.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programmable controller,numerical control, PPCtele-facsimile, automaticdoor control, others

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Office automation equipmentplease recommend:CNY64, CNY65

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motor driving power-supply circuit (primary-secondary circuit isolation), high-voltage controlcircuit of static electric printer, printer drivercircuit interface between input and output circuit.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PPC tele-facsmileequipment, printer

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vending machineplease recommend:4N35-4N37

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Interface between input and output circuit typeselection circuit.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Household applianceplease recommend:CNY64, CNY65K3010P-K3023P

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Audio signal isolation, video signal interface,power-supply circuit, motor control circuit.Triac driver interface between input and outputBase amplification circuit of inverter controlover-current detection circuit.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TV, electrical sewingmachine, microwaveoven, warm air heatingequipment, air conditioner

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Audio equipmentsee switch-mode power supply

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Power supply circuit (primary-secondary circuitisolation)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Compact disc player

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Telecommunicationplease recommend:K3010P-K3023P,4N35-4N37, 4N32

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Isolation for signal transfer system, pulse-dialcircuit, ring-detector circuit, loop monitor circuit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Push-button telephonesystem

Page 11: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

9

Optocouplers – Optical Sensors

Market Segment,Application

Description Usability

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TV, audioplease recommend:TCRT1000, 5000,TCST5123, 1030, 1230TCVT1300

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Detection of rotation speed, position pick-up head,home position tape counter, tape-end detection

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCR, VDP, CD player,tape deck

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Home electricplease recommend:TCRT5000, TCST1103,TCST1300, IR single parts

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scattering reflection light, detection of washingwater contaminiation, detection of salt level, me-chanical position detection, movement of needle,cloth feeder

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Smoke detector. washingmachines, dish-washer,health equipment, sewingmachinesÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Automotiveplease recommend:optical pairs: TCZT8020,TCZT8012, TCZS8100,TCRT1000

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engine speed detection, point-position detection,steering angle detection, detection of door lock

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tachometer, speedometer, steeringwheel, door

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Control and measureplease recommend:TCVT1300, TCRT1000

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Speed rotation, motor position, distance detection,mechanical position detection, object sensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rotary encoder measuring, devices, robots, electricity meters

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Office automationplease recommend:TCST1030, 1230,TCST1300, TCRT1000TCRT5000

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Detection of paper, paper position, home position,print timing, detection of paper feeding, detectionof paper exhaustion index, write-protect detection,zero tracking detection, detection of scan timing

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Copier, printer, typewriter,facsimile, FDD, tapedrives, handy, scanner

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OthersTCST1103,TCRT5000, TCST1300

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Detection of coins, detection of paper money,detection of prints, detection of weight, objectsensor/ on/ off position, liquid-level detection

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Slot machine ticket/vending machines,validator, film cutter,electronic scales,watertab, liquid, container

Page 12: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

10

Classification Chart for Opto Isolators

General purpose

4N27/28

Standard

CTR>10%

Multichannel

4N-Series

Transistor output

4N25/26

CTR>20%

4N35–37

CTR>100%

TCDT1110

CTR>50%

Base n.c.

Transistor output

4N32/33

CTR>500%

High CTR

Darlington output

2 Channels

Transistor output

K827P

CNY74–2

CTR>50–600%

MCT6/62American pin connection

Japanese pin connection

K847P

CNY74–4American pin connection

Japanese pin connection

4 Channels

Transistor output

1500 V

2800 V

3550 V

3750 V96 11941

6000 V

American pin connection

CTR>100%

CTR>50–600%

CTR>50–600%

CTR>50–600%

Page 13: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

11

Classification Chart for Opto Isolators

VDE-tested devices for e.g., switching power supply

4N35(G)V

CNY65Exi

CNY64/65/66

CNY21N

CNY21Exi

CQY80N(G)

CNY17(G)

K3010P(G)

CNY75(G)

K3020P(G)

Creepage distance�8mm

Thickness ofisolation > 2mm

Thickness ofisolation>0.75mm

Transistor output

Triac driver

Transistor output

Thickness ofisolation > 3.3mm

Transistor outputCreepage distance> 8mm

CTR>50%

CTR>25%

CTR>100%

CTR>50%

CTR 63–125%

CTR>50%

base n.c.

use for:IEC 335 / VDE 700;safety standard

use for:IEC 435 / VDE 0805IEC 380 / VDE 0806

PTB-tested device use for:intrinsic safety

VDRM=250V, IFT�15mA

VDRM=500V, IFT�30mA

500 V

1000 V

6000 V

8000 V

10000 V

11000 V

15000 V96 11940

CTR>40%

TCDT112.(G)

4N25(G)V

CTR>63%

CTR>20%

TCDT110.(G)

TCDT1110(G)

CTR>50%

CTR>100%

base n.c.

base n.c.

CTR>63%

CNY18

K120P

3C91C

3C92C

Hermetically-sealedpackage JEDEC TO72

Different pinconnections

Transistor output

CTR>40%

CTR>40%

CTR>25%

CTR>25%

Page 14: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

12

Conventions Used in Presenting Technical Data

Nomenclature for Semiconductor Devices According to Pro ElectronThe type number of semiconductor devices consists of two letters followed by a serial number

Material Function Serial number

C N Y75

The first letter gives information about the material usedfor the active part of the devices.

A GERMANIUM(Materials with a band gap of 0.6 – 1.0 eV) 1)

B SILICON(Materials with a band gap of 1.0 – 1.3 eV) 1)

C GALLIUM-ARSENIDE(Materials with a band gap > 1.3 eV) 1)

R COMPOUND MATERIALS(For instance Cadmium-Sulphide)

The second letter indicates the circuit function:

A DIODE: Detection, switching, mixer

B DIODE: Variable capacitance

C TRANSISTOR: Low power, audio frequency

D TRANSISTOR: Power, audio frequency

E DIODE: Tunnel

F TRANSISTOR: Low power, high frequency

G DIODE: Oscillator, miscellaneous

H DIODE: Magnetic sensitive

K HALL EFFECT DEVICE:In an open magnetic circuit.

L TRANSISTOR: Power, high frequency

M HALL EFFECT DEVICE:In a closed magnetic circuit

N PHOTO COUPLER

P DIODE: Radiation sensitive

Q DIODE: Radiation generating

R THYRlSTOR: Low power

S TRANSISTOR: Low power, switching

T THYRISTOR: Power

U TRANSISTOR: Power, switching

X DIODE: Multiplier, e.g., varactor, step recovery

Y DIODE: Rectifying, booster

Z DIODE: Voltage reference or voltage regulator,transient suppressor diode

The serial number consists of:

� Three figures, running from 100 to 999, for devicesprimarily intended for consumer equipment.

� One letter (Z, Y, X, etc.) and two figures running from10 to 99, for devices primarily intended for profes-

sional equipment.

A version letter can be used to indicate a deviation of asingle characteristic, either electrically or mechanically.

The letter never has a fixed meaning, the only exceptionbeing the letter R, which indicates reversed voltage, i.e.,collector-to-case.

1) The material mentioned are examples

Page 15: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

13

Type Designation Code for Optocouplers

TEMICTELEFUNKENSemiconductors

Coupler

Case varietiesC = Metal canD = Dual inlineG = Casting productsH = Metal can parts

mounted in plasticcase

M= SMD package

T C��� � � � � �

OutputD = DarlingtonE = Split-DarlingtonH = High speedL = Linear ICS = Schmitt TriggerT = TransistorV = Triac

Number of coupler systems1 = 1 system2 = 2 systems3 = 3 systems4 = 4 systems

Main type

Selectiontype

IF “T” on 4. positionPin connection – pleaserefer to data sheet

Type Designation Code for Optical Sensors

TEMICTELEFUNKENSemiconductors

Coupler

Function/ Case varietiesN = SMD reflective sensorO = Reflective sensor with

wire terminalsR = Reflective sensorS = Transmission sensor

(polycarbonat)U = SMD transmissive

sensorV = 2 channel transmissive

sensorX = Transmission sensor

with wire terminalsY = Transmission sensor

with connectorZ = Emitter and detector

matched pairs without package

T C��� � � � � �

OutputD = DarlingtonL = Linear ICS = Schmitt TriggerT = Transistor

Package varieties1 = without mounting

flange2 = with mounting

flange3 = with mounting

flange on emitter side

4 = with mounting flange on detector side

5 = special package without flange

6 = special package with flange

7 = TO92 Mini8 = single part9 = special part

Main type

Selectiontype

Aperture0 = without1 = 1 mm2 = 0.5 mm3 = 0.25 mm

AppendixU = Unmounted

Page 16: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

14

Symbols and Terminology – AlphabeticallyAAnode, anode terminal

ARadiant sensitive areaThat area which is radiant-sensitive for a specified range

aDistance between the emitter (source) and the detector

AQLAcceptable Quality Level,see “Qualification and Monitoring”

BBase, base terminal

CCapacitance

CCathode, cathode terminal

CCollector, collector terminal

°CCelsiusUnit of the centigrade scale; can also be used (besides K)to express temperature changesSymbols: T, �TT(°C) = T(K)–273

CCEOCollector emitter capacitanceCapacitance between the collector and the emitter withopen baseMeasurement is made by applying reverse voltagebetween collector and emitter terminals.

CjJunction capacitanceCapacitance due to a PN-junction of a diodeIt decreases with increasing reverse voltage.

CkCoupling capacitanceCapacitance between the emitter and the detector of anopto isolator

CTRCurrent Transfer RatioRatio between output and input current

CTR� 100IC

IF%

dDistance

�v/�t crCritical rate of rise of off-state voltage (IF = 0) Highest value of “rate of rise of off-state voltage” whichwill cause no switching from the off-state to the on-state.

�v/�t crqCritical rate of rise of commutating voltage (IF ≥ IFT) Highest value of “rate of rise of commutating voltage”. Itwill not switch-on the device again until after the voltagehas decreased to zero and the trigger current is switchedto zero (If ≤ IFT).EEmitter, emitter terminal

fFrequencyUnit: Hz (Hertz)fgCut-off frequencyThe frequency at which the modules of the small signal

current transfer ratio has decreased to 12� of its lowest

frequency value.GBGain bandwidth productGain bandwidth product is defined as the product of Mtimes the frequency of measurement, when the diode isbiased for maximum of obtainable gain.hFEDC current gainIBBase currentICCollector currentICBCollector base currentICEOCollector dark current, with open base At radiant sensitive devices with open base and withoutillumination/radiation (E = 0)ICMRepetitive peak collector currentICXCross talk currentFor reflex-coupled isolators, collector emitter cut-offcurrent with the IR emitter activated, but withoutreflecting mediumIDRMRepetitive peak off-state currentThe maximum leakage current that may occur under theconditions of VDRM

IFForward current continuousThe current flowing through the diode in direction oflower resistanceIFAVAverage (mean) forward current

Page 17: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

15

IFMPeak forward current

IFSMSurge forward current

IFTThreshold forward currentThe minimum current required to switch from the off-state to the on-state

IHThe minimum current required to maintain the thyristorin the on-state

IoDC output current

IOHHigh level output current

IRReverse current, leakage currentCurrent which flows when reverse bias is applied to asemiconductor junction

IroReverse dark currentReverse dark current which flows through a photoelectricdevice without radiation/ illumination

ISrelRelative supply current

ITOn-state currentThe permissible output current under stated conditions

KKelvinThe unit of absolute temperature T (also called the Kelvintemperature); also used for temperature changes(formerly °K)

PtotTotal power dissipation

PvPower dissipation, general

RIOInput/ output isolation resistor

RLLoad resistance

RthJAThermal resistance, junction ambient

RthJCThermal resistance, junction case

SDisplacement

TPeriod (duration)

TTemperature0 K = –273.16°CUnit: K (Kelvin), °C (Celsius)

tTime

TambAmbient temperatureIt self-heating is significant:Temperature of the surrounding air below the device,under conditions of thermal equilibrium.If self-heating is insignificant:Air temperature in the immediate surroundings of the de-vice

TambAmbient temperature rangeAs an absolute maximum rating:The maximum permissible ambient temperature range.

TcaseCase temperatureThe temperature measured at a specified point on the caseof a semiconductor deviceUnless otherwise stated, this temperature is given as thetemperature of the mounting base for devices with metalcan

tdDelay time

tfFall time, see figure 17

TjJunction temperatureIt is the spatial mean value of temperature which the junc-tion has acquired during operation. In the case ofphototransistors, it is mainly the temperature of collectorjunction because its inherent temperature is maximum.

TCTemperature coefficientThe ratio of the relative change of an electrical quantityto the change in temperature (∆T) which causes it, underotherwise constant operating conditions.

toffTurn-off time, see figure 17

tonTurn-on time, see figure 17

tpPulse duration, see figure 17

trRise time, see figure 17

tsStorage time

Page 18: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

16

TsdSoldering temperatureMaximum allowable temperature for soldering withspecified distance from case and its duration (see table 2)

TstgStorage temperature rangeThe temperature range at which the device may be storedor transported without any applied voltage

VBEOBase-emitter voltage, open collector

V(BR)Breakdown voltageReverse voltage at which a small increase in voltageresults in a sharp rise of reverse currentIt is given in technical data sheets for a specified current.

V(BR)CEOCollector emitter breakdown voltage, open base

V(BR)EBOEmitter base breakdown voltage, open collector

V(BR)ECOEmitter collector breakdown voltage, open base

VCBOCollector-base voltage, open emitterGenerally, reverse biasing is the voltage applied to any-one of two terminals of a transistor in such a way that oneof the junction operates in reverse direction, whereas thethird terminal (second junction) is specified separately.

VCECollector-emitter voltage

VCEOCollector-emitter voltage, open base (IB = 0)

VCEsatCollector emitter saturation voltageSaturation voltage is the dc voltage between collector andemitter for specified (saturation) conditions i.e., IC and IF,whereas the operating point is within the saturation re-gion.

Saturation region

IF givengiven IC

IC

VCEVCESat96 11694

Figure 1.

VDRMRepetitive peak off-state voltageThe maximum allowable instantaneous value of repeti-tive off-state voltage that may be applied across the triacoutput

VEBOEmitter base voltage, open collector

VECOEmitter collector voltage, open base

VFThe voltage across the diode terminals which results fromthe flow of current in the forward direction

VIOThe voltage between the input terminals and the outputterminals

VIORMThe maximum recurring peak (repetitive) voltage valueof the optocoupler, characterizing the long-termwithstand capability against transient overvoltages

VIOTMThe impulse voltage value of the optocoupler, character-izing the long-term withstand capability against transientovervoltage

VIOWMThe maximum rms. voltage value of the optocoupler,characterizing the long-term withstand capability of itsinsulationVRReverse voltageVoltage drop which results from the flow of reversecurrentVsSupply voltageVTMOn-state voltageThe maximum voltage when a thyristor is in the on-stateVTMrelRelative on-state voltage±�Angle of half sensitivityThe plane angles through which a detector, illuminated bya point source, can be rotated in both directions awayfrom the optical axis, before the electrical output of thedevice falls to half the maximum value±�Angle of half sensitivityThe plane angles through which an emitter can be rotatedin both directions away from the optical axis, before theelectrical output of a linear detector facing the emitterfalls to half the maximum value

Page 19: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

17

Example for Using Symbols According to DIN 41 785 and IEC 148

a) Transistor

IcavCollectorcurrent

AC value

ICAV

ICM

iC

ic

Ic

Icm

twithout signal with signal93 7795

IC

Figure 2.

IC dc value, no signalICAV Average total valueICM;IC Maximum total valueIC RMS varying componentICM;IC Maximum varying

component valueiC Instantaneous total valueiC Instantaneous varying

component value

The following relationships are valid:

ICM = ICAV + Icm

iC = ICAV + ic

b) Diode

VFWM

VFSM

t

VF

VRSM

VRRM

VRWM

VR

0

93 7796

VFRM

Figure 3.

VF Forward voltageVR Reverse voltageVFSM Surge forward voltage

(non-repetitive)VRSM Surge reverse voltage

(non-repetitive)VFRM Repetitive peak

forward voltageVRRM Repetitive peak

reverse voltageVFWM Crest working

forward voltageVRWM Crest working

reverse voltage

Page 20: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

18

c) Triac

+I

–I

–V

+V

Quadrant I

Quadrant III

Forward BreakoverVoltage / Current

Reverse BreakoverVoltage / Current

–VDRM

+IDRM

+VDRM

–IDRM

+IT

–IT

+VT

–VT

+IH

–IH

96 11881

Figure 4.

IDRM Repetitive peak off-state current

IFT Threshold forward currentIH Holding currentIT On-state currentVDRM Repetitive peak

off-state voltageVTM On-state voltage

d) Designation and symbols of optoelectronic devices are given so far as possibleaccording to DIN 44020 sheet 1 and IEC publication 50 (45).

Page 21: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

19

Data Sheet Structure

Data sheet information is generally presented in thefollowing sequence:

� Description

� Absolute maximum ratings

� Thermal data – thermal resistances

� Optical and electrical characteristics

� Diagrams

� Dimensions (mechanical data)

Description

The following information is provided: Type number,semiconductor materials used, sequence of zones,technology used, device type and, if necessary,construction.

