acute lymphoblastic leukemia in children

Upload: doni-silva

Post on 08-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    1/12

    T he   n e w e n g l a n d j o u r n a l o f    medicine

    n engl j med 373;16  nejm.org  October 15, 2015 1541

    Review Article

    Approximately 6000 cases of acute lymphoblastic leukemia (ALL)

    are diagnosed in the United States annually; half the cases occur in chil-dren and teenagers. In the United States, ALL is the most common cancer

    among children and the most frequent cause of death from cancer before 20 yearsof age.1,2 Presenting symptoms of ALL include bruising or bleeding due to thrombo-cytopenia, pallor and fatigue from anemia, and infection caused by neutropenia.Leukemic infiltration of the liver, spleen, lymph nodes, and mediastinum is com-mon at diagnosis. Extramedullary leukemia in the central nervous system (CNS)

    or testicles may require specific modifications in therapy.Since the first description in 1948 of temporary remission of leukemia inducedby chemotherapy,3 pediatric ALL has provided a model for improvement of survivalamong patients with cancer by progressive improvements in the efficacy of multi-agent chemotherapy regimens and by stratif ication of treatment intensity accordingto the clinical features of the patient, the biologic features of the leukemia cells,and the early response to treatment, all of which are predictive of the risk of re-lapse. Collectively, these advances have increased the survival rate from less than10% in the 1960s to 90% today (Fig. 1). New discoveries are revealing the promiseand challenges of precision-medicine strategies that integrate leukemia genomicsinto contemporary therapy.

    Epidemiology and R isk Factors

    In the United States, the incidence of ALL is about 30 cases per million persons younger than 20 years of age, with the peak incidence occurring at 3 to 5 years of age.4 The incidence varies significantly according to race and ethnic group: 14.8 cases permillion blacks, 35.6 cases per million whites, and 40.9 cases per million Hispan-ics.5 Childhood ALL develops more frequently in boys than in girls (male:femaleratio, 55% to 45%).

    Several genetic factors (most prominently Down’s syndrome6) are associated with an increased risk of ALL, but most patients have no recognized inheritedfactors. Genomewide association studies have identified polymorphic variants inseveral genes (including  ARID5B, CEBPE , GATA3, and IKZF1) that are associated with

    an increased risk of ALL or specific ALL subtypes.7-9 Rare germline mutations inPAX5 and ETV6  are linked to familial ALL.10,11 Few environmental risk factors areassociated with ALL in children. Increased rates of the disease have been linkedto exposure to radiation and certain chemicals, but these associations explain onlya very small minority of cases.

    Genetic Basis of ALL

    ALL comprises multiple entities with distinct constellations of somatic geneticalterations (Fig. 2).12 These genetic alterations include aneuploidy (changes in chro-

    From the Division of Oncology and Cen-ter for Childhood Cancer Research, Chil-dren’s Hospital of Philadelphia, Perel-man School of Medicine at the Universityof Pennsylvania, Philadelphia (S.P.H.);and the Department of Pathology andHematological Malignancies Program,St. Jude Children’s Research Hospital,Memphis, TN (C.G.M.). Address reprintrequests to Dr. Hunger at the Children’sHospital of Philadelphia, 3060 Colket

    Translational Research Bldg., 3501 CivicCenter Blvd., Philadelphia, PA 19104, orat [email protected]; or to Dr.Mullighan at St. Jude Children’s ResearchHospital, 262 Danny Thomas Pl., MailStop 342, Memphis, TN 38105, or [email protected].

    N Engl J Med 2015;373:1541-52.

    DOI: 10.1056/NEJMra1400972

    Copyright © 2015 Massachusetts Medical Society.

    Dan L. Longo, M.D., Editor 

    Acute Lymphoblastic Leukemia in Children

    Stephen P. Hunger, M.D., and Charles G. Mullighan, M.D.