Also, short-form information on special features and thetypical applications is given.

Absolute Maximum Ratings

These define maximum permissible operational and envi-ronmental conditions. If any one of these conditions isexceeded, it could result in the destruction of the device.

Unless otherwise specified, an ambient temperature of25 ± 3 °C is assumed for all absolute maximum ratings.

Most absolute ratings are static characteristics; ifmeasured by a pulse method, the associated measurementconditions are stated. Maximum ratings are absolute (i.e.,not interdependent).

Any equipment incorporating semiconductor devicesmust be designed so that even under the most unfavorableoperating conditions the specified maximum ratings ofthe devices used are never exceeded. These ratings couldbe exceeded because of changes in

� Supply voltage, the properties of other componentsused in the equipment

� Control settings

� Load conditions

� Drive level

� Environmental conditions and the properties of thedevices themselves (i.e., ageing).

Thermal Data – Thermal ResistancesSome thermal data (e.g., junction temperature, storagetemperature range, total power dissipation) are givenunder the heading “Absolute maximum ratings”; (This isbecause they impose a limit on the application range ofthe device).

The thermal resistance junction ambient (RthJA) quoted isthat which would be measured without artificial cooling,i.e., under worst case conditions.

Temperature coefficients, on the other hand, are listed to-gether with the associated parameters under “Optical andelectrical characteristics”.

Optical and Electrical CharacteristicsHere, the most important operational, optical and electri-cal characteristics (minimum, typical and maximumvalues) are listed. The associated test conditions,supplemented with curves and an AQL-value quoted forparticularly important parameters (see “Qualification andMonitoring”) are also given.

DiagramsBesides the static (dc) and dynamic (ac) characteristics,a family of curves is given for specified operatingconditions. These curves show the typical interpendenceof individual characteristics.

Dimensions (Mechanical Data)This list contains important dimensions and the sequenceof connection, supplemented by a circuit diagram. Caseoutline drawings carry DIN-, JEDEC or commercial des-ignations. Information on the angle of sensitivity orintensity and weight completes the list of mechanicaldata.

Please Note:

If the dimensional information does not include anytolerances, the following applies:

Lead length and mounting hole dimensions are minimumvalues. Radiant sensitive (or emitting area respectively)are typical values, all other dimensions are maximum.

Any device accessories must be ordered separately,quoting the order number.

Additional InformationPreliminary specifications

This heading indicates that some information onpreleminary specifications may be subject to slightchanges.

Not for new developments

This heading indicates that the device concerned shouldnot be used in equipment under development. It is,however, available for present production.

Page 22: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

20

TTL

270 �

0.1 �F

M+5 V

� VAC

Galvanical separation 96 11706

Figure 5. Basic application of an optocoupler

General DescriptionBasic FunctionIn an electrical circuit, an optocoupler ensures total elec-tric isolation, including potential isolation, as in the caseof a transformer, for instance.

In practice, this means that the control circuit is locatedon one side of the optocoupler, i.e., the emitter side, whilethe load circuit is located on the other side, i.e., thereceiver side. Both circuits are electrically isolated by theoptocoupler (figure 5). Signals from the control circuitare transmitted optically to the load circuit, and are there-fore free of retroactive effects. In most cases, this opticaltransmission is realized with light beams whose wave-lengths span the red to infrared range, depending on therequirements applicable to the optocoupler. The band-width of the signal to be transmitted ranges from a dcvoltage signal to frequencies in the MHz band. An opto-coupler is comparable to a transformer or relay. Besideshaving smaller dimensions in most cases, the advantagesof optocouplers compared to relays are the following: itensures considerably shorter switching times, no contactbounce, no interference caused by arcs, no mechanicalwear and the possibility of adapting a signal, already inthe coupler, to the following stage in the circuitry. Thanksto all these advantages, optocouplers are outstandinglysuitable for circuits used in microelectronics and also indata processing and telecommunication systems. Opto-couplers are used to an increasing extent as safety testedcomponents, e. g., in switchmode power supplies.

DesignAn optocoupler has to fulfill 5 essential requirements:

� Good insulation behavior

� High current transfer ratio (CTR)

� Low degradation

� Low coupling capacitance

� No uncontrolled function by field strength influences

These factors are essentially dependent on the design, thematerials used and the corresponding chips used for theemitter/receiver.

TEMIC has succeeded in achieving a design with opti-mized insulation behavior and good transfercharacteristics.

TEMIC offers various mechanical designs. The 6-leadDIP package optocoupler is used most widely throughoutthe world.

Since this design deviates fundamentally frommanufacturers’ designs, it is necessary to explain itscharacteristics.

In TEMIC’s 6-lead DIP couplers, the emitter and receiverchips are placed side by side. A semi-ellipsoid with bestreflection capabilities is fitted over both chips. The entiresystem is then cast in a plastic material impermeable tothe infrared range and of high dielectric strength. Thewhole system is enveloped in a light-proof plasticcompound to ensure that no external influences such aslight or dust, etc. will disturb the coupler, see figure 6.

The design offers several advantages in comparison toconventional coupler designs.

The mechanical clearance between the emitter andreceiver is 0.75 mm and is thus mechanically stable evenunder thermal overloads, i.e., the possibility of a shortcircuit caused by material deformation is excluded. Thisis important for optocouplers which have to fulfill strictsafety requirements (VDE/UL specifications), seeVDE0884 Facts and Information.

Page 23: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

21

Thanks to their large clearance these couplers have a verylow coupling capacity of 0.2 pF. Couplers with conven-tional designs, i.e., where the emitter and receiver arefitted ”face-to-face” (figure 7), have higher couplingcapacitance values by a factor of 1.3 - 2. Attention mustbe paid to the coupling capacitance in digital circuits inwhich steep pulse edges are produced which superimposethemselves on the control signal. With a low couplingcapacitance, the transmission capabilities of theseinterference spikes are effectively suppressed betweenthe input and output because a coupler should onlytransmit the effective signal. This capability ofsuppressing dynamic interferences is commonly knownas “common-mode rejection”.

Figure 6. Inline emitter and transmitter chip design (e.g., CQY80N)

Figure 7. Face-to-face design

Due to the special design of these couplers, the receiversurface is outside the area of the direct field strength.Field strength is produced when there is a voltagepotential between the coupler’s input and output. Itcauses the migration of positive ions to the transistor’ssurface. Positive ions perform on the base in the same wayas a gate voltage applied to an n-channel FET transistor(see figure 8).

If inversions occur on the surface, the phototransistorbecomes forward-biased, causing an inadmissibleresidual collector-emitter current. As a result, controlledfunctioning of the coupler is no longer guaranteed(figure 8). This effect occurs mainly whenever thereceiver is within the field strength potential. Themanufacturer should create suitable protective measuresin this case. Using TEMIC’s optocouplers, such protec-tive measures are not necessary thanks to their perfectdesign.

The degradation of an optocoupler, i.e., impairment of itsCTR over a finite period, depends on two factors. On theone hand, it depends on the emitter element due to itsdecreasing radiation power while, on the other hand, itdepends on ageing or opaqueness of the synthetic resinwhich must transmit the radiation from the emitter to thereceiver. A decrease in the radiation power can beprimarily ascribed to thermal stress caused by an external,high ambient temperature and/or high a forward current.In practice, optocouplers are operated with forwardcurrent of 1 to 30 mA through the emitting diode. In thisrange, degradation at an average temperature of 40°C isless than 5% after 1000 h. If we compare this value withthe service life requirements applicable to transistors forhigh grade systems (such as those used in telecom-munication system standards), the optocoupler takes agood position with such degradation values. TheDeutsche Bundespost, for example, permits a B-drift ofno more than 20% for transistors with a maximum testingtime of 2000 h. In general, an optocoupler’s life time isa period of 150.000 h, i.e, the CTR should not havedropped below 50% of its value at 0 hours during this time(see figure 9).

Figure 8. Functions of parasitic field effect transistor as a resultof failure (latch-up) in the phototransistor of couplers

Page 24: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

22

0.5

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0 1500 3000 4500 6000 7500 9000

I /

I (

0 h

) –

Rel

. Col

lect

or C

urre

nt

t – Time ( h )96 12107

C

Operating conditions:VCE=5VIF=30mA

Tamb=25°C

C

Test conditions:VCE=5VIF=10mA

Figure 9. Degradation under typical operating conditions withreference to the CQY80N

Technical Description – AssemblyEmitter

Emitters are manufactured using the most modern LiquidPhase Epitaxy (LPE) process. By using this technology,the number of undesirable flaws in the crystal is reduced.This results in a higher quantum efficiency and thushigher radiation power. Distortions in the crystal areprevented by using mesa technology which leads to lowerdegradation. A further advantage of the mesa technologyis that each individual chip can be tested optically andelectrically even on the wafer.

Detector

TEMIC detectors have been developed so that they matchperfectly to the emitter. They have low capacitancevalues, high photosensitivity and are designed for an ex-tremely low saturation voltage.

Silicon nitride passivation protects the surface againstpossible impurities.

Assembly

The components are fitted onto lead frames by fully auto-matic equipment using conductive epoxy adhesive.Contacts are established automatically with digitalpattern recognition using the well-proven thermosonictechnique. In addition to optical and mechanical checks,all couplers are measured at a temperature of 100°C.

Conversion Tables – Optoelectronic General

Table 1. Corresponding radiometric and photometric definitions, symbols and units (DIN 5031, Part 1, 3)

Radiometric Units Photometric UnitsNote

Unit Symbol Unit Unit Symbol UnitNote

Radiant flux,Radiant power

�e Watt, W Luminous flux �v lumen, lm Power

Radiant exitance, Exitance

Me W/m2 Luminous emittance Mv lm/m2 Output power perunit area

(Radiant) intensity Ic W/sr (Luminous) intensity Iv Candela,cd, lm/sr

Output power perunit solid angle

Radiant sterance, Radiance

LeW

sr*m2

Luminance (Brightness sterance)

Lv cd/m2 Output power perunit solid angleand emitting areas

Radiant incidance, Irradiance

Ee W/m2 Illuminance Ev lm/m2

Lux, lxInput power perunit area

Radiant energy Qe Ws Luminous energy Qv lm s Power � timeIrradiation He Ws/m2 Illumination Hv lm s/m2 Radiant energy or

luminous energyper unit area

Page 25: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

23

Measurement Techniques

Introduction

The characteristics given in the optocoupler‘s data sheetsare verified either by 100% production tests followed bystatistic evaluation or by sample tests on typicalspecimens. Possible tests are the following:

� Measurements on emitter chip

� Measurements on detector chip

� Static measurements on optocoupler

� Measurement of switching characteristics, cut-offfrequency and capacitance

� Thermal measurements

The basic circuits used for the most important measure-ments are shown in the following sections, although thesecircuits may be modified slightly to cater for specialmeasurement requirements.

Measurements on Emitter Chip

Forward- and Reverse VoltageMeasurements

The forward voltage, VF, is measured either on a curvetracer or statically using the circuit shown in figure 10.A specified forward current (from a constant currentsource) is passed through the device and the voltagedeveloped across it is measured.

To measure the reverse voltage, VR, a 100 �A reversecurrent from a constant current source is applied to thediode (figure 11) and the voltage developed across it ismeasured on a voltmeter of extremely high inputimpedance (≥10 M�).

Measurements on Detector Chip

VCEO and ICEO Measurements

The collector-emitter voltage, VCEO, is measured eitheron a transistor curve tracer or statically using the circuitshown in figure 12.

The collector dark current, ICEO, must be measured incomplete darkness (figure 13). Even ordinary daylightillumination might cause wrong measurement results.

VS = 5V

Rj > 10k�

V

VF

I = 50mA 100mAconstant

94 8205

Figure 10.

VS = 80V( > VR max )

Rj > 10M�

V

VR

I = 10�Aconstant

94 8206

Figure 11.

Ri�1M�

V

VCEO

IC = 1mAconstant

VS = 100V( > VCEO )

E < 100 lx

96 12367

Figure 12.

Page 26: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

24

Ri = 1M�

ICEO

VS = 20V

E = 0

10k� mV

96 11695

Figure 13.

Static Measurements

To measure the collector current, IC (figure 14), aspecified forward current, IF, is applied to the lR diode.Voltage drop is then measured across a low-emitterresistance.

In the case of collector-emitter saturation voltage, VCEsat(figure 15), a forward current, IF, is applied to the IRdiode and a low collector current, IC, in the phototransis-tor. VCEsat is then measured across collector and emitterterminals as shown in figure 15.

Switching Characteristics

Definition

Each electronic device generates a certain delay betweeninput and output signals as well as a certain amount ofamplitude distortion. A simplified circuit (figure 16)shows how the input and output signals of optocouplerscan be displayed on a dual-trace oscilloscope.

The following switching characteristics can be deter-mined by comparing the timing of the output currentwaveform to that of the input current waveform(figure 17).

VS = 5V

IF = 5mA10mAconstant

VS = 5V

Rj = 10k�

mV1�

IC

96 11696

Figure 14.

Rj�1M�

V

VCEsat

IC = 1mAconstant

VS = 5V

IF = 10mAconstant

VS = 5V

94 8218

Figure 15.

VS

Channel I Channel II

GaAs-Diode

IF

96 11697

Figure 16.

Page 27: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

25

tpt

t

0

010%

90%100%

tr

td

ton

ts tf

toff

IF

IC

96 11698

tp pulse durationtd delay timetr rise timeton (= td + tr) turn-on timets storage timetf fall timetoff (= ts + tf) turn-off time

Figure 17.

Improvements of Switching Characteristicsof Phototransistors and Darlington Photo-transistorsWith normal transistors, switching tunes can be reducedif the drive signal level and hence the collector current is

increased. Another time reduction (especially in falltime tf) can be achieved by using a suitable base resistor.However, this can only be done at the expense of adecreasing CTR.

Page 28: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

26

Taping of SMD CouplersTEMIC couplers in SMD packages are available in an anti-static 12 mm blister tape (in accordance with DIN IEC286-3) for automatic component insertion.

The blister tape is a plastic strip with impressed componentcavities, covered by a top tape. For orders add “GS12” to thepart number, e.g., TCMT1020GS12.

96 12363

Figure 18. Blister tape

5.45.2

1.61.4

4.13.9

2.11.9

3.93.7

0.3 max.1.851.65

5.555.45

12.311.7

6.66.4

8.17.9

1.61.4

96 11942

technical drawingsaccording to DINspecifications

Figure 19. Tape dimensions in mm

Number of Components Quantity per reel: 2000 pcs (minimum quantities for order)

Page 29: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

27

Technical InformationPeel test requirement: 50 � 20 gmTemperature/ Pressure settings:

Seal pressure Real temperatureWheel pressure front/ rear front/ rear

25 – 30 psi 35 psi 145 – 150°CProduction run quantity:

Trailer Production units Leader38 pcs – 300 mm min. 2000 pcs 63 pcs – 500 mm min.

De-reeling direction

Tape leader

min. 75 emptycompartments

� 160 mm 40 emptycompartments

Carrier leader Carrier trailer

94 8158

Figure 20. Beginning and end of reel

2.51.5

21.520.5

N34.032.0

12.9012.75

95 10518

W1

W2

Figure 21. Reel dimensions

Page 30: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

28

Missing DevicesA maximum of 0.5% of the total number of componentsper reel may be missing, exclusively missing componentsat the beginning and at the end of the reel. Maximum ofthree consecutive components may be missing, providedthis gap is followed by six consecutive compartments.The tape leader is at least 160 mm and is followed by acarrier leader with at least 10 and not more than 20 emptycompartments. The tape leader may include the carriertrailer, providing the two are not connected together. Thelast component is followed by a carrier tape trailer withat least 10 empty compartments and is sealed with covertape.

Top Tape Removal ForceThe removal force lies between 0.1 N and 1.0 N at aremoval speed of 5 mm/s.In order to prevent the components from popping out ofthe blisters, the top tape must be pulled off at an angle of180°C with respect to the feed direction.

Ordering DesignationThe type designation of the device in SO8 package isgiven by the appendix number: GS12.

Example: TCMT1020-GS12

Assembly InstructionsGeneralOptoelectronic semiconductor devices can be mounted inany position.Connecting wires of less than 0.5 mm diameter may bebent, provided the bend is not less than 1.5 mm from thebottom of the case and no mechanical stress has an affecton it. Connection wires of larger diameters, should not bebent.If the device is to be mounted near heat-generatingcomponents, consideration must be given to the resultantincrease in ambient temperature.

Soldering InstructionsProtection against overheating is essential when a deviceis being soldered. Therefore, the connection wires shouldbe left as long as possible. The time during which thespecified maximum permissible device junction temper-ature is exceeded at the soldering process should be asshort as possible (one minute maximum). In the case ofplastic encapsulated devices, the maximum permissiblesoldering temperature is governed by the maximumpermissible heat that may be applied to the encapsulantrather than by the maximum permissible junctiontemperature.The maximum soldering iron (or solder bath)temperatures are given in table 2. During soldering, noforces must be transmitted from the pins to the case (e.g.,by spreading the pins).

Table 2. Maximum soldering temperatures

Iron Soldering Wave or Reflow SolderingIron

TemperatureDistance of theSoldering Posi-tion from the

Lower Edge ofthe Case

MaximumAllowableSoldering

Time

Soldering Tem-perature

see temperature/time

profiles

Distance of theSoldering Posi-tion from the

Lower Edge ofthe Case

MaximumAllowableSoldering

Time

Devices inmetal case

�245�C�245�C�350�C

�1.5 mm�5.0 mm�5.0 mm

5 s10 s5 s

245�C

300�C

�1.5 mm

�5.0 mm

5 s

3 sDevices inplastic case�3 mm

�260�C�300�C

�2.0 mm�5.0 mm

5 s3 s

235�C260�C

�2.0 mm�2.0 mm

8 s5 s

Devices inplastic case<3 mm

�300�C �5.0 mm 3 s 260�C �2.0 mm 3 s

Page 31: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

29

Soldering Methods

There are several methods for soldering devices onto thesubstrate. The following list is not complete.

(a) Soldering in the vapor phase

Soldering in saturated vapor is also known as condensa-tion soldering. This soldering process is used as a batchsystem (dual vapor system) or as a continuous single va-por system. Both systems may also include a pre-heatingof the assemblies to prevent high temperature shock andother undesired effects.

(b) Infrared soldering

By using infrared (IR) reflow soldering, the heating iscontact-free and the energy for heating the assembly isderived from direct infrared radiation and from convec-tion.

The heating rate in an IR furnace depends on the absorp-tion coefficients of the material surfaces and on the ratioof component’s mass to an As-irradiated surface.

The temperature of parts in an IR furnace, with a mixtureof radiation and convection, cannot be determined in ad-vance. Temperature measurement may be performed bymeasuring the temperature of a certain component whileit is being transported through the furnace.

The temperatures of small components, soldered togetherwith larger ones, may rise up to 280�C.

Influencing parameters on the internal temperature of thecomponent are as follows:

� Time and power

� Mass of the component

� Size of the component

� Size of the printed circuit board

� Absorption coefficient of the surfaces

� Packing density

� Wavelength spectrum of the radiation source

� Ratio of radiated and convected energy

Temperature/time profiles of the entire process and the in-fluencing parameters are given in figure 26.

(c) Wave soldering

In wave soldering one or more continuously replenishedwaves of molten solder are generated, while the substratesto be soldered are moved in one direction across the crestof the wave.

Temperature/time profiles of the entire process are givenin figure 26.

(d) Iron soldering

This process cannot be carried out in a controlled situa-tion. It should therefore not be used in applications wherereliability is important. There is no SMD classificationfor this process.

(e) Laser soldering

This is an excess heating soldering method. The energyabsorbed may heat the device to a much higher tempera-ture than desired. There is no SMD classification for thisprocess at the moment.

(f) Resistance soldering

This is a soldering method which uses temperature-con-trolled tools (thermodes) for making solder joints. Thereis no SMD classification for this process at the moment.

Page 32: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

30

Temperature-Time Profiles

94 8625

max. 160°C

full line : typicaldotted line : process limits

max. 240°C

2–4 K /s

ca. 230°C

215°C

10 s

50

100

150

200

250

300

0 50 100 150 200 250

Time ( s )

Tem

pera

ture

(

C )

°

max. 40 s

Lead Temperature

90 – 120 s

Figure 22. Infrared reflow soldering optodevices (SMD package)

forced cooling

0

50

100

150

200

250

300

0 50 100 150 200 250

Time ( s )

Tem

pera

ture

(

C )

°

94 8626

100°...130°C

full line : typicaldotted line : process limits

235°...260°C

2 K /s

ca. 200 K /s ca. 2 K /s

second wave

first wave

ca. 5 K /s

5 sLead Temperature

Figure 23. Wave soldering double wave optodevices

Page 33: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

31

Heat RemovalThe heat generated in the semiconductor junction(s) mustbe moved to the ambient. In the case of low-powerdevices, the natural heat conductive path between caseand surrounding air is usually adequate for this purpose.

In the case of medium-power devices, however, heatconduction may have to be improved by the use of star-or flag-shaped heat dissipators which increase the heatradiating surface.

The heat generated in the junction is conveyed to the caseor header by conduction rather than convection; ameasure of the effectiveness of heat conduction is theinner thermal resistance or thermal resistance junctioncase, RthJC, whose value is given by the construction ofthe device.

Any heat transfer from the case to the surrounding airinvolves radiation convection and conduction, the effec-tiveness of transfer being expressed in terms of an RthCAvalue, i.e., the case ambient thermal resistance. The totalthermal resistance, junction ambient is therefore:

RthJA = RthJC + RthCA

The total maximum power dissipation, Ptotmax, of asemiconductor device can be expressed as follows:

Ptotmax�Tjmax – Tamb

RthJA�

Tjmax – Tamb

RthJC� RthCA

where:

Tjmax the maximum allowable junction temperature

Tamb the highest ambient temperature likely to bereached under the most unfavourable conditions

RthJC the thermal resistance, junction case

RthJA the thermal resistance, junction ambient

RthCA the thermal resistance, case ambient, depends oncooling conditions. If a heat dissipator or sink is used,then RthCA depends on the thermal contact between caseand heat sink, heat propagation conditions in the sink andthe rate at which heat is transferred to the surrounding air.

Therefore, the maximum allowable total powerdissipation for a given semiconductor device can beinfluenced only by changing Tamb and RthCA. The valueof RthCA could be obtained either from the data of heatsink suppliers or through direct measurements.

In the case of cooling plates as heat sinks, the approachoutlines in figures 25 and 26 can be used as guidelines.The curves shown in both figures 25 and 26 give thethermal resistance RthCA of square plates of aluminiumwith edge length, a, and with different thicknesses. The

case of the device should be mounted directly onto thecooling plate.

The edge length, �, derived from figures 25 and 26 inorder to obtain a given RthCA value, must be multipliedwith � and �:

�� � �� �� �

where

� = 1.00 for vertical arrangement

� = 1.15 for horizontal arrangement

� = 1.00 for bright surface

� = 0.85 for dull black surface

Example

For an IR emitter with Tjmax = 100°C andRthJC = 100 K/W, calculate the edge length for a 2 mmthick aluminium square sheet having a dull black surface(��= 0.85) and vertical arrangement (� = 1), Tamb = 70°Cand Ptot max = 200 mW.

Ptot max�Tjmax – Tamb

RthJC� RthCA

RthCA �Tjmax – Tamb

Ptot max–RthJC

RthCA �100°C – 70°C

0.2 W– 100 K�W

RthCA �300.2

– 100 K�W

RthCA � 50 K�W

�T � Tcase – Tamb

can be calculated from the relationship :

Ptot max�Tjmax – Tamb

RthJC� RthCA�

Tcase – Tamb

RthCA

�T �50 K�W� (100°C – 70°C)

100 K�W� 50 K�W

�T � Tcase – Tamb�RthCA� (Tjmax – Tamb)

RthJC� RthCA

�T �50 K�W� 30°C

150 K�W

�T � 10°C� 10 K

Page 34: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

32

10 1001

10

100

R

( K

/W )

thC

A

a (mm )

1000

�T = 10°C

30°C60°C120°C

Plate thickness : 0.5 mm

94 7834

Figure 24.

With RthCA = 50 k/W and ���= 10°C, a plate of 2 mmthickness has an edge length ��= 28 mm.

10 1001

10

100

R

( K

/W )

thC

A

a ( mm )

1000

Plate thickness : 2 mm

�T = 10°C

30°C60°C120°C

94 7835

Figure 25.

However, equipment life and reliability have to be takeninto consideration and therefore a larger sink would nor-mally be used to avoid operating the devices continuouslyat their maximum permissible junction temperature.

Page 35: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

33

Handling InstructionsProtection against ElectrostaticDamageAlthough electrostatic breakdown is most oftenassociated with IC semiconductor devices, optoelectro-nic devices are also prone to such a breakdown.Miniaturized and highly integrated components are par-ticularly sensitive.

Sensitivity

Breakdown Voltages

Typical electrostatic voltages in the working environmentcan easily reach several thousand volts, well above thelevel required to cause a breakdown. As market require-ments are moving towards greater miniaturization, lowerpower consumption, and higher speeds, optoelectronicdevices are becoming more integrated and delicate. Thismeans that they are becoming increasingly sensitive toelectrostatic effects.

Device Breakdown

Electrostatic discharge events are often imperceptible.This might cause the following problems.

Delay Failure

Electrostatic discharge may damage the device or changeits characteristics without causing immediate failure. Thedevice may pass inspection, move into the market, thenfail during its initial period of use.

Difficulty in Identifying Discharge Site

Human beings generally cannot perceive electrostaticdischarges of less than 3000 V, while semiconductor de-vices can sustain damage from electrostatic voltages aslow as 100 V. It is often very difficult to locate the processat which electrostatic problems occur.

Basic Countermeasures

Optoelectronic devices must be protected from staticelectricity at all stages of processing. Each device mustbe protected from the time it is received until the time ithas been incorporated into a finished assembly. Each pro-cessing stage should incorporate the following measures.

Suppression of Electrostatic Generation

Keep relative humidity at 50 to 70% (if humidity is above70%, morning dew may cause condensation).

Remove materials which might cause electrostaticgeneration (such as synthetic resins) from your work-place. Check the appropriateness of floor mats, clothing(uniforms, sweaters, shoes), parts trays, etc.

Use electrostatically safe equipment and machinery.

Removal of Electrostatic Charges

Connect conductors (metals, etc.) to ground, using dedi-cated grounding lines. To prevent dangerous shocks anddamaging discharge surges, insert a resistance of 800 k�

between conductor and grounding line.

Connect conveyors, solder baths, measuring machines,and other equipment to ground, using dedicated, ground-ing lines.

Use ionic blowers to neutralize electrostatic charges oninsulators. Blowers pass charged air over the targeted ob-ject, neutralizing the existing charge. They are useful fordischarging insulators or other objects that cannot beeffectively grounded.

Human Electrostatic

The human body readily picks up electrostatic charges,and there is always some risk that human operators maycause electrostatic damages to the semiconductor devicesthey handle. The following counter measures are essen-tial.

Anti-Static Wrist Straps

All people who come into direct contact with semicon-ductors should wear anti-static wrist straps, i.e., those incharges of parts supply and people involved in mounting,board assembly and repair.

Be sure to insert a resistance of 800 k� to 1 M� into thestraps. The resistance protects against electrical shocksand prevents instantaneous and potentially damaging dis-charges from charged semiconductor devices.

Be sure that the straps are placed directly next to the skin,placing them over gloves, uniforms or other clothing re-duces their effectiveness.

Antistatic Mats, Uniforms and Shoes

The use of anti-static mats and shoes is effective in placeswhere use of a wrist strap is inconvenient (for example,when placing boards into returnable boxes). To preventstatic caused by friction with clothing, personnel shouldwear anti-static uniforms, gloves, sleeves aprons, fingercovers, or cotton apparel.

Protection during Inspection, Mounting and Assembly

The personnel has to ensure that hands do not come intodirect contact with leads. Avoid non-conductive fingercovers. Cover the work desk with grounded anti-staticmats.

Storage and Transport

Always use conductive foams, tubes, bags, reels or trayswhen storing or transporting semiconductor devices.

Page 36: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

34

Mounting Precautions

Installation

Installation on PWB

When mounting a device on PWB whose pin-hole pitchdoes not match the lead pin pitch of the device, reform thedevice pins appropriately so that the internal chip is notsubjected to physical stress.

Installation Using a Device Holder

Emitters and detectors are often mounted using a holder.When using this method, make sure that there is no gapbetween the holder and device.

Installation Using Screws

When lead soldering is not adequate to securely retain aphotointerrupter, it may be retained with screws.

The tightening torque should not exceed 6 kg/cm3. Anexcessive tightening torque may deform the holder,which results in poor alignment of the optical axes anddegrades performance.

Lead Forming

Lead pins should be formed before soldering. Do notapply forming stress to lead pins during or after soldering.For light emitters or detectors with lead frames, lead pinsshould be formed just beneath the stand-off cut section.For optocouplers or optosensors using dual-in-linepackages, lead pins should be formed below the bentsection so that forming stress does not affect the inside ofthe device. Stress to the resin may result in disconnection.

When forming lead pins, do not bend the same portion re-peatedly, otherwise the pins may break.

CleaningGeneral

Optoelectronic devices are particularly sensitive withregard to cleaning solvents. The Montreal Protocol forenvironmental protection calls for a complete ban on theuse of chlorofluorocarbons. Therefore, the most harmlesschemicals for optoelectronic devices should be used forenvironmental reasons. The best solution is to use amodem reflow paste or solder composition which doesnot require a cleaning procedure. No cleaning is requiredwhen the fluxes are guaranteed to be non-corrosive andof high, stable resistivity.

Cleaning Procedures

Certain kinds of cleaning solvents can dissolve or pene-trate the transparent resins which are used in some typesof sensors. Even black molding components used in stan-dard isolators are frequently penetrated between the moldcompound and lead frame. Inappropriate solvents mayalso remove the marking printed on a device. It is there-fore essential to take care when choosing solvents toremove flux.

Cleaning is not required if the flux in the solder materialis non-aggressive and any residues are guaranteed to benon corrosive an longterm stable of high resistivity.

In cleaning procedures using wet solvents only highpurity Ethyl and Isopropyl alcohol are recommended.The S-series of DIL isolators is also suited for cleaning inhigh purity water.

In each case, the devices are immersed in the liquid fortypically 3 min. and afterwards immediately dried for atleast 15 minutes at 50°C in dry air.

In table 3, appropriate cleaning procedures for variousproduct lines are summarized.

Page 37: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

35

Table 3. Appropriate cleaning procedures for several product lines

Cleaning Procedure Product LinesSolvent Procedure DIL-Coupler Sensors High Voltage

System “A” System “S”g gCouplers

–– No cleaning ofsolder materials

� � � �

Ethylalcohol Immersion +drying

� � � �

Isopropylalcohol Immersion +drying

� � � �

Water Immersion +drying

––1 � � ––

� acceptable–– not acceptable1 acceptable only if transistor base is not connected to the outside

Precautions

Intensified cleaning methods such as ultrasonic cleaning,steam cleaning, and brushing can cause damage to opto-electronic devices. They are generally not recommended.

Ultrasonic cleaning (unless well controlled) can damagethe devices due to its mechanical vibrations.

Using high-intensity ultrasonic cleaning, the processmight:

a. Promote dissolution or crack the package surfaceand thus affect the performance of e.g., the sen-sors

b. Promote separation of the lead frame and resinand thus reduce humidity resistance.

c. Promote the breakage of band wires

This method should only be used after extensive trialshave been run to ensure that problems do not occur.

Brushing can scratch package surfaces. Moreover, it canremove printed markings.

Special care should be taken to use only high purity orchemically well-controlled solvents. Especially chlorideions from flux or solvents that remain in the package area high risk for the long-time stability of any electronicdevice. These as well as other promote corrosion on thechip which can interrupt all bond connections to the out-side leads.

Page 38: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

36

Quality Information

TEMIC’s Continuous Improvement Activities

� Quality training for ALL personnel includingproduction, development, marketing and sales

departments

� Zero defect mindset

� Permanent quality improvement process

� Total Quality Management (TQM)

� TEMIC’s Quality Policy established by the Management Board

� Quality system certified per ISO 9001 on July 12,1993 (Commercial Quality System)

� Quality system formerly approved per AQAP-1 (Military Quality System)

TEMIC Tools for Continuous Improvement

� TEMIC qualifies materials, processes and processchanges.

� TEMIC uses Process FMEA (Failure Mode andEffects Analysis) for all processes. Process andmachine capability as well as Gage R&R (Repeatabil-

ity & Reproducibility) are proven.

� TEMIC’s internal qualifications correspond toIEC 68–2 and MIL STD 883.

� TEMIC periodically requalifies device types (ShortTerm Monitoring, Long Term Monitoring).

� TEMIC uses SPC for significant production parame-ters. SPC is performed by trained operators.

� TEMIC’s Burn-In of selected device types.

� TEMIC’s 100% testing of final products.

� TEMIC’s lot release is carried out via sampling. Sam-pling acceptance criterion is always c = 0.

TEMIC’s Quality Policy

Our goal is to achieve total customer satisfaction

through everything we do.

Therefore, the quality of our products and services

is our number one priority.

Quality comes first!

All of us at TEMIC are part of the process of

continuous improvement.