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    2/12

    n engl j med 373;16  nejm.org  October 15, 20151542

    T h e   n e w e n g l a n d j o u r n a l o f    medicine

    mosome number), chromosomal rearrangementsthat deregulate gene expression or result in ex-pression of chimeric fusion proteins, deletions andgains of DNA, and DNA sequence mutations.13 Onaverage, childhood ALL genomes contain only10 to 20 nonsilent coding mutations at the time

    of diagnosis and about twice as many at the timeof relapse.14 Many mutations perturb key cellularprocesses, including the transcriptional regulationof lymphoid development and differentiation;cell-cycle regulation; the TP53–retinoblastomaprotein tumor-suppressor pathway; growth factorreceptor, Ras, phosphatidylinositol 3-kinase, and JAK–STAT signaling; nucleoside metabolism;and epigenetic modification. Perturbation of thelatter two processes is common at relapse.14,15

    ALL may be of B-cell precursor or T-cell lin-eage. In 25 to 30% of children with B-cell ALL,

    leukemic cells have high hyperdiploidy (>50chromosomes) due to nonrandom chromosomegains. This subtype is associated with an excel-lent prognosis. Hypodiploidy (

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    3/12

    n engl j med 373;16  nejm.org  October 15, 2015 1543

    Acute Lymphoblastic Leukemia in Children

    (q34;q11.2) translocation that results in forma-tion of the Philadelphia (Ph) chromosome, andchromosomal rearrangements involving the chro-mosome 11q23 mixed-lineage leukemia (MLL)gene. The Ph chromosome encodes BCR-ABL1,

    an activated tyrosine kinase. MLL  (KMT2A ) en-codes a histone methyltransferase that is involvedin epigenetic regulation of blood-cell develop-ment. More than 70 different translocations tar-get MLL, creating fusion proteins that mediateaberrant self-renewal of hematopoietic progeni-tors.23 MLL translocations are particularly com-mon in ALL that develops before 1 year of age(75% of cases). MLL-rearranged leukemias have very few additional somatic mutations, particu-larly in infants.24

    Genomic profiling and sequencing studies haveidentified additional subtypes of ALL. These in-clude cases with deregulation of the transcriptionfactor gene ERG25,26 and cases with complex intra-chromosomal amplification of chromosome 21.27

    In several subtypes of ALL, there is no singledefining chromosomal alteration, but these sub-types are defined by other pathological or ge-nomic features. For example, early T-cell precur-sor ALL is an aggressive stem-cell and progenitorleukemia that has a distinct immunophenotypeand genetic alterations targeting transcriptionfactors, signaling pathways, and epigenetic reg-ulation.28,29  Patients with Ph-like ALL have aleukemic-cell gene-expression profile that issimilar to that in patients with Ph-positive ALL,

    Figure 2. Proposed Sequential Acquisition of Genetic Alterations Contributing to the Pathogenesis and Relapse of ALL.

    As shown in Panel A, either common inherited variants or, rarely, deleterious germline mutations confer a predispo-sition to ALL. Initiating lesions, commonly translocations, are acquired in a lymphoid progenitor. Secondary se-

    quence mutations and structural genetic alterations contribute to an arrest in lymphoid development and perturba-

    tion of multiple cellular pathways, resulting in clinically manifest leukemia. PI3K denotes phosphatidylinositol3-kinase. As shown in Panel B, ALL is commonly genetically polyclonal at diagnosis. Initial therapy suppresses oreliminates more proliferative predominant clones, leaving subclones that harbor or acquire mutations that confer

    resistance to specific chemotherapeutic agents. Less commonly, relapse clones share no genetic alterations with

    diagnosis clones and probably are a second leukemia in persons with a genetic predisposition.

    Hematopoieticstem cells

    Lymphoidprogenitor 

    Pro-B or pre-Bcell

    Lymphoblast

    A

    Predisposition

    Initiating translocations

    Secondary mutations

    Diagnosis

    B

    Diagnosis

    Remission

    Relapse Second leukemia

    Selectionor acquisitionof mutations

    CREBBP 

    NT5C2 and PRPS1TP53

    RasMismatch repair

    Epigenetic

    Tumor suppressorsKinase–Ras–PI3K signaling

    Lymphoid signalingTranscriptional signaling

    Transcriptional coactivatorsChromatin remodeling

    Self-renewalDevelopmental arrest

    Epigenetic reprogrammingProliferation

    Remission-inductiontherapy

    Common variants

    IKZF1, CEBPE, ARID5B

    Rare mutations

    PAX5, ETV6, TP53

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    4/12

    n engl j med 373;16  nejm.org  October 15, 20151544

    T h e   n e w e n g l a n d j o u r n a l o f    medicine

    but they do not have BCR-ABL1 and harbor adiverse range of genetic alterations that activatetyrosine kinase signaling.30 The most commonof these alterations are fusions that involve“ABL-class” kinases (ABL1, ABL2, CSF1R, andPDGFRB), which can be targeted with ABL1 in-hibitors such as imatinib and dasatinib, and