Page 39: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

37

General Quality Flow Chart Diagram

Development

Qualification

Production

Wafer processing

Incominginspection

Assembly

Quality controlSPC

100% Final test

Monitoring

Quality controlSPC

Material

Quality controlAOQ

Lot release via samplingAcceptance criterion c=0

95 11464

SPC : Statistical Process ControlAOQ : Average Outgoing Quality

Stock/ customer

Page 40: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

38

Process Flow Charts

Frame coding

1.Chip Aatach and curing

Wire bonding

100% visual control

Molding

Deflashing

2.Chip attach and curing

Reflector attach and curing

Frame sorting

Post curing

Tin plating

Backside coding

Cutting

Bending

Load into tubes

100% Test in tubes

100% Function test at Tamb=100°C

100% Isolation voltage test

Final test

Marking

Packing

Stock

Lead frame

IR Emitter

Silver epoxy glue

IR Detector

Bond wire

Reflector

Epoxy

Tin

Tubes

Total rejects

Color

Packing

QC Gate

Output test

QC Monitor

Q Gate

Q Gate

Q Gate

Q Gate

Q Gate

Frame sorting

QC Monitor

QC Monitor

QC Monitor

QC Monitor

QC Monitor

Q Gate

Q Gate

Molding compound Q Gate

Rejects

Q Gate

Q Gate

Q Gate

Rejects

QC Gate

QC Gate

QC Gate

QC Gate

QC Gate

Q Gate

ProductionQuality Assurance Materials IncomingInspection

96 11937

Page 41: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

39

Assembly Flow Chart for Standard Opto-Coupler

Frame Preparation 1st Optical

Die Attach

Visual

Wire Bond

SPCPull Test

Shear TestRip /Peel Test

Reflector LoadHeatstake /Casting

Molding

Tin Plating

2nd Optical

Visual

Visual

Cutting

3rd Optical

Marking

Burn–In

Prepacking (Box)

Electrical Test100%

Visual

Final PackingBarcoding

AQL R

AQL R

AQL R

AQL R

AQL R

AQL R

AQL R

SPC

SPC

Monitor

SPC

Monitor

Sample TestAQL 0.065

FG

CBW

Diced WaferFrame

96 11938

Page 42: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

40

Qualification and Release

New wafer processes, packages and device types arequalified according to the internal TEMICSemiconductors specification QSA 3000.

QSA 3000 consists of five parts (see figure 27).

Wafer process release: The wafer process release is thefundamental release/qualification for the varioustechnologies used by TEMIC Semiconductors. Leadingdevice types are defined fo various technologies. Threewafer lots of these types are subjected to an extensivequalification procedure and are used to represent thistechnology. A positive result will release the technology.

Package release: The package release is the fundamentalrelease/ qualification for the different packages used.Package groups are defined (see figure 27).

Critical packages are selected: two assembly lots are sub-jected to the qualification procedure representing thatpackage group. A positive result will release all similarpackages.

Device type release: The device type released is therelease of individual designs.

Monitoring: Monitoring serves both as the continuousmonitoring of the production and as a source of data forcalculation of early failures (early failure rate: EFR).

Product or process changes are released via ECN (Engi-neering Change Note). This includes proving processcapability and meeting the quality requirements.

Test procedures utilized are IEC 68–2–... and MIL–STD–883 D respectively.

QSA 3000

Wafer process qualification

Packagequalification

Device typequalification

MonitoringQualification ofprocess changes

Figure 26. Structure of QSA 3000

Page 43: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

41

Statistical Methods for PreventionTo manufacture high-quality products, it is not sufficientcontrolling the product at the end of the production pro-cess.

Quality has to be ‘designed-in’ during process- and prod-uct development. In addition to that, the ‘designing-in’must also be ensured during production flow. Both will beachieved by means of appropriate measurements andtools.

� Statistical Process Control (SPC)

� R&R– (Repeatability and Reproducibility) tests

� Up– Time Control (UTC)

� Failure Mode and Effect Analysis (FMEA)

� Design Of Experiments (DOE)

� Quality Function Deployment (QFD)

TEMIC Semiconductors has been using SPC as a tool inproduction since 1990/91.

By using SPC, deviations from the process control goalsare quickly established. This allows control of the pro-cesses before the process parameters run out of specifiedlimits. To assure control of the processes, each processstep is observed and supervised by trained personnel. Re-sults are documented.

Process capabilities are measured and expressed by theprocess capability index (Cpk).

Validation of the process capability is required for newprocesses before they are released for production.

Before using new equipment and new gauges in produc-tion, machine capability (Cmk = machine capabilityindex) or R&R (Repeatability & Reproducibility) is usedto validate the equipment’s fitness for use.

Up–Time is recorded by an Up–Time Control (UTC) sys-tem. This data determines the intervals for preventivemaintenance, which is the basis for the maintenance plan.

A process–FMEA is performed for all processes (FMEA= Failure Mode and Effect Analysis). In addition, a de-sign– or product– FMEA is used for critical products orto meet agreed customer requirements.

Design of Experiments (DOE) is a tool for the statisticaldesign of experiments and is used for optimization of pro-cesses. Systems (processes, products and procedures) areanalyzed and optimized by using designed experiments.

A significant advantage compared to conventional meth-ods is the efficient perfomance of experiments withminimum effort by determining the most important inputsfor optimizing the system.

As a part of the continuous improvement process, allTEMIC Semiconductors’ employees are trained in usingnew statistical methods and procedures.

ReliabilityThe requirements concerning quality and reliability ofproducts are always increasing. It is not sufficient to onlydeliver fault–free parts. In addition, it must be ensuredthat the delivered goods serve their purpose safely andfailure free, i.e., reliably. From the delivery of the deviceand up to its use in a final product, there are some occa-sions where the device or the final product may faildespite testing and outgoing inspection.

In principle, this sequence is valid for all components ofa product.

For these reasons, the negative consequences of a failure,which become more serious and expensive the later theyoccur, are obvious. The manufacturer is therefore inter-ested in supplying products with the lowest possible

� AOQ (Average Outgoing Quality) value

� EFR (Early Failure Rate) value

� LFR (Long-term Failure Rate) value

Average Outgoing Quality (AOQ)

All outgoing products are sampled after 100% testing.This is known as “Average Outgoing Quality” (AOQ).The results of this inspection are recorded in ppm (partsper million) using the method defined in JEDEC 16.

Early Failure Rate (EFR)

EFR is an estimate (in ppm) of the number of early fail-ures related to the number of devices used. Early failuresare normally those which occur within the first 300 to1000 hours. Essentially, this period of time covers theguarantee period of the finished unit. Low EFR values aretherefore very important to the device user. The early lifefailure rate is heavily influenced by complexity. Conse-quently, ‘designing-in’ of better quality during thedevelopment and design phase, as well as optimized pro-cess control during manufacturing, significantly reducesthe EFR value. Normally, the early failure rate should notbe significantly higher than the random failure rate. EFRis given in ppm (parts per million).

Page 44: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

42

Long-Term Failure Rate (LFR)LFR shows the failure rate during the operational periodof the devices. This period is of particular interest to themanufacturer of the final product. Based on the LFRvalue, estimations concerning long-term failure rate, reli-ability and a device’s or module’s usage life may bederived. The usage life time is normally the period ofconstant failure rate. All failures occuring during thisperiod are random.

Within this period the failure rate is:

��Sum of failures

� (Quantity� Time to failure)

1hours

The measure of � is FIT (Failures In Time = number offailures in 109 device hours).

Example

A sample of 500 semiconductor devices is tested in a op-erating life test (dynamic electric operation). The devicesoperate for a period of 10,000 hours.

Failures: 1 failure after 1000 h1 failure after 2000 h

The failure rate may be calculated from this sample by

��2

1� 1000� 1� 2000� 498� 100001h

��2

49830001h� 4.01� 10–7 1

h

This is a �-value of 400 FIT, or this sample has a failurerate of 0.04% / 1000 h on average.

t

Early FailuresEFR

Operating PeriodLFR

Wear OutFailures

95 11401

Figure 27. Bath tub curve

Confidence LevelThe failure rate � calculated from the sample is an esti-mate of the unknown failure rate of the lot.

The interval of the failure rate (confidence interval) maybe calculated, depending on the confidence level andsample size.

The following is valid:

� The larger the sample size, the narrower the confi-dence interval.

� The lower the confidence level of the statement, thenarrower the confidence interval.

The confidence level applicable to the failure rate of thewhole lot when using the estimated value of � is derivedfrom the �2-distribution. In practice, only the upper limitof the confidence interval (the maximum average failurerate) is used.

Therefore:

�max��2�2 (r; PA)

n � t in 1h

LFR��2�2 (r; PA)

n � t � 1� 109 in [FIT]

r: Number of failures

PA: Confidence level

n: Sample size

t: Time in hours

n�t: Device hours

The �2/2 for � are taken from table 4.

For the above example from table 4:�2/2 (r=2; PA=60%) = 3.08n � t = 4983000 h

�max�3.08

4983000� 6.18� 10–7 1

h

This means that the failure rate of the lot does not exceed0.0618% / 1000 h (618 FIT) with a probability of 60%.

If a confidence level of 90% is chosen from the table 5:�2/2 (r=2; PA=90%) = 5.3

�max�5.3

4983000� 1.06� 10–6 1

h

This means that the failure rate of the lot does not exceed0.106% / 1000 h (1060 FIT) with a probability of 90%.

Operating Life Tests

Number of devices tested: n = 50

Number of failures(positive qualification): c = 0

Test time: t = 2000 hours

Confidence level: PA = 60%

Page 45: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

43

�2/2 (0; 60%) 0.93

�max�0.93

50� 2000� 9.3� 10–6 1

h

This means, that the failure rate of the lot does not exceed0.93% / 1000 h (9300 FIT) with a probability of 60%.

This example demonstrates that it is only possible toverify LFR values of 9300 FIT with a confidence level of60% in a normal qualification tests (50 devices, 2000 h).

To obtain LFR values which meet today’s requirements(�50 FIT), the following conditions have to be fulfilled:

� Very long test periods

� Large quantities of devices

� Accelerated testing (e.g., higher temperature)

Table 4.

Number ofFailures

Confidence Level

50% 60% 90% 95%

0 0.60 0.93 2.31 2.96

1 1.68 2.00 3.89 4.67

2 2.67 3.08 5.30 6.21

3 3.67 4.17 6.70 7.69

4 4.67 5.24 8.00 9.09

5 5.67 6.25 9.25 10.42

6 6.67 7.27 10.55 11.76

7 7.67 8.33 11.75 13.16

8 8.67 9.35 13.00 14.30

9 9.67 10.42 14.20 15.63

10 10.67 11.42 15.40 16.95

Mean Time to Failure (MTTF)For systems which can not be repaired and whose devicesmust be changed, e.g., semiconductors, the following isvalid:

MTTF � 1�

MTTF is the average fault-free operating period per amonitored (time) unit.

Accelerating Stress Tests

Innovation cycles in the field of semiconductors arebecoming shorter and shorter. This means that productsmust be brought to the market quicker. At the same time,

expectations concerning the quality and reliability of theproducts have become higher.

Manufacturers of semiconductors must therefore assurelong operating periods with high reliability but in a shorttime. Sample stress testing is the most commonly usedway of assuring this.

The rule of Arrhenius describes this temperature-depen-dent change of the failure rate.

�(T2) � �(T1) � e�EA

k�� 1

T1– 1T2��

Boltzmann’s constantk = 8.63 � 10–5 eV/K

Activation energyEA in eV

Junction temperature real operationT1 in Kelvin

Junction temperature stress testT2 in Kelvin

Failure rate real operation� (T1)

Failure rate stress test� (T2)

The acceleration factor is described by the exponentialfunction as being:

AF ��(T2)�(T1)

� e�EA

k�� 1

T1– 1T2��

Example

The following conditions apply to an operating life stresstest:

Environmental temperature during stress testTA = 125°C

Power dissipation of the devicePV = 250 mW

Thermal resistance junction/environmentRthJA = 100 K/W

The system temperature/junction temperature resultsfrom:

TJ = TA + RthJA � PV

TJ = 125°C + 100 K/W � 250 mW

TJ = 150°C

Operation in the field at an ambient temperature of 100°Cand at an average power dissipation of 100 mW is uti-lized. This results in a junction temperature in operationof TJ = 110°C. The activation energy used for bipolartechnologies is EA = 0.7 eV.

Page 46: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

44

The resulting acceleration factor is:

AF ��(423K)�(383K)

� e�EA

k�� 1

383K– 1423K

��

AF � 7.4

This signifies that, regarding this example, the failure rateis lower by a factor of 7.4 compared to the stress test.

Other accelerating stress tests may be:

� Humidity (except displays type TDS.)TA = 85°CRH = 85%

� Temperature cyclingTemperature interval as specified

The tests are carried out according to the requirements ofappropriate IEC–standards (see also chapter ‘Qualifica-tion and Release’).

Activation Energy

There are some conditions which need to be fulfilled inorder to use Arrhenius’ method:

� The validity of Arrhenius’ rule has to be verified.

� ‘Failure-specific’ activation energies must be deter-mined.

These conditions may be verified by a series of tests.Today, this procedure is generally accepted and used as abasis for estimating operating life. The values of activa-tion energies can be determined by experiments fordifferent failure mechanisms.

Values often used for different device groups are:Opto components 0.7 eVBipolar ICs 0.7 eVMOS ICs 0.6 eVTransistors 0.7 eVDiodes 0.7 eV

By using this method, it is possible to provide long–termpredictions for the actual operation of semiconductorseven with relatively short test periods.

1

10

100

1000

55 75 95 115 135 155Junction Temperature (°C)

0.8 eV

0.7 eV

0.6 eV

0.5 eV

Acc

eler

atio

n fa

ctor

95 11369

100 125 150

Figure 28. Acceleration factor for different activation energiesnormalized to Tj = 55°C

Safety

Reliability and Safety

All semiconductor devices have the potential of failing ordegrading in ways that could impair the proper operationof safety systems. Well-known circuit techniques areavailable to protect against and minimize the effects ofsuch occurrences. Examples of these techniques includeredundant design, self-checking systems and other fail-safe techniques. Fault analysis of systems relating tosafety is recommended. Environmental factors should beanalyzed in all circuit designs, particularly in safety-re-lated applications.

If the system analysis indicates the need for the highestdegree of reliability in the component used, it is recom-mended that TEMIC be contacted for a customizedreliability program.

Toxicity

Although gallium arsenide and gallium aluminium arse-nide are both arsenic compounds, under normal useconditions they should be considered relatively benign.Both materials are listed by the 1980 NIOH ‘Toxicologyof Materials’ with LD50 values (Lethal Dosis, probability50%) comparable to common table salt.

Accidental electrical or mechanical damage to the de-vices should not affect the toxic hazard, so the units canbe applied, handled, etc. as any other semiconductor de-vice. Although the chips are small, chemically stable andprotected by the device package, conditions that couldbreak these crystalline compounds down into elements orother compounds should be avoided.

Page 47: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

45

Optocouplers in SwitchingPower SuppliesThe following chapters should give a full understandingon how to use optocouplers which provide protectionagainst electric shock for designs.

Safety standards for optocouplers are intended to preventinjury or damage due to electric shock

Two levels of electrical interface are normally used:

Reinforced, or safe insulation is required in an opto-coupler interface between a hazardous voltage circuit(like an ac line) and a touchable Safety Extra LowVoltage (SELV) circuit.

Basic insulation is required in an optocoupler interfacebetween a hazardous voltage circuit and a non-touchableExtra Low Voltage (ELV) circuit.

The most widely used insulation for optocouplers inswitch-mode power supply is reinforced insulation(class II). The following information enables the designerto understand the safety aspects, the basic concept of theVDE 0884 and the design requirements for applications.

VDE 0884 - Facts and InformationOptocouplers for line-voltage separation must haveseveral national standards. The most accepted standardsare:

� UL/ CSA for America

� BSI for Great Britain

� SETI, SEMKO, NEMKO, DEMKO for Nordiccountries (Europe)

� VDE for Germany

Today, most manufacturers operate on a global scale. It istherefore mandatory to perform all approvals.

The VDE 0884 is now becoming a major safety standardin the world, partly due to German experts having a longrecord of experience in this field. It is therefore worth-while understanding some requirements and methods ofthe VDE 0884.

At the moment there are two drafts which are being circu-lated to set the VDE 0884 to an international IECstandard.

The IEC 47 (CO) 1042 describes the terms and defini-tions � IEC 47 (CO) 1175 the test procedure, while thetest method itself is already incorporated in IEC 747-5.

If design engineers work with TEMIC optocouplers, theywill find some terms and definitions in the data sheetswhich relate to VDE 0884. These will now be explained:

Rated isolation voltages:

VIO is the voltage between the input terminals and theoutput terminals.

Note: All voltages are peak voltages!

� VIOWM is a maximum rms. voltage value of the opto-couplers assigned by TEMIC. This characterizes the

long term withstand capability of its insulation.

� VIORM is a maximum recurring peak (repetitive)voltage value of the optocoupler assigned by TEMIC.This characterizes the long-term withstand capability

against recurring peak voltages.

� VIOTM is an impulse voltage value of the optocouplerassigned by TEMIC. This characterizes the long-term

withstand capability against transient over voltages.

Isolation test voltage for routine tests is at factor 1.875higher than the specified VIOWM/ VIORM (peak).

A partial discharge test is a different test method to thenormal isolation voltage test. This method is more sensi-tive and will not damage the isolation behavior of theoptocoupler like other test methods probably do.

The VDE 0884 therefore does not require a minimumthickness through insulation. The philosophy is that amechanical distance only does not give you an indicationof the safety reliability of the coupler. It is more recom-mendable to check the total construction together with theassembling performance. The partial discharge testmethod can monitor this more reliably.

The following tests must be done to guarantee this safetyrequirement.

100% test (piece by piece) for one second at a voltagelevel of specified VIOWM/VIORM (peak) multiplied by1.875 � test criteria is partial discharge less than 5 picocoulomb.

A lotwise test at VIOTM for 10 seconds and at a voltagelevel of specified VIOWM/ VIORM (peak) multiplied by1.5 for 1 minute � test criteria is partial discharge lessthan 5 pico coulomb.

Design example:

The line ac voltage is 380 V rms. Your application classis III (DIN/VDE 0110 Part 1/1.89). According to table 5,you must calculate with a maximum line voltage of 600 Vand a transient over voltage of 6000 V.

Page 48: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

46

Table 5. Recommended transient overvoltages related to ac/ dc line voltage (peak values)

VIOWM/VIORMup to

Appl. Class I Appl. Class II Appl. Class III Appl. Class IV

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

50 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

350 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

500 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

800 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1500 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

100 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

500.V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

800.V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1500.V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2500.VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

150 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

800 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1500 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2500 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4000 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

300 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1500 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2500 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

400 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

600 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

600.V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2500 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4000 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6000 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

800 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1000 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4000 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6000 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8000 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1200 V

Now select the CNY75 from our TEMIC couplerprogram. The next voltage step of 380 V is 600 V(VIOWM).The test voltages are 1600 V for the CNY75 forthe routine test and 6000 V/ 1300 V for the sample test.

The VDE 0884 together with the isolation test voltagesalso require very high isolation resistance, tested at anambient temperature of 100°C.

Apart from these tests for the running production, theVDE Testing and Approvals Institute also investigates thetotal construction of the optocoupler. The VDE 0884requires life tests in a very special sequence; 5 lots for5 different subgroups are tested.

The sequence for the main group is as follows:

� Cycle test

� Vibration

� Shock

� Dry heat

� Accelerated damp heat

� Low temperature storage (normally –55°C)

� Damp heat steady state

� Final measurements.

Finally there is another chapter concerning the safetyratings. This is described in VDE 0884.

The maximum safety ratings are the electrical, thermaland mechanical conditions that exceed the absolutemaximum ratings for normal operations. The philosophyis that optocouplers must withstand a certain exceedingof the input current, output power dissipation, andtemperature for at least a weekend. The test time isactually 72 hours. This is a simulated space of time wherefailures may occur.

It is the designer’s task to create his design inside of themaximum safety ratings.

Optocouplers � approved to the VDE 0884 � mustconsequently pass all tests undertaken. This then enablesyou to go ahead and start your design.

Layout Design RulesThe previous chapter described the important safetyrequirements for the optocoupler itself; but the know-ledge of the creepage distance and clearance path is alsoimportant for the design engineer if the coupler is to bemounted onto the circuit board. Although severaldifferent creepage distances referring to different safetystandards, like the IEC 65 for TV or the IEC 950 for officeequipment, computer, data equipment etc. are requested,there is one distance which meanwhile dominatesswitching power supplies: This is the 8 mm spacingrequirement between the two circuits: The hazardousinput voltage (ac 240 power-line voltage) and the safetylow voltage.

This 8 mm spacing is related to the 250 V power line anddefines the shortest distance between the conductive parts(either from the input to the output leads) along the caseof the optocoupler, or across the surface of the print boardbetween the solder eyes of the optocoupler input/ outputleads, as shown in figure 29. The normal distance inputto output leads of an optocoupler is 0.3”. This is too tightfor the 8 mm requirement. The designer now has twooptions: He can provide a slit in the board, but then theairgap is still lower; or he can use the “G” optocouplerfrom TEMIC. “G” stands for a wide-spaced lead form of0.4” and obtains the 8 mm creepage, clearance distance.The type designation for this type of “G” coupler is, forexample: CNY75G.

The spacing requirements of the 8 mm must also be takeninto consideration for the layout of the board.

Figures 30 and 31 provide examples for your layout.

The creepage distance is also related to the resistance ofthe tracking creepage current stability. The plasticmaterial of the optocoupler itself and the material of theboard must provide a specified creeping-currentresistance.

Page 49: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

47

The behavior of this resistance is tested with special testmethods described in the IEC 112. The term is “CTI”(Comparative Tracking Index).

The VDE 0884 requires a minimum of a CTI of 175. AllTEMIC optocouplers have a CTI of 275.

Creepage

path

Clearance path

Figure 29. Isolation creepage/ clearance path

(The creepage path is the shortest distance between conductive parts along the surface of the isolation material.The clearance path is the shortest distance between conductive parts.)

0.4 ”/ 10.16 mm

0.332 ”/ 8.2 mm

Figure 30. Optocoupler mounting on a board (side view)

Page 50: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

48

G

G

GG

SELV control circuit area

SELV control circuit area

G = 0.322 ” / 8.2 mm

Power interface area

Power interface area

Layer

Figure 31. “Top view of optocoupler mounting on a board” (clearance on PC board: 0.322 / 8.2 mm, creepage path on PC board is 0.322 / 8.2 mm)

Not only the solder eyes of the coupler itself on the board must have the 8 mm distance,but also all layers located between the SELV areas and the power interface areas.

TEMIC Optocoupler Program

ConstructionAn optocoupler is comparable with a transformer or amechanical relay; but its advantages are smallerdimensions, shorter switching time, no contact bounces,no interference caused by arcs and the possibility ofadapting a signal already in the coupler for the followingstage of the circuit.

This combination together with the safety aspectsprovides outstanding advantages for use in powersupplies. Safety factors in particular depend on thedesign, construction and selected materials. TEMICoptocouplers are designed with a coplanar lead frame,where the die are mounted side by side. A semi-ellipsoidwith even better reflection capabilities is fitted over eachdice. The entire system is then casted in a plastic materialimpermeable to the infrared range and of high di-electricstrength. The whole system is now molded with a specialmold compound to ensure that no external influencessuch as light or dust etc. interfere with the functioning ofthe coupler (see figure 32). This design has severaladvantages: The “thickness through insulation”, theclearance (internally) between the input and the outputside is fixed at 0.75 mm and is thus mechanically stableeven under thermal overloads, i.e., the possibility of ashort circuit caused by material deformation is excluded.Deviations of this distance during the production processare also excluded. These two features are the specific

reasons why TEMIC optocouplers are well-accepted bymanufacturers of power supplies.

0.75 mm

Figure 32. Cut through of a TEMIC optocoupler(thickness through insulation)

OverviewThe information given in this brochure enables thedesigner to select the right optocoupler for his applica-tion. The previous chapters focused only on safetyaspects. Apart from this there are other characteristics forthe optocoupler. Table 6 enables the designer to select theoptocoupler to suit his own needs. This selection shouldbe done using the most important characteristics like CTR(Current Transfer Ratio) and devices with or without baseconnection. The designer may ask for our data sheets fordetailed information.

Page 51: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

49

6 5 4

2 31

n.c. C E

A (+) C (–) n.c.94

922

2

Figure 33. Without base connection

6 5 4

2 31

C E

A (+) C (–) n.c.

95 1

0805

B

Figure 34. With base connection

6–PIN STD Isolators

Table 6. Devices offering (VDE 0884-tested)

CTR IC/ IF

VCE > 32 VUngrouped CTR

VCE > 32 VGrouped CTR

VCE > 90 VGrouped CTR

Base Connection

With Without With Without With Without

ÁÁÁÁÁÁÁÁÁÁ

> 20% ÁÁÁÁÁÁÁÁÁÁ

4N25(G)VÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ> 50% ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

CQY80N(G)ÁÁÁÁÁÁÁÁÁÁÁÁ

TCDT1100(G)ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

TCDT1120(G)

ÁÁÁÁÁÁÁÁÁÁ

> 100% ÁÁÁÁÁÁÁÁÁÁ

4N35(G)VÁÁÁÁÁÁÁÁÁÁÁÁ

TCDT1110(G)ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ40 – 80%ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

CNY17(G)–1ÁÁÁÁÁÁÁÁÁÁÁÁ

TCDT1101(G)ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ63 – 125%ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

CNY17(G)–2ÁÁÁÁÁÁÁÁÁÁÁÁ

TCDT1102(G)ÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75(G)A ÁÁÁÁÁÁÁÁÁÁ

TCDT1122(G)ÁÁÁÁÁÁÁÁÁÁ

100 – 200%ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

CNY17(G)–3ÁÁÁÁÁÁÁÁÁÁÁÁ

TCDT1103(G)ÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75(G)B ÁÁÁÁÁÁÁÁÁÁ

TCDT1123(G)ÁÁÁÁÁÁÁÁÁÁ

160 – 320%ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75(G)C ÁÁÁÁÁÁÁÁÁÁ

TCDT1124(G)

G = wide space 0.4” lead form, for 8 mm PC board spacing requirements

Page 52: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

50

Appendix

Approvals ListAs mentioned before, as long there is no equivalent IEC–standard to the VDE 0884, optocouplers must still fulfillall other national safety standards. The copies of docu-ments present all certificates the designer needs forworldwide acceptance of his power supply (seeANT018). All the approvals below are most important. Ifthe designer needs any others, he must be aware that thereare many agreements between national institutes, e.g.,UL for USA is also accepted by CSA/Canada.

TEMIC divides optocouplers into ”coupling systems”.Each coupling system represents the same technology,materials etc. The coupling systems are indicated withcapital letters and each coupler is marked with this cou-pling system indicator letter. The certificates at least alsorefer to the systems and list all subtypes to the related cou-pling system. The user is able to find his selected coupleron the certificate.

Certified Optocouplers for Switching Power Supplies

Coupling SystemG, H, I, K

Coupling SystemA, C, S

German standardVDE 0884

File no.System S: 70753System A: 68301System G: 70902System H: 70977System J: 70977System K: 70977

CNY64CNY65CNY66

CNY12N

CQY80N CQY80NGCNY17(G)1–3CNY75(G)A–C

TCDT1101(G)A–CTCDT1101(G)–1103(G)

TCDT1110(G)TCDT1120–1124(G)

American (USA)Test institute

UL1577

File no. E76222

CNY64CNY65CNY66

CNY21N4N25(G)V4N35(G)V

Nordic approvals(SETI)

CNY64CNY65

CNY21N K3010P(G)–K3012P(G)K3020P(G)–K3023P(G)

British StdBS415BS7002

CNY65

( ) ( )

Internal stucture

Case (examples)

95 1053795 1053195 10532

Page 53: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

51

Application of Optoelectronic Reflex SensorsTCRT1000, TCRT5000, TCRT9000, CNY70

TEMIC optoelectronic sensors contain infrared-emitting diodes as a radiation source and phototransistors as detectors.

Typical applications include:

� Copying machines

� Video recorders

� Proximity switch

� Vending machines

� Printers

� Object counters

� Industrial control

Special features:

� Compact design

� Operation range 0 to 20 mm

� High sensitivity

� Low dark current

� Minimized crosstalk

� Ambient light protected

� Cut-off frequency up to 40 kHz

� High quality level, ISO 9000

� Automated high-volume production

These sensors present the quality of perfected products. The components are based on TEMIC’s many year’sexperience as one of Europe’s largest producers of optoelectronic components.

Page 54: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

52

Drawings of the Sensors

94 9318

TCRT1000

94 9442

TCRT5000

94 9320

TCRT9000

94 9320

CNY70

Page 55: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

53

Optoelectronic SensorsIn many applications, optoelectronic transmitters andreceivers are used in pairs and linked together optically.Manufacturers fabricate them in suitable forms. They areavailable for a wide range of applications as ready-to-usecomponents known as couplers, transmissive sensors(or interrupters), reflex couplers and reflex sensors.Increased automation in industry in particular has height-ened the demand for these components and stimulated thedevelopment of new types.

General Principles

The operating principles of reflex sensors are similar tothose of transmissive sensors. Basically, the light emittedby the transmitter is influenced by an object or a mediumon its way to the detector. The change in the light signalcaused by the interaction with the object then produces achange in the electrical signal in the optoelectronicreceiver.

The main difference between reflex couplers and trans-missive sensors is in the relative position of thetransmitter and detector with respect to each other. In thecase of the transmissive sensor, the receiver is oppositethe transmitter in the same optical axis, giving a directlight coupling between the two. In the case of the reflexsensor, the detector is positioned next to the transmitter,avoiding a direct light coupling.

The transmissive sensor is used in most applications forsmall distances and narrow objects. The reflex sensor,however, is used for a wide range of distances as well asfor materials and objects of different shapes. It sizes byvirtue of its open design.

In the following chapters, we will deal with reflex sensors� placing particular emphasis on their practical use. Thecomponents TCRT1000, TCRT5000, TCRT9000 andCNY70 are used as examples. However, references madeto these components and their use apply to all sensors ofa similar design.

The reflex sensors TCRT1000, TCRT5000, TCRT9000and CNY70 contain IR-emitting diodes as transmittersand phototransistors as receivers. The transmitters emitradiation of a wavelength of 950 nm. The spectral sensi-

tivity of the phototransistors are optimized for thiswavelength.

There are no focusing elements in the sensors described,though lenses are incorporated inside the TCRT5000 inboth active parts (emitter and detector). The angularcharacteristics of both are divergent. This is necessary torealize a position-independent function for easy practicaluse with different reflecting objects.

In the case of TCRT5000, the concentration of the beampattern to an angle of 16° for the emitter and 30° for thedetector, respectively, results in operation on an increasedrange with optimized resolution. The emitting and accep-tance angles in the other reflex sensors are about 45°. Thisis an advantage in short distance operation. The best localresolution is with the reflex sensor TCRT9000.

The main difference between the sensor types is themechanical outline (as shown in the figures, see pagebefore), resulting in various electrical parameters and op-tical properties. A specialization for certain appli-cationsis necessary. Measurements and statements on the data ofthe reflex sensors are made relative to a reference surfacewith defined properties and precisely known reflectingproperties. This reference medium is the diffusely reflect-ing Kodak neutral card, also known as grey card(KODAK neutral test card; KODAK publi-cation No.Q-13, CAT 1527654). It is also used here as the referencemedium for all details. The reflection factor of the whiteside of the card is 90% and that of the grey side is 18%.

Table 7 shows the measured reflection of a number ofmaterials which are important for the practical use ofsensors. The values of the collector current given arerelative and correspond to the reflection of the varioussurfaces with regard to the sensor’s receiver. They weremeasured at a transmitter current of IF = 20 mA and at adistance of the maximum light coupling. These valuesapply exactly to the TCRT9000, but are also valid for theother reflex sensors. The ‘black-on-white paper’ sectionstands out in table 7. Although all surfaces appear blackto the ‘naked eye’, the black surfaces emit quite differentreflections at a wavelength of 950 nm. It is particularlyimportant to account for this fact when using reflexsensors. The reflection of the various body surfaces in theinfrared range can deviate significantly from that in thevisible range.

Page 56: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

54

Table 7. Relative collector current (or coupling factor) of the reflex sensor TCRT9000 for reflection on various materials.Reference is the white side of the Kodak neutral card. The sensor is positioned perpendicular with respect to the surface.The wavelength is 950 nm.