    fusions, mutations, or deletions that activate JAK–STAT signaling (including rearrangementsof  JAK2, CRLF2, EPOR , and mutations of  JAK1, JAK2, and  JAK3 and the interleukin-7 receptor).

    With the exception of MLL-rearranged leuke-mia in infants, each of these subtypes typicallyhas multiple additional genetic alterations. Thesealterations commonly target genes encoding pro-teins involved in cell signaling, tumor-suppressorfunctions, and lymphoid differentiation. The twomost common target genes governing B-lymphoiddevelopment are PAX5 (mutated in 35% of cases ofALL in children) and IKZF1 (mutated in 15%).25,31

    Prognostic Fact ors

    Factors that are predictive of an increased or a de-creased chance of cure are considered when deci-sions are made about the intensity of chemothera-py and the selection of patients in first remissionfor allogeneic hematopoietic-cell transplantation(Table 1). Major prognostic factors include theclinical features that are present at diagnosis, bio-

    logic and genetic features of leukemia cells, andearly response to treatment.

    Clinical Features

    The patient’s age and initial white-cell count arepredictive of outcome, with older age or a higher white-cell count portending a worse prognosis.A consensus conference defined “standard risk”(age 1 to 9.99 years and initial white-cell countof

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    5/12

    n engl j med 373;16  nejm.org  October 15, 2015 1545

    Acute Lymphoblastic Leukemia in Children

       T  a   b   l  e   1 .

       I  m  p  o  r   t  a  n   t   P  r  o  g  n  o  s   t   i  c   F  a  c   t  o  r  s   i  n   A  c  u   t  e   L  y  m  p   h  o   b   l  a  s   t   i  c   L  e  u   k  e  m   i  a   (   A   L   L   )   i  n   C   h   i   l   d  r  e  n .   *

       V  a  r   i  a   b   l  e

       F  a  v  o  r  a   b   l  e   F  a  c   t  o  r

       A   d  v  e  r  s  e   F  a  c   t  o  r

       U  s  e   i  n   R   i  s   k

       S   t  r  a   t   i   f   i  c  a   t   i  o  n

       D  e  m  o  g  r  a  p   h   i  c  a  n   d  c   l   i  n   i  c  a   l   f  e  a   t  u  r  e  s

       A  g  e

       1   t  o  <   1   0  y  r

      <   1  y  r  o  r  ≥   1   0  y  r

       T   h   i  s   f  e  a   t  u  r  e   i  s  a  p  a  r   t  o   f   N

       C   I  r   i  s   k  g  r  o  u  p   d  e   f   i  n   i   t   i  o  n

       S  e  x

       F  e  m  a   l  e

       M  a   l  e

       N

      o

       R  a  c  e  o  r  e   t   h  n   i  c  g  r  o  u  p

       W   h   i   t  e ,   A  s   i  a  n

       B   l  a  c   k ,

       N  a   t   i  v  e   A  m  e  r   i  c  a  n ,   H

       i  s  p  a  n   i  c

       N

      o

       I  n   i   t   i  a   l  w   h   i   t  e  -  c  e   l   l  c  o  u  n   t

       L  o  w  e  r   (  <   5   0 ,   0

       0   0   /  m  m

       3   )

       H   i  g   h  e  r   (  ≥   5   0 ,   0

       0   0   /  m  m

       3   )

       P  a  r   t  o   f   N   C   I  r   i  s   k

      g  r  o  u  p   d  e   f   i  n   i   t   i  o  n

       B   i  o   l  o  g   i  c  o  r  g  e  n  e   t   i  c   f  e  a   t  u  r  e  s

      o   f   l  e  u   k  e  m   i  a  c  e   l   l  s

       I  m  m  u  n  o  p   h  e  n  o   t  y  p  e

       B  -  c  e   l   l   l   i  n  e  a  g  e

       T  -  c  e   l   l   l   i  n  e  a  g  e

       O   f   t  e  n  u  s  e   d   t  o  s  e   l  e  c   t   t   h  e  r  a  p  y   b  a  c   k   b  o  n  e

       C  y   t  o  g  e  n  e   t   i  c   f  e  a   t  u  r  e  s

        E    T    V    6  -    R    U    N    X    1 ,

       h  y  p  e  r   d   i  p   l  o   i   d  y ,   f  a  v  o  r  a   b   l  e

       c   h  r  o  m  o  s  o  m  e   t  r   i  s  o  m   i  e  s

        B    C    R  -    A    B    L    1 ,    M    L    L  r  e  a  r  r  a  n  g  e  m  e  n   t  s ,   h

      y  p  o   d   i  p   l  o   i   d  y

       O   f   t  e  n  u  s  e   d   t  o  s  e   l  e  c   t   t  r  e  a   t  m  e  n   t   i  n   t  e  n  s   i   t  y ,  a  s  s   i  g  n

       t   h  e  p  a   t   i  e  n   t   t  o   H   S   C   T ,  o  r   b  o   t   h  ;  s  o  m  e   f  e  a   t  u  r  e  s

       (  e .  g . ,    B    C    R  -    A    B    L    1   )  c  a  n

       b  e  u  s  e   d   t  o  s  e   l  e  c   t   t  a  r  -

      g  e   t  e   d   t   h  e  r  a  p  y

       G  e  n  o  m   i  c   f  e  a   t  u  r  e  s

        E    R    G   d  e   l  e   t   i  o  n  s

        I    K    Z    F    1   d  e   l  e   t   i  o  n  s  o  r  m  u   t  a   t   i  o  n  s  ;   P   h   i   l  a   d  e   l  p   h   i  a  c   h  r  o  m  o  -

      s  o  m  e  –   l   i   k  e   A   L   L  w   i   t   h   k   i  n  a  s  e  g  e  n  e  a   l   t  e  r  a   t   i  o  n  s

       S  o  m  e  r  e  s  e  a  r  c   h  g  r  o  u  p  s  u

      s  e    I    K    Z    F    1   d  e   l  e   t   i  o  n  s   t  o

      a  s  s   i  g  n  p  a   t   i  e  n   t  s   t  o  m

      o  r  e   i  n   t  e  n  s   i  v  e   t   h  e  r  a  p  y  ;

        k   i  n  a  s  e  g  e  n  e  m  u   t  a   t   i  o  n  s  m  a  y   b  e  u  s  e   d   t  o

       a  s  s   i  g  n  p  a   t   i  e  n   t  s   t  o   t  a  r  g  e   t  e   d   t   h  e  r  a  p  y ,   b  u   t   t   h   i  s

       i  s  n  o   t  y  e   t  p  a  r   t  o   f  r  o  u   t   i  n  e  c  a  r  e

       E  a  r   l  y  r  e  s  p  o  n  s  e   t  o   t  r  e  a   t  m  e  n   t

       R  e  s  p  o  n  s  e   t  o   1  w   k  o   f  g   l  u  c  o  c  o  r   t   i  c  o

       i   d

       t   h  e  r  a  p  y

       G  o  o   d  r  e  s  p  o  n  s  e   t  o  p  r  e   d  n   i  s  o  n  e

       (  <   1   0   0   0   b   l  a  s   t  s   /  m  m

       3   )

       P  o  o  r  r  e  s  p  o  n  s  e   t  o  p  r  e   d  n   i  s  o  n  e   (  ≥   1   0   0   0   b   l  a  s   t  s   /  m  m

       3   )