Kodak neutral cardÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

White side (reference medium) ÁÁÁÁÁÁÁÁ

100%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gray side ÁÁÁÁÁÁÁÁ

20%

PaperÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Typewriting paper ÁÁÁÁÁÁÁÁ

94%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Drawing card, white (Schoeller Durex) ÁÁÁÁÁÁÁÁ

100%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Card, light gray ÁÁÁÁÁÁÁÁ

67%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Envelope (beige) ÁÁÁÁÁÁÁÁ

100%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Packing card (light brown) ÁÁÁÁÁÁÁÁ

84%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Newspaper paper ÁÁÁÁÁÁÁÁ

97%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pergament paper ÁÁÁÁÁÁÁÁ

30-42%

Black on white typewriting paperÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDrawing ink (Higgins, Pelikan, Rotring)

ÁÁÁÁÁÁÁÁ4-6%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁFoil ink (Rotring)ÁÁÁÁÁÁÁÁ50%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁFiber-tip pen (Edding 400)ÁÁÁÁÁÁÁÁ10%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁFiber-tip pen, black (Stabilo)ÁÁÁÁÁÁÁÁ76%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁPhotocopyÁÁÁÁÁÁÁÁ7%

Plotter penÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HP fiber–tip pen (0.3 mm)ÁÁÁÁÁÁÁÁ

84%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Black 24 needle printer (EPSON LQ-500)ÁÁÁÁÁÁÁÁ

28%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ink (Pelikan) ÁÁÁÁÁÁÁÁ

100%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pencil, HB ÁÁÁÁÁÁÁÁ

26%

Plastics, glassÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

White PVC ÁÁÁÁÁÁ

90%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gray PVC ÁÁÁÁÁÁ

11%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Blue, green, yellow, red PVC ÁÁÁÁÁÁ

40-80%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

White polyethylene ÁÁÁÁÁÁ

90%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

White polystyrene ÁÁÁÁÁÁ

120%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gray partinax ÁÁÁÁÁÁ

9%

Fiber glass board material

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Without copper coating ÁÁÁÁÁÁ

12-19%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

With copper coating on the reverse sideÁÁÁÁÁÁ

30%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Glass, 1 mm thick ÁÁÁÁÁÁ

9%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Plexiglass, 1 mm thick ÁÁÁÁÁÁ

10%

MetalsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAluminum, bright

ÁÁÁÁÁÁ110%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁAluminum, black anodizedÁÁÁÁÁÁ60%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁCast aluminum, mattÁÁÁÁÁÁ45%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁCopper, matt (not oxidized)ÁÁÁÁÁÁ110%ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁBrass, bright

ÁÁÁÁÁÁ

160%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gold plating, mattÁÁÁÁÁÁ

150%

TextilesÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

White cotton ÁÁÁÁÁÁ

110%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Black velvet ÁÁÁÁÁÁ

1.5%

Parameters and Practical Use of the Reflex SensorsA reflex sensor is used in order to receive a reflectedsignal from an object. This signal gives information onthe position, movement, size or condition (e.g., coding)of the object in question. The parameter that describes thefunction of the optical coupling precisely is the so-calledoptical transfer function (OT) of the sensor. It is the ratioof the received to the emitted radiant power.

OT��r

�e

Additional parameters of the sensor, such as operatingrange, the resolution of optical distance of the object, thesensitivity and the switching point in the case of localchanges in the reflection, are directly related to thisoptical transfer function.

In the case of reflex sensors with phototransistors asreceivers, the ratio Ic/IF (the ratio of collector current Icto the forward current IF) of the diode emitter is preferredto the optical transfer function. As with optocouplers,

Ic/IF is generally known as the coupling factor, k. Thefollowing approximate relationship exists between k andOT:

k = Ic/ IF = [(S � B)/h] ��r/�e

where B is the current amplification, S = Ib/Φr (photo-transistor’s spectral sensitivity), and h = IF/Φe (pro-portionality factor between IF and Φe of the transmitter).

In figures 35 and 36, the curves of the radiant intensity, Ie,of the transmitter to the forward current, IF, and the sensi-tivity of the detector to the irradiance, Ee, are shownrespectively. The gradients of both are equal to unityslope.

This represents a measure of the deviation of the curvesfrom the ideal linearity of the parameters. There is a goodproportionality between Ie and IF and between Ic and Eewhere the curves are parallel to the unity gradient.

Page 57: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

55

Greater proportionality improves the relationshipbetween the coupling factor, k, and the optical transferfunction.

Figure 35. Radiant intensity, Ie = f (IF), of the IR transmitter

Figure 36. Sensitivity of the reflex sensors’ detector

Coupling Factor, k

In the case of reflex couplers, the specification of thecoupling factor is only useful by a defined reflection anddistance. Its value is given as a percentage and refers hereto the diffuse reflection (90%) of the white side of Kodakneutral card at the distance of the maximum lightcoupling. Apart from the transmitter current, IF, and thetemperature, the coupling factor also depends on thedistance from the reflecting surface and the frequency �

that is, the speed of reflection change.

For all reflex sensors, the curve of the coupling factor asa function of the transmitter current, IF, has a flat maxi-mum at approximately 30 mA (figure 37). As shown inthe figure, the curve of the coupling factor follows that ofthe current amplification, B, of the phototransistor. Theinfluence of temperature on the coupling factor is rela-tively small and changes approximately –10% in therange of –10 to +70°C (figure 38). This fairly favorabletemperature compensation is attributable to the opposingtemperature coefficient of the IR diode and the photo-transistor.

The maximum speed of a reflection change that is detect-able by the sensor as a signal is dependent either on theswitching times or the threshold frequency, fc, of the com-ponent. The threshold frequency and the switching timesof the reflex sensors TCRT1000, TCRT5000, TCRT9000and CNY70 are determined by the slowest component inthe system � in this case the phototransistor. As usual,the threshold frequency, fc, is defined as the frequency atwhich the value of the coupling factor has fallen by 3 dB(approximately 30%) of its initial value. As the frequencyincreases, f > fc, the coupling factor decreases.

Figure 37. Coupling factor k = f (IF) of the reflex sensors

Page 58: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

56

Figure 38. Change of the coupling factor, k, with temperature, T

As a consequence, the reflection change is no longereasily identified.

Figure 39 illustrates the change of the cut-off frequencyat collector emitter voltages of 5, 10 and 20 V and variousload resistances. Higher voltages and low load resistancessignificantly increase the cut-off frequency.

The cut-off frequencies of all TEMIC reflex sensors arehigh enough (with 30 to 50 kHz) to recognize extremelyfast mechanical events.

In practice, it is not recommended to use a large loadresistance to obtain a large signal, dependent on the speedof the reflection change. Instead, the opposite effect takesplace, since the signal amplitude is markedly reduced bythe decrease in the cut-off frequency. In practice, the bet-ter approach is to use the given data of the application(such as the type of mechanical movement or the numberof markings on the reflective medium). With these givendata, the maximum speed at which the reflection changescan be determined, thus allowing the maximumfrequency occurring to be calculated. The maximumpermissible load resistance can then be selected for thisfrequency from the diagram fc as a function of the loadresistance, RL.

Working DiagramThe dependence of the phototransistor collector currenton the distance, A, of the reflecting medium is shown infigures 40 and 41 for the reflex sensors TCRT1000 andTCRT9000 respectively.

The data were recorded for the Kodak neutral card with90% diffuse reflection serving as the reflecting surface,arranged perpendicular to the sensor. The distance, A,was measured from the surface of the reflex sensor.

The emitter current, IF, was held constant during themeasurement. Therefore, this curve also shows the courseof the coupling factor and the optical transfer functionover distance. It is called the working diagram of thereflex sensor.

The working diagrams of all sensors (figure 40) shows amaximum at a certain distance, Ao. Here the opticalcoupling is the strongest. For larger distances, thecollector current falls in accordance with the square law.When the amplitude, I, has fallen not more than 50% ofits maximum value, the operation range is at its optimum.

Figure 39. Cut-off frequency, fc

Page 59: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

57

a) TCRT5000

c) CNY 70

b) TCRT9000

d) TCRT1000

Figure 40. Working diagram of reflex sensors TCRT5000, CNY70, TCRT9000 and TCRT1000

Resolution, Trip PointThe behavior of the sensors with respect to abruptchanges in the reflection over a displacement path isdetermined by two parameters: the resolution and the trippoint.

If a reflex sensor is guided over a reflecting surface witha reflection surge, the radiation reflected back to thedetector changes gradually, not abruptly. This is depictedin figure 41a. The surface, g, seen jointly by the trans-mitter and detector, determines the radiation received bythe sensor. During the movement, this surface is graduallycovered by the dark reflection range. In accordance withthe curve of the radiation detected, the change in collectorcurrent is not abrupt, but undergoes a wide, gradual transi-tion from the higher to the lower value

As illustrated in figure 41b, the collector current falls tothe value Ic2, which corresponds to the reflection of thedark range, not at the point Xo, but at the points Xo + Xd/2,displaced by Xd/2.

The displacement of the signal corresponds to an uncer-tainty when recording the position of the reflectionchange, and it determines the resolution and the trip pointof the sensor.

The trip point is the position at which the sensor has com-pletely recorded the light/ dark transition, that is, therange between the points Xo + Xd/2 and Xo – Xd/2 aroundXo. The displacement, Xd, therefore, corresponds to thewidth or the tolerance of the trip point. In practice, thesection lying between 10 and 90% of the differenceIc = Ic1 – Ic2 is taken as Xd. This corresponds to the risetime of the generated signal since there is both movementand speed. Analogous to switching time, displacement,Xd, is described as a switching distance.

Page 60: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

58

The resolution is the sensor’s capability to recognizesmall structures. Figure 42 illustrates the example of thecurve of the reflection and current signal for a black linemeasuring d in width on a light background (e.g., on asheet of paper). The line has two light/ dark transitions �

the switching distance Xd/2 is, therefore, effective twice.

g

a)

b)

Figure 41. Abrupt reflection change with associated Ic curve

X < line widthd

X > line widthd

Collector current

IC1

IC1

IC2

IC2

Collector current

Xd

Xd

d X

X

X

R1

R2

ReflectionLine

d = line width

Figure 42. Reflection of a line of width d and correspondingcurve of the collector current Ic

The line is clearly recognized as long as the line width isd � Xd. If the width is less than � Xd, the collectorcurrent change, Ic1 – Ic2, that is the processable signal,becomes increasingly small and recognition increasinglyuncertain. The switching distance � or better its inverse� can therefore be taken as a resolution of the sensor.

The switching distance, Xd, is predominantly dependenton the mechanical/ optical design of the sensor and thedistance to the reflecting surface. It is also influencedby the relative position of the transmitter/ detector axis.

Figure 43 shows the dependence of the switchingdistance, Xd, on the distance A with the sensors placed intwo different positions with respect to the separation lineof the light/ dark transition.

The curves marked position 1 in the diagrams correspondto the first position. The transmitter/ detector axis of thesensor was perpendicular to the separation line of thetransition. In the second position (curve 2), the trans-mitter/ detector axis was parallel to the transition.

In the first position (1) all reflex sensors have a better res-olution (smaller switching distances) than in position 2.The device showing the best resolution is TCRT9000. Itcan recognize lines smaller than half a millimeter at a dis-tance below 0.5 mm.

It should be remarked that the diagram of TCRT5000 isscaled up to 10 cm. It shows best resolution between2 and 10 cm.

All sensors show the peculiarity that the maximum reso-lution is not at the point of maximum light coupling, Ao,but at shorter distances.

In many cases, a reflex sensor is used to detect an objectthat moves at a distance in front of a background, such asa sheet of paper, a band or a plate. In contrast to theexamples examined above, the distances of the objectsurface and background from the sensor vary.

Since the radiation received by the sensor’s detectordepends greatly on the distance, the case may arise whenthe difference between the radiation reflected by theobject on the background is completely equalized by thedistance despite varying reflectance factors. Even if thesensor has sufficient resolution, it will no longer supplya processable signal due to the low reflection difference.In such applications it is necessary to examine whetherthere is a sufficient contrast. This is performed with thehelp of the working diagram of the sensor and the reflec-tance factors of the materials.

Page 61: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

59

a) TCRT5000

b) CNY70

c) TCRT1000

d) TCRT9000

Figure 43. The switching distance as a function of the distance A for the reflex sensors TCRT5000, CNY70, TCRT1000and TCRT9000

Sensitivity, Dark Current and Crosstalk

The lowest photoelectric current that can be processed asa useful signal in the sensor’s detector determines theweakest usable reflection and defines the sensitivity ofthe reflex sensor. This is determined by two parameters� the dark current of the phototransistor and the cross-talk.

The phototransistor as receiver exhibits a small darkcurrent, ICEO, of a few nA at 25°C. However, it is depen-dent on the applied collector-emitter voltage, VCE, and toa much greater extent on the temperature, T (seefigure 44). The crosstalk between the transmitter anddetector of the reflex sensor is given with the current, Icx.Icx is the collector current of the photoelectric transistormeasured at normal IR transmitter operating conditionswithout a reflecting medium.

Figure 44. Temperature-dependence of the collector darkcurrent

Page 62: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

60

It is ensured that no (ambient) light falls onto the photo-electric transistor. This determines how far it is possibleto guarantee avoiding a direct optical connection betweenthe transmitter and detector of the sensor.

At IF = 20 mA, the current Icx is approximately 50 nA forthe TCRT9000 and 15 nA for the CNY70, TCRT1000 andTCRT5000.

Icx can also be manifested dynamically. In this case, theorigin of the crosstalk is electrical rather than optical.

For design and optical reasons, the transmitter anddetector are mounted very close to each other.

Electrical interference signals can be generated in thedetector when the transmitter is operated with a pulsed ormodulated signal. The transfer capability of the inter-ference increases strongly with the frequency. Steep pulseedges in the transmitter’s current are particularlyeffective here since they possess a large portion of highfrequencies. For all TEMIC sensors, the ac crosstalk,Icxac, does not become effective until frequencies of4 MHz upwards with a transmission of approximately3 dB between the transmitter and detector.

The dark current and the dc- and ac crosstalk form theoverall collector fault current, Icf. It must be observed thatthe dc-crosstalk current, Icxdc, also contains the darkcurrent, ICEO, of the phototransistor.

Icf = Icxdc + Icxac

This current determines the sensitivity of the reflexsensor. The collector current caused by a reflectionchange should always be at least twice as high as the faultcurrent so that a processable signal can be reliably identi-fied by the sensor.

Ambient Light

Ambient light is another feature that can impair the sensi-tivity and, in some circumstances, the entire function ofthe reflex sensor. However, this is not an artifact of thecomponent, but an application specific characteristic.

The effect of ambient light falling directly on the detectoris always very troublesome. Weak steady light reducesthe sensor’s sensitivity. Strong steady light can, depend-ing on the dimensioning (RL, VC), saturate thephotoelectric transistor. The sensor is ‘blind’ in thiscondition. It can no longer recognize any reflectionchange. Chopped ambient light gives rise to incorrectsignals and feigns non-existent reflection changes.

Indirect ambient light, that is ambient light falling ontothe reflecting objects, mainly reduces the contrastbetween the object and background or the feature andsurroundings. The interference caused by ambient light ispredominantly determined by the various reflectionproperties of the material which in turn are dependent onthe wavelength.

If the ambient light has wavelengths for which the ratioof the reflection factors of the object and background isthe same or similar, its influence on the sensor’s functionis small. Its effect can be ignored for intensities that arenot excessively large. On the other hand, the object/ back-ground reflection factors can differ from each other insuch a way that, for example, the background reflects theambient light much more than the object. In this case, thecontrast disappears and the object cannot be detected. Itis also possible that an uninteresting object or feature isdetected by the sensor because it reflects the ambient lightmuch more than its surroundings.

In practice, ambient light stems most frequently fromfilament, fluorescent or energysaving lamps. Table 8gives a few approximate values of the irradiance of thesesources. The values apply to a distance of approximately50 cm, the spectral range to a distance of 850 to 1050 nm.The values of table 8 are only intended as guidelines forestimating the expected ambient radiation.

In practical applications, it is generally rather difficult todetermine the ambient light and its effects precisely.Therefore, an attempt to keep its influence to a minimumis made from the outset by using a suitable mechanicaldesign and optical filters. The detectors of the sensors areequipped with optical filters to block such visible light.Furthermore, the mechanical design of these componentsis such that it is not possible for ambient light to falldirectly or sideways onto the detector for object distancesof up to 2 mm.

If the ambient light source is known and is relativelyweak, in most cases it is enough to estimate the expectedpower of this light on the irradiated area and to considerthe result when dimensioning the circuit.

AC operation of the reflex sensors offers the mosteffective protection against ambient light. Pulsed opera-tion is also helpful in some cases.

Compared with dc operation, the advantages are greatertransmitter power and at the same time significantlygreater protection against faults. The only disadvantageis the greater circuit complexity, which is necessary in thiscase. The circuit in figure 48 is an example of operationwith chopped light.

Page 63: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

61

Table 8. Examples for the irradiance of ambient light sources

Light source (at 50 cm distance) Irradiance Ee (µW/cm2)850 to 1050 nm

Frequency (Hz)

Steady light AC light (peak value)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFilament lamp (60 W)

ÁÁÁÁÁÁÁÁÁÁÁÁ500

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFluorescent lamp OSRAM (65 W)ÁÁÁÁÁÁÁÁÁÁÁÁ25

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ30

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ100ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁEconomy lamp OSRAM DULUX (11 W)ÁÁÁÁÁÁÁÁÁÁÁÁ14

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ16

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ100

Application Examples, Circuits

The most important characteristics of the TEMIC reflexsensors are summarized in table 9. The task of this tableis to give a quick comparison of data for choosing theright sensor for a given application.

Application Example with Dimensioning

With a simple application example, the dimensioning ofthe reflex sensor can be shown in the basic circuit with theaid of the component data and considering the boundaryconditions of the application.

The reflex sensor TCRT9000 is used for speed control. Analuminum disk with radial strips as markings fitted to themotor shaft forms the re–flecting object and is locatedapproximately 3 mm in front of the sensor. The sensorsignal is sent to a logic gate for further processing.

Dimensioning is based on dc operation, due to the simpli-fied circuitry.

The optimum transmitter current. IF, for dc operation isbetween 20 and 40 mA. IF = 20 mA is selected in thiscase.