       E  a  s  y   t  o  m  e  a  s  u  r  e  a  n   d  u  s  e

       d   b  y  m  a  n  y  g  r  o  u  p  s  ;  m  a  y

       b  e  s  u  p  p   l  a  n   t  e   d   b  y   M   R   D

       M  a  r  r  o  w   b   l  a  s   t  s  a   f   t  e  r   1  –   2  w   k  o   f  m  u   l  -

       t   i  a  g  e  n   t   t   h  e  r  a  p  y

       M   1  m  a  r  r  o  w   (  <   5   %   b   l  a  s   t  s   )   b  y   d  a  y   8  o  r   1   5

       N  o   M   1  m  a  r  r  o  w   (  ≥   5   %   b   l  a  s   t  s   )   b  y   d  a

      y   8  o  r   1   5

       E  a  s  y   t  o  m  e  a  s  u  r  e  a  n   d  u  s  e   d  p  r  e  v   i  o  u  s   l  y   b  y  m  a  n  y

      g  r  o  u  p  s  ;  n  o  w   b  e   i  n  g  s  u  p  p   l  a  n   t  e   d   b  y   M   R   D

       M   R   D  q  u  a  n   t   i   t  a   t   i  o  n   d  u  r   i  n  g  o  r  a   t  e  n   d

      o   f   i  n   d  u  c   t   i  o  n

       R  e  a  c   h   i  n  g   l  o  w   (  <   0 .   0

       1   %   )  o  r  u  n   d  e   t  e  c   t  a   b   l  e

       M   R   D   b  y  s  p  e  c   i   f   i  c   t   i  m  e  p  o   i  n   t  s

       P  e  r  s   i  s   t  e  n  c  e  o   f   M   R   D  ≥   0 .   0

       1   %  a   t  s  p  e

      c   i   f   i  c   t   i  m  e  p  o   i  n   t  s  ;

       t   h  e   h   i  g   h  e  r   i   t   i  s ,   t

       h  e  w  o  r  s  e   t   h  e  p  r  o  g  n  o  s   i  s

       M  o  s   t   i  m  p  o  r   t  a  n   t  s   i  n  g   l  e  p

      r  o  g  n  o  s   t   i  c   f  a  c   t  o  r   f  o  r

       c  o  n   t  e  m  p  o  r  a  r  y   t   h  e  r  a  p  y  ;  c  r   i   t   i  c  a   l   f  o  r  m  o   d  e  r  n

      r   i  s   k  s   t  r  a   t   i   f   i  c  a   t   i  o  n

       M   R   D  a   t   3  –   4  m  o

       L  o  w   (  <   0 .   0

       1   %   ) ,  p  r  e   f  e  r  a   b   l  y  u  n   d  e   t  e  c   t  a   b   l  e

       P  e  r  s   i  s   t  e  n  c  e  o   f   M   R   D  ≥   0

     .   0   1   %

       M  a  y   h  e   l  p  s  e   l  e  c   t  p  a   t   i  e  n   t  s

       f  o  r   H   S   C   T  o  r  n  e  w   t   h  e  r  -

      a  p   i  e  s   i  n   f   i  r  s   t  r  e  m   i  s  s   i  o  n

       *   H   S   C   T   d  e  n  o   t  e  s   h  e  m  a   t  o  p  o   i  e   t   i  c  s   t  e  m  -  c  e   l   l   t  r  a  n  s  p   l  a  n   t  a   t   i  o  n ,

       M   R   D  m   i  n   i  m  a   l  r  e  s   i   d  u  a   l   d   i  s  e  a  s  e ,  a  n   d   N   C   I   N  a   t   i  o  n  a   l   C  a  n  c  e  r   I  n  s

       t   i   t  u   t  e .

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    6/12

    n engl j med 373;16  nejm.org  October 15, 20151546

    T h e   n e w e n g l a n d j o u r n a l o f    medicine

    means of flow cytometric detection of aberrantcombinations of cell-surface antigens.47,48

    The risk of treatment failure and death is 3 to

    5 times as high among children with levels ofminimal residual disease that are 0.01% or higherat the end of induction therapy and at later timepoints than among those with levels that arelower than 0.01%.45,46,49,50 Intensification of thera-py for patients with higher levels of minimal re-sidual disease improves their outcome.48,51 Emerg-ing next-generation-sequencing techniques fordetection of minimal residual disease may beuseful by providing sensitive detection of leuke-mia cells below the level detected reliably byother techniques.52