As shown in figure 37, the coupling factor is at its maxi-mum. In addition, the degradation (i.e., the reduction ofthe transmitted IR output with aging) is minimum forcurrents under 40 mA (< 10% for 10000 h) and the selfheating is low due to the power loss (approximately50 mW at 40 mA).

+5 V

TCRT 9000

180 15 K

74HCTXX

Q

GND

RE

RS

Figure 45. Reflex sensor - basic circuit

Table 9.

Parameter Symbol Reflex Sensor TypeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY70ÁÁÁÁÁÁÁÁÁÁÁÁ

TCRT1000ÁÁÁÁÁÁÁÁÁÁÁÁ

TCRT5000ÁÁÁÁÁÁÁÁÁÁÁÁ

TCRT9000ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Distance of optimum couplingÁÁÁÁÁÁ

A0ÁÁÁÁÁÁÁÁÁÁÁÁ

0.3 mmÁÁÁÁÁÁÁÁÁÁÁÁ

1 mmÁÁÁÁÁÁÁÁÁÁÁÁ

2 mmÁÁÁÁÁÁÁÁÁÁÁÁ

1 mmÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Distance of best resolution ÁÁÁÁÁÁ

ArÁÁÁÁÁÁÁÁÁÁÁÁ

0.2 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

0.8 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

1.5 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

0.5 mmÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Coupling factor ÁÁÁÁÁÁ

kÁÁÁÁÁÁÁÁÁÁÁÁ

5% ÁÁÁÁÁÁÁÁÁÁÁÁ

5% ÁÁÁÁÁÁÁÁÁÁÁÁ

6% ÁÁÁÁÁÁÁÁÁÁÁÁ

3%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Switching distance (min.) ÁÁÁÁÁÁ

xdÁÁÁÁÁÁÁÁÁÁÁÁ

1.5 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

0.7 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

1.9 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

0.5 mmÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optimum working distance ÁÁÁÁÁÁ

XorÁÁÁÁÁÁÁÁÁÁÁÁ

0.2 to 3 mmÁÁÁÁÁÁÁÁÁÁÁÁ

0.4 to 2.2 mmÁÁÁÁÁÁÁÁÁÁÁÁ

0.2 to 6.5 mmÁÁÁÁÁÁÁÁÁÁÁÁ

0.4 to 3 mmÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Operating range ÁÁÁÁÁÁ

AorÁÁÁÁÁÁÁÁÁÁÁÁ

9 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

8 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

> 20 mm ÁÁÁÁÁÁÁÁÁÁÁÁ

12 mm

Page 64: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

62

Table 10.

Application Data

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Aluminum disk ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Diameter 50 mm, distance from the sensor 3 mm, markings printed on the aluminum

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Markings ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8 radial black stripes and 8 spacings, the width of the stripes and spacings in front ofthe sensor is approximately = 4 mm (in a diameter of 20 mm)ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁMotor speed

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1000 to 3000 rpmÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Temperature range ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

10 to 60°CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ambient light ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

60 W fluorescent lamp, approximate distance 2 mÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Power supply ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

5 V ± 5%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Position of the sensor ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Position 1, sensor/ detector connecting line perpendicular to the strips

Special attention must also be made to the downstreamlogic gate. Only components with a low input offsetcurrent may be used. In the case of the TTL gate and theLS-TTL gate, the ILH current can be applied to the sensoroutput in the low condition. At –1.6 mA or –400 µA, thisis above the signal current of the sensor. A transistor or anoperational amplifier should be connected at the output ofthe sensor when TTL or LS-TTL components are used. Agate from the 74HCTxx family is used.

According to the data sheet, its fault current ILH isapproximately 1 µA.

The expected collector current for the minimum andmaximum reflection is now estimated.

According to the working diagram in figure 40c, itfollows that when A = 3 mm

Ic = 0.5 � Icmax

Icmax is determined from the coupling factor, k, forIF = 20 mA.

Icmax = k � IF

At IF = 20 mA, the typical value

k = 2.8%

is obtained for k from figure 37.

However, this value applies to the Kodak neutral card orthe reference surface. The coupling factor has a differentvalue for the surfaces used (typewriting paper and black-fiber tip pen). The valid value for these material surfacescan be found in table 7:

k1 = 94% � k = 2.63% for typing paper and

k2 = 10% � k = 0.28% for black-tip pen (Edding)

Therefore: Ic1 = 0.5 � k1 � IF = 263 µAIc2 = 0.5 � k2 � IF = 28 µA

Temperature and aging reduce the collector current. Theyare therefore important to Ic1 and are subtracted from it.

Figure 38 shows a change in the collector current ofapproximately 10% for 70°C. Another 10% is deductedfrom Ic1 for aging

Ic1 = 263 µA – (20% � 263 µA) = 210 µA

The fault current Icf (from crosstalk and collector darkcurrent) increases the signal current and is added to Ic2.Crosstalk with only a few nA for the TCRT9000 isignored. However, the dark current can increase up to1 µA at a temperature of 70°C and should be taken intoaccount.

In addition, 1 µA, the fault current of the 74HCTxx gate,is also added

Ic2 = 30 µA

The effect of the indirect incident ambient light can mosteasily be seen by comparing the radiant powers producedby the ambient light and the sensor’s transmitter on1 mm2 of the reflecting surface. The ambient light is thentaken into account as a percentage in accordance with theratio of the powers.

From table 8:

Ee (0.5 m) = 40 µW/ cm2 (dc + ac/ 2)Ee (2 m) = Ee(0.5 m) � (0.5/ 2)2

(Square of the distance law)

Ee (2 m) = 2.5 µW/ cm2

�sf = 0.025 �W

The radiant power (Φsf = 0.025 µW) therefore falls on1 mm2.

When IF = 20 mA, the sensor’s transmitter has the radiantintensity:

Ie��e

�� 0.5 W�sr

(see figure 35)

The solid angle for 1 mm2 surface at a distance of 3 mmis

�� 1 mm2

(3 mm)2� 1

9sr

Page 65: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

63

It therefore follows for the radiant power that:

�e = Ie � � = 55.5 mW

The power of 0.025 µW produced by the ambient light istherefore negligibly low compared with the correspond-ing power (approximately 55 µW) of the transmitter.

The currents Ic1, Ic2 would result in full reflectingsurfaces, that is, if the sensor’s visual field only measureswhite or black typing paper. However, this is not the case.The reflecting surfaces exist in the form of stripes.

The signal can be markedly reduced by the limited resolu-tion of the sensor if the stripes are narrow. The suitablestripe width for a given distance should therefore beselected from figure 43. In this case, the minimumpermissible stripe width is approximately 3.8 mm for adistance of 3 mm (position 1, figure 43d). The markingsmeasuring 4 mm in width were expediently selected inthis case. For this width, a signal reduction of about 20%can be permitted with relatively great certainty, so that10% of the difference (Ic1 – Ic2) can be subtracted fromIc1 and added to Ic2.

Ic1 = 210 �A – 18 �A = 192 �AIc2 = 30 �A + 18 �A = 48 �A

The suitable load resistance, RE, at the emitter of thephoto-transistor is then determined from the low and highlevels 0.8 V and 2.0 V for the 74HCTxx gate.

RE < 0.8 V/ Ic2 and RE > 2.0 V/ Ic1,i.e., 10.2 k� < RE < 16.7 k�

12 k� is selected for RE

The corresponding levels for determining RE must beused if a Schmitt trigger of the 74HCTxx family isemployed.

The frequency limit of the reflex sensor is then deter-mined with RE = 12 k� and compared with the maximumoperating frequency in order to check whether signaldamping attributable to the frequency that can occur.

Figure 39 shows for Vs = 5 V and RE = 12 k� approxi-mately, for the TCRT9000, fc = 1.5 kHz.

Sixteen black/ white stripes appear in front of the sensorin each revolution. This produces a maximum signalfrequency of approximately 400 Hz for the maximumspeed of 3000 rpm up to 50 rps. This is significantly lessthan the fc of the sensor, which means there is no risk ofsignal damping.

In the circuit in figure 45, a resistor, Rc, can be used on thecollector of the photoelectric transistor instead of RE. Inthis case, an inverted signal and somewhat modifieddimensioning results. The current Ic1 now determines thelow signal level and the current Ic2 the high. The voltages(Vs – 2 V) and (Vs – 0.8 V) and not the high level and low

level 2 V and 0.8 V, are now decisive for determining theresistance, Rc.

Circuits with Reflex SensorsThe couple factor of the reflex sensors is relatively small.Even in the case of good reflecting surfaces, it is less than10%. Therefore, the photocurrents are in practice only inthe region of a few µA. As this is not enough to processthe signals any further, an additional amplifier is neces-sary at the sensor output. Figure 46 shows two simplecircuits with sensors and follow-up operational amplifi-ers.

The circuit in figure 46b is a transimpedance which offersin addition to the amplification the advantage of a highercut-off frequency for the whole layout.

Two similar amplification circuits incorporating transis-tors are shown in figure 47.

The circuit in figure 48 is a simple example for operatingthe reflex sensors with chopped light. It uses a pulsegenerator constructed with a timer IC. This pulsegenerator operates with the pulse duty factor of approxi-mately 1. The frequency is set to approximately 22 kHz.On the receiver side, a conventional LC resonance circuit(fo = 22 kHz) filters the fundamental wave out of thereceived pulses and delievers it to an operational ampli-fier via the capacitor, Ck. The LC resonance circuitsimultaneously represents the photo transistor’s loadresistance. For direct current, the photo transistor’s loadresistance is very low � in this case approximately 0.4,which means that the photo transistor is practicallyshorted for dc ambient light.

At resonance frequencies below 5 kHz, the necessarycoils and capacitors for the oscillator become unwieldyand expensive. Therefore, active filters, made up with op-erational amplifiers or transistors, are more suitable(figures 49 and 50). It is not possible to obtain the qualitycharacteristics of passive filters. In addition to that, theload resistance on the emitter of the photo transistor hasremarkably higher values than the dc resistance of a coil.On the other hand, the construction with active filters ismore compact and cheaper. The smaller the resonancefrequency becomes, the greater the advantages of activefilters compared to LC resonant circuits.

In some cases, reflex sensors are used to count steps orobjects, while at the same time recognition of a change inthe direction of rotation (= movement direction) is neces-sary. The circuit shown in figure 51 is suitable for suchapplications. The circuit is composed of two independentchannels with reflex sensors. The sensor signals areformed via the Schmitt trigger into TTL impulses withstep slopes, which are supplied to the pulse inputs of thebinary counter 74LS393. The outputs of the 74LS393 arecoupled to the reset inputs. This is made in such a way that

Page 66: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

64

the first output, whose condition changes from ‘low’ to‘high’, sets the directly connected counter. In this way, thecounter of the other channel is deleted and blocked. Theoutputs of the active counter can be displaced orconnected to more electronics for evaluation.

It should be mentioned that such a circuit is only suitedto evenly distributed objects and constant movements. Ifthis is not the case, the channels must be close to eachother, so that the movement of both sensors are collectedsuccessively. The circuit also works perfectly if the lastmentioned condition is fulfilled. Figure 52 shows a pulsecircuit combining analog with digital components andoffering the possibility of temporary storage of the signaldelivered by the reflex sensor. A timer IC is used as thepulse generator.

The negative pulse at the timer’s output triggers the clockinput of the 74HCT74 flip-flop and, at the same time, thereflex sensor’s transmitter via a driver transistor. Theflip-flop can be positively triggered, so that the conditionof the data input at this point can be received as the edgeof the pulse rises. This then remains stored until the nextrising edge.

The reflex sensor is therefore only active for the durationof the negative pulse and can only detect reflectionchanges within this time period. During the time of nega-tive impulses, electrical and optical interferences aresuppressed. A sample and hold circuit can also beemployed instead of the flip-flop. This is switched on viaan analog switch at the sensor output as the pulse rises.

+10 Vb)

+10 V

Reflex sensor

7 2

36

TLC271

Reflex sensor

7

4

2

36

TLC271

220 K

6

R

1 K1 K390

4

1 K390

R

1 K

220 K

GNDGND

Output

R RE

IF= 20 mA

S

I F

= 20 mA

OutputRS RE RF

RF

l

l

a)

Figure 46. Circuits with operational amplifier

+10 V

b)

+10 V

a)

1 KBC178B

PNP

220Reflex sensor 1 K

220 KBC108B

NPN

C

10 K

Reflex sensor

390GND

390 1 KGND

R R

R

R

E

S

= 20 mA

IF

C

L = 20 mA

I F

RS RE

RL

RF

Output

Output

K

2.2 F�

Figure 47. Circuits with transistor amplifier

Page 67: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

65

V = + 5 V82

Reflex sensor

1.2 K

2.7 K Q 3

TR 2

GND

1

THR 6

CV 5

DIS 7

R

48 555

100 nF

C TLC 271

4

3

26

7

0.86 L

10 K100

62 nF

C100 nF10 nF

GND

R F

Output

S

K

mH

Figure 48. AC operation with oscillating circuit to suppress ambient light

+V (10 V)

R

9.1 K

R

220C

1 nF

4

2

36

733 K

R

33 K

R

C

Reflex sensor

Q 3

TR 2GND

1

THR 6

CV 5

DIS 7

R

48 Timer

555

R

5.1 K

C

100 nF 100 nF

R

510

R

1 K

TLC 271(CA3160)

C

22 nF

GNDGND

A

S

E

Output

S

B

F

K

l q

1 F�

Timer dimensions: tp (pulse width) = 0.8 RC = 400 �sT (period) = 0.8 (RA + RB) � C = 1 ms

Active filter : C� Cf �Cq� Q�Cq

Cf�

fo � 1�(6.28�C�R) Vuo�2 RRE

�Q2

Figure 49. AC operation with active filter made up of an operational amplifier, circuit and dimensions

Page 68: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

66

+V (10 V)

R

220R

1 KC

1.5 nF

NPN

R

51 K

CR

51 KC

Reflex sensorR

9.1 K

Q 3

TR 2

GND

1

THR 6

CV 5

DIS 7

R

48 Timer

555R

5.1 K

C

100 nF 100 nF

R

1.8 K

C

33 nF

GNDGND

A

B

E

S

C

Output

V

K

F

K

q

Timer dimensions: tp (pulse width) = 0.8 RC = 400 �sT (period) = 0.8 (RA + RB) � C = 1 ms

Active filter : C� Cf �Cq� Q�Cq

Cf�

fo � 1�(6.28�C�R) Vuo�2 RRE

�Q2

1 F�

1 F�

Figure 50. AC operation with transistor amplifier as active filter

CLK

CLR

QAQBQCQD

A

LS393

+5 V

Reflex sensor

A

74HCT14

CLK

CLR

QAQBQCQD

B

LS393

3.3 K

+5 V

D

CLK

GND

15 K

Reflex sensor

+5 VDQ

CLKQ

SD

RD GND

Reset

CLK

CLR

QAQBQCQD

A

LS393

B

74HCT14

15 K

R

100

GND

CLK

CLR

QAQBQCQD

B

LS393

Left

Right

Display system

or report

REV

RE

B7474

A

or report

Display system

SD

Q

Q

RD

Figure 51. Circuit for objects count and recognition of movement direction

Page 69: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

67

(+5 V)

V

PNP

3.3 KR

PNP

82 RR

Q 3

TR 2

GND

1

THR 6

CV 5

DIS 7

R

48

555

R

100

Reflex

C

D 2Q

5

CLK 3

Q 6

SD

4

RD 1

74HCT74R

100 nFC

GND

sensor

AC

S

B

l

K

2

Figure 52. Pulse circuit with buffer storage

Page 70: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

68

Cross Reference List OptoCompetition–Type Competitor Device TFK–Device Code PrioÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIsolatorsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3C63BÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HafoÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY66ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3C63C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hafo ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY66 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3C91B ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hafo ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY18 ÁÁÁÁ

ÁÁÁÁB,E ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3C91C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hafo ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY18 ÁÁÁÁ

ÁÁÁÁB,E ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3C92B ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hafo ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY18 ÁÁÁÁ

ÁÁÁÁB,E ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3C92C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hafo ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY18 ÁÁÁÁ

ÁÁÁÁB,E ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3N243 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK120P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3N244 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK120P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ3N245

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁK120P

ÁÁÁÁÁÁÁÁB

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ3N281ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTexas

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁK120P

ÁÁÁÁÁÁÁÁB

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ4N25, 25AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁVarious Suppliers

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4N25

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ4N26

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various SuppliersÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N26ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N27 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N27 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N28 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N28 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N29 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N29A ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N30 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N31 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N32 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4N33

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁVarious Suppliers

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4N33

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ4N35ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁVarious Suppliers

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4N35

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ4N37ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁVarious Suppliers

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4N37

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ4N38

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various SuppliersÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N38ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N38A ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N38A ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CLA7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clairex ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY64 ÁÁÁÁ

ÁÁÁÁE ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CLA7AA ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clairex ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY64 ÁÁÁÁ

ÁÁÁÁE ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNX21 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY21N ÁÁÁÁ

ÁÁÁÁA, CÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNX35 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNX36 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNX38 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNX82

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMotorola

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTCDT1100

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁCNX83ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMotorola

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁCNY17AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY17–1

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁCNY17B

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–2ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY17–3 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17D ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75C ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY17–1 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY17–2 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY17–3 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75C ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–F1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCDT1101 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY17–F2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁVarious Suppliers

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTCDT1102

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3

Page 71: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

69

PrioCodeTFK–DeviceDeviceCompetitorCompetition–TypeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–F3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–F4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Various Suppliers ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1124 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY47 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY47A ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY48 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁCNY51 ÁÁÁÁÁÁÁÁQTC ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁCNY75B ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY57

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY17–1

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁCNY57AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁCNY62

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁCNY21N

ÁÁÁÁÁÁÁÁ

B, CÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY63ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁCNY21N

ÁÁÁÁÁÁÁÁ

B, CÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY65 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY65 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75A ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75A ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75B ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75C ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GEPS2001 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GFH600–1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75A ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁGFH600–2 ÁÁÁÁÁÁÁÁQTC ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁCNY75B ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGFH600–3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY75C

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁH11A5ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁ4N28

ÁÁÁÁÁÁÁÁB

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁH11A5100

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N35

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11A520ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11A550 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11A1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11A2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N26 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11A3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11A4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N27 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11AV1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY64 ÁÁÁÁ

ÁÁÁÁB, EÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁH11AV2 ÁÁÁÁÁÁÁÁQTC ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁCNY64 ÁÁÁÁB, EÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁH11AV3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY64

ÁÁÁÁÁÁÁÁB, E

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁH11B1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁ4N32

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁH11B2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N32

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11B3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N32

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11J1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3010P ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11J2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3010P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11J3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3010P ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11J4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3010P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11J5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3010P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H11L1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDS1001 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁH11L2 ÁÁÁÁÁÁÁÁQTC ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁTCDS1001 ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁH.24A1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY64

ÁÁÁÁÁÁÁÁB, E

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁH.24A2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY64

ÁÁÁÁÁÁÁÁB, E

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁIL–1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SiemensÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N25

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IL–100ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SiemensÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁTCDS1001

ÁÁÁÁÁÁÁÁ

D, EÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IL–101 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDS1001 ÁÁÁÁ

ÁÁÁÁD, EÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IL–201 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75A ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

Page 72: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

70

PrioCodeTFK–DeviceDeviceCompetitorCompetition–TypeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IL–202 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IL–250 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY71 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IL–5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCQY80NG ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IL–74 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N27 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IL–CT6 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁMCT6 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁILCA2–30 ÁÁÁÁÁÁÁÁSiemens ÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ4N32 ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁILD–1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSiemens

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY74–2

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁILD–74ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSiemens

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY74–2

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁILQ–1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SiemensÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY74–4ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ILQ–74ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SiemensÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY74–4ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCA230 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCA230 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCA231 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCA231 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCP3009 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK3010P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCP3010 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK3010P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁMCP3011 ÁÁÁÁÁÁÁÁQTC ÁÁÁÁÁIsolator ÁÁÁÁÁÁÁK3011P ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMCP3020

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁK3020P

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMCP3021ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁK3021P

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMCP3022

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

K3022PÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N26ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT2E ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT210 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N35 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT210 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N35 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT2200 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT2201 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT2202 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75A ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁMCT26 ÁÁÁÁÁÁÁÁQTC ÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ4N26 ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMCT26

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4N26

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMCT270ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMCT271

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY17–1ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT272ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75 AÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT273 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT274 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75C ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT275 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT276 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY17–1 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT277 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N36 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MCT3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N28 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁMCT4 ÁÁÁÁÁÁÁÁQTC ÁÁÁÁÁIsolator ÁÁÁÁÁÁÁK120P ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMCT6

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY74–2

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMCT66ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY74–2

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMOC1005

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MotorolaÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75AÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC1006ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MotorolaÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY75AÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC119 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC205 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCMT1021 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

Page 73: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

71

PrioCodeTFK–DeviceDeviceCompetitorCompetition–TypeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC206 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCMT1022 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC207 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCMT1023 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC215 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCMT1031 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC216 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCMT1032 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC217 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCMT1033 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁMOC221 ÁÁÁÁÁÁÁÁMotorola ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁTCMT1033 ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMOC222

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMotorola

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁTCMT1034

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMOC223ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMotorola

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁTCMT1034

ÁÁÁÁÁÁÁÁB

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMOC3009

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MotorolaÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁK3010P

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC3010ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MotorolaÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁK3010P

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC3011 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3011P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC3012 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3012P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC3020 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3020P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC3021 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3021P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC3022 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3022P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC3023 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3023P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁMOC5005 ÁÁÁÁÁÁÁÁMotorola ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁTCDS1001 ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMOC5006

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMotorola

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁTCDS1001

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMOC5007ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMotorola

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁTCDS1001

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁMOC5008

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MotorolaÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁTCDS1001

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC5009ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MotorolaÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁTCDS1001

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC8101 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1101 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC8102 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1102 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC8103 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1103 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC8104 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1124 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC8112 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1100 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC8113 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1110 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁOPI110 ÁÁÁÁÁÁÁÁOptek ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁCNY21N ÁÁÁÁE ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPI113

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY65

ÁÁÁÁÁÁÁÁD, E

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPI120ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY66

ÁÁÁÁÁÁÁÁE

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPI123

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁCNY66

ÁÁÁÁÁÁÁÁ

D, EÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI1264AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁCNY21N

ÁÁÁÁÁÁÁÁ

EÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI1264B ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY65 ÁÁÁÁ

ÁÁÁÁE ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI1264C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY65 ÁÁÁÁ

ÁÁÁÁB, EÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI140 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK120P ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2100 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75C ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2150 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N27 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2151 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N27 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁOPI2152 ÁÁÁÁÁÁÁÁOptek ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁ4N26 ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPI2153

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPI2154ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁ4N27

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPI2155

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N26

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2250ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N26

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2251 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N26 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2252 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

Page 74: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

72

PrioCodeTFK–DeviceDeviceCompetitorCompetition–TypeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2253 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2254 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N26 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2255 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI2500 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY71 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI3009 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK3010P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁOPI3010 ÁÁÁÁÁÁÁÁOptek ÁÁÁÁÁIsolator ÁÁÁÁÁÁÁK3010P ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPI3011

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁK3011P

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPI3012ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁK3012P

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPI3020

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptexÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

K3020PÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI3021ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

K3021PÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI3022 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK3022P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI3023 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK3023P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI3150 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N33 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI3151 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N33 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI3153 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N33 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPI3250 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N33 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁOPI3251 ÁÁÁÁÁÁÁÁOptek ÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ4N32 ÁÁÁÁB ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPI3253

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4N32

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPI7002ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY64

ÁÁÁÁÁÁÁÁE

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPI7010

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY64ÁÁÁÁÁÁÁÁ

B, EÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PC508ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SharpÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY65ÁÁÁÁÁÁÁÁ

D, EÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PC613 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PC627 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK827P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PC713U ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY75A ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PC733 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY71 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PC827U ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK827P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PC829 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY74–2 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁPC847U ÁÁÁÁÁÁÁÁSharp ÁÁÁÁÁIsolator ÁÁÁÁÁÁÁK827P ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPS2001A

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNEC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁPS2001BÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNEC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁPS2003A

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NECÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CQY80NÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2003BÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NECÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N25ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2004A ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NEC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁD ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2004B ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NEC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2005A ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NEC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2005B ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NEC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2010 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NEC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2011 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NEC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁPS2013 ÁÁÁÁÁÁÁÁNEC ÁÁÁÁÁIsolator ÁÁÁÁÁÁÁCQY80N ÁÁÁÁB ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPS2014

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNEC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4N32

ÁÁÁÁÁÁÁÁB

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁPS2015ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNEC

ÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁPS2021

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NECÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CQY80NÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2022ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NECÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4N32ÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2401A–2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NEC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK827P ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PS2401A–4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NEC ÁÁÁÁÁÁÁÁÁÁIsolator ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁK827P ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

Page 75: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

73

PrioCodeTFK–DeviceDeviceCompetitorCompetition–TypeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SFH600–0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY17–1 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SFH600–1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY17–2 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SFH600–2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY17–3 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SFH600–3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75C ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SFH601–1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Siemens ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY17–1 ÁÁÁÁ

ÁÁÁÁD ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁSFH601–2 ÁÁÁÁÁÁÁÁSiemens ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁCNY75A ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSFH601–3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSiemens

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY75B

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁSFH601–4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSiemens

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCNY75C

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁTIL111

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TexasÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N27

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL112ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TexasÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N27

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL113 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N33 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL114 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL115 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N26 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL116 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL117 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL120 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK120P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁTIL121 ÁÁÁÁÁÁÁÁTexas ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁK120P ÁÁÁÁB ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTIL124

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTexas

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁB

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁTIL125ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTexas

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁB

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁTIL126

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TexasÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL127ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TexasÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁ4N32

ÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL153 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N26 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL154 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N25 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL155 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL156 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁ4N32 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP3051 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3052P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP3052 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁK3051P ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁTLP504–A ÁÁÁÁÁÁÁÁToshiba ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁK827P ÁÁÁÁA ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTLP521–2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁToshiba

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁK827P

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁTLP521–4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁToshiba

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁK827P

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁTLP531–A

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ToshibaÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁCQY80N

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP531–BLÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ToshibaÁÁÁÁÁÁÁÁÁÁÁÁ

IsolatorÁÁÁÁÁÁÁÁÁÁÁÁCNY75C

ÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP531–GB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP531–GR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75B ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP531–Y ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCNY75A ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP531–YG ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP533 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP535 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Isolator ÁÁÁÁÁÁÁÁÁÁÁÁCQY80N ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁTLP571 ÁÁÁÁÁÁÁÁToshiba ÁÁÁÁÁÁIsolator ÁÁÁÁÁÁ4N32 ÁÁÁÁB ÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTLP595

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁToshiba

ÁÁÁÁÁÁÁÁÁÁÁÁIsolator

ÁÁÁÁÁÁÁÁÁÁÁÁTCDT1900

ÁÁÁÁÁÁÁÁB

ÁÁÁÁÁÁÁÁÁÁ3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSensorsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CNY28ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁÁÁ

SensorÁÁÁÁÁÁÁÁÁÁÁÁTCST2103

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

EE–SMR1–1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OmronÁÁÁÁÁÁÁÁÁÁÁÁ

SensorÁÁÁÁÁÁÁÁÁÁÁÁTCRT9050

ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

EE–SMR3–1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Omron ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCRT9000 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

EE–SX1025 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Omron ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1230 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4

Page 76: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

74

PrioCodeTFK–DeviceDeviceCompetitorCompetition–TypeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GP1A05 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCSS6201 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GP1A21 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCYS5201 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GP1S01 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GP1S01F ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GP1S02 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sharp ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁGP1S04 ÁÁÁÁÁÁÁÁSharp ÁÁÁÁÁSensor ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁA, CÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁH21A1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTCST2103

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁH21A2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁQTC

ÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTCST2103

ÁÁÁÁÁÁÁÁA

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁH21A4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TCST2103ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H21A5ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTCÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TCST2103ÁÁÁÁÁÁÁÁ

AÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H21L ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCSS2100 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H22A1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H22A2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H22A4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H22A5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

H22L ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCSS1100 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁHOA0870–055 ÁÁÁÁÁÁÁÁHoneywell ÁÁÁÁÁSensor ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁC ÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHOA0870–251

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHoneywell

ÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTCST2300

ÁÁÁÁÁÁÁÁC

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁHOA0870–255ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHoneywell

ÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTCST2103

ÁÁÁÁÁÁÁÁC

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁHOA0871–051

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HoneywellÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TCST1103ÁÁÁÁÁÁÁÁ

CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HOA0871–255ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HoneywellÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TCST2103ÁÁÁÁÁÁÁÁ

B, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HOA0872–051 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Honeywell ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST1300 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HOA0872–055 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Honeywell ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HOA0872–251 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Honeywell ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2300 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HOA0872–255 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Honeywell ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HOA1397–1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Honeywell ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY70 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HOA1397–2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Honeywell ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCNY70 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁHOA1872–11 ÁÁÁÁÁÁÁÁHoneywell ÁÁÁÁÁSensor ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁC ÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHOA1872–12

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHoneywell

ÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTCST1103

ÁÁÁÁÁÁÁÁC

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁHOA1873–11ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHoneywell

ÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTCST2103

ÁÁÁÁÁÁÁÁC

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁHOA1873–12

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HoneywellÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TCST2103ÁÁÁÁÁÁÁÁ

CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HOA1879–15ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HoneywellÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TCST2300ÁÁÁÁÁÁÁÁ

B, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC7811 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC7812 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC7821 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOC7822 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Motorola ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁA ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MST8 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2000 ÁÁÁÁ

ÁÁÁÁE ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MST81 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QTC ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2000 ÁÁÁÁ

ÁÁÁÁE ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁOPB706A ÁÁÁÁÁÁÁÁOptek ÁÁÁÁÁSensor ÁÁÁÁÁÁÁCNY70 ÁÁÁÁC ÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPB706B

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY70

ÁÁÁÁÁÁÁÁC

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPB706CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCNY70

ÁÁÁÁÁÁÁÁC

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPB710

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TCSS2100ÁÁÁÁÁÁÁÁ

A, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB804ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TCST1000ÁÁÁÁÁÁÁÁ

B, EÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB813 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2000 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB813S10 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁSensor ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁE ÁÁÁÁÁÁÁÁÁÁ

4

Page 77: Acopladores Opticos

TELEFUNKEN Semiconductors06.96

75

PrioCodeTFK–DeviceDeviceCompetitorCompetition–TypeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB814 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁB, EÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB815 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁB, EÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB816 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST2000 ÁÁÁÁ

ÁÁÁÁB ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB817 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁB, EÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB870N55 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁOPB870T51 ÁÁÁÁÁÁÁÁOptek ÁÁÁÁÁÁSensor ÁÁÁÁÁÁTCST2300 ÁÁÁÁC ÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPB870T55

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁTCST2103

ÁÁÁÁÁÁÁÁC

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPB871N51ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁTCST1300

ÁÁÁÁÁÁÁÁB, C

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPB871N55

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁÁÁ

SensorÁÁÁÁÁÁÁÁÁÁÁÁTCST1103

ÁÁÁÁÁÁÁÁ

B, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB871T51ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁÁÁ

SensorÁÁÁÁÁÁÁÁÁÁÁÁTCST2300

ÁÁÁÁÁÁÁÁ

B, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB871T55 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB872N51 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1300 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB872N55 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB872T51 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST2300 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB872T55 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPB875N55 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1000 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁOPB875T55 ÁÁÁÁÁÁÁÁOptek ÁÁÁÁÁÁSensor ÁÁÁÁÁÁTCST2000 ÁÁÁÁC ÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOPB971P55

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁTCSS1100

ÁÁÁÁÁÁÁÁA, C

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPB973N55ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptek

ÁÁÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁTCSS1100

ÁÁÁÁÁÁÁÁA, C

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁOPB973T55

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁÁÁ

SensorÁÁÁÁÁÁÁÁÁÁÁÁTCSS2100

ÁÁÁÁÁÁÁÁ

A, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPD819S10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OptekÁÁÁÁÁÁÁÁÁÁÁÁ

SensorÁÁÁÁÁÁÁÁÁÁÁÁTCST2300

ÁÁÁÁÁÁÁÁ

B, EÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPD823A ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPD824B ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST2103 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPD847 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁB, EÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPD848 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁB, EÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OPD870N51 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optek ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1300 ÁÁÁÁ

ÁÁÁÁC ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TIL147 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Texas ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁD, EÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁTIL148 ÁÁÁÁÁÁÁÁTexas ÁÁÁÁÁÁSensor ÁÁÁÁÁÁTCST1103 ÁÁÁÁD, EÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTlL143

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTexas

ÁÁÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁTCST2000

ÁÁÁÁÁÁÁÁD, E

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁTlL144ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTexas

ÁÁÁÁÁÁÁÁÁÁÁÁSensor

ÁÁÁÁÁÁÁÁÁÁÁÁTCST2000

ÁÁÁÁÁÁÁÁD, E

ÁÁÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁTLP1001

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ToshibaÁÁÁÁÁÁÁÁÁÁÁÁ

SensorÁÁÁÁÁÁÁÁÁÁÁÁTCSS2100

ÁÁÁÁÁÁÁÁ

BÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP800ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ToshibaÁÁÁÁÁÁÁÁÁÁÁÁ

SensorÁÁÁÁÁÁÁÁÁÁÁÁTCST2103

ÁÁÁÁÁÁÁÁ

B, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP801 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1103 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP804 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCST1202 ÁÁÁÁ

ÁÁÁÁB, CÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP908 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCRT1000 ÁÁÁÁ

ÁÁÁÁE ÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TLP908(LB) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Toshiba ÁÁÁÁÁÁÁÁÁÁÁÁ

Sensor ÁÁÁÁÁÁÁÁÁÁÁÁTCRT1010 ÁÁÁÁ

ÁÁÁÁE ÁÁÁÁÁÁÁÁÁÁ

4