    Treatment

    Improvements in Survival over Time

    Almost 50 years ago, combination chemotherapyinduced remission (disappearance of clinical evi-dence of leukemia and restoration of normalhematopoiesis) in 80 to 90% of children withALL. However, the disease relapsed in almost allthese children, usually in the CNS, with survival

    rates of 10 to 20%.53 Survival increased consider-ably with the addition of craniospinal or cranialirradiation and intrathecal chemotherapy.54

    A major milestone in therapy for children with ALL was the development of an intensiveeight-drug, 8-week induction and consolidationregimen as introduced by Riehm et al.55 This regi-

    men, which is now called protocol I, became thebasis for the Berlin–Frankfurt–Münster regimen, which is the core of most contemporary therapiesfor ALL.

    Since this regimen was introduced, large co-operative research groups and individual institu-tions have enrolled 75 to 95% of children whohave a diagnosis of ALL in North America andWestern Europe into clinical trials. These trialshave led to remarkable improvements in survival, with 5-year event-free survival rates of up to 85%and overall survival rates of up to 90%, accordingto the most recently reported data (Table 3).37

    Contemporary Therapy

    The basic components of various therapies forchildren with ALL are similar and include sev-eral discrete phases. Induction therapy lasts 4 to6 weeks and includes a glucocorticoid (prednisoneor dexamethasone), vincristine, an asparaginasepreparation, optional use of an anthracycline, andintrathecal chemotherapy. Almost all patients at-tain remission, but this is not a cure, since relapse

     will occur universally without additional therapy.After remission, treatment includes 6 to 8months of intensive combination chemotherapythat is designed to consolidate remission andprevent development of overt CNS leukemia.Treatment in an 8-week delayed-intensification(protocol II) phase, based on the 8-week Berlin–Frankfurt–Münster protocol I, is then administered.Repeated courses of methotrexate, administeredeither through short intravenous infusion or at highdoses over 24 hours followed by administration offolinic acid to “rescue” normal tissues from toxic

    effects, are a critical component of contempo-rary ALL regimens.

    Patients then receive low-intensity “anti-metabolite”-based maintenance therapy for 18 to30 months. This therapy consists of daily oralmercaptopurine or thioguanine and weekly oralmethotrexate. Some regimens also include peri-odic 5-to-7-day “pulses” of glucocorticoids and vincristine. The exact reasons why maintenancetherapy is required and the most effective composi-

    CharacteristicPrecursor B-Cell ALL

    (N=8393)T-Cell ALL(N=1671)

    number (percent)

    Race†

    White 6375 (76.0) 1219 (73.0)

    Black 542 (6.5) 230 (13.8)

    Asian 374 (4.5) 85 (5.1)

    Other 254 (3.0) 32 (1.9)

    Unknown 848 (10.1) 105 (6.3)

    Ethnic group†

    Hispanic 1809 (21.6) 238 (14.2)

    Not Hispanic 6243 (74.4) 1373 (82.2)

    Unknown 341 (4.1) 60 (3.6)

    Sex

    Female 3831 (45.6) 450 (26.9)

    Male 4562 (54.4) 1221 (73.1)

    * Data are from unpublished results of COG ALL trials AALL0232 (ClinicalTrials.gov number, NCT00075725), AALL0331 (NCT00103285), and AALL0434(NCT00408005). Percentages may not sum to 100 owing to rounding.

    † Race or ethnic group was reported by parents or guardians.

    Table 2. Demographic Characteristics of Patients in Children’s OncologyGroup (COG) ALL Trials.*

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    7/12

    n engl j med 373;16  nejm.org  October 15, 2015 1547

    Acute Lymphoblastic Leukemia in Children

       T  a   b   l  e   3 .

       O  u   t  c  o  m  e  s  o   f   C  o  n   t  e  m  p  o

      r  a  r  y   T  r   i  a   l  s   I  n  v  o   l  v   i  n  g   C   h   i   l   d  r  e  n  a  n   d   A   d  o   l  e  s  c  e

      n   t  s  w   i   t   h   A   L   L   i  n   N  o  r   t   h   A  m  e  r   i  c  a  a  n   d   W  e  s   t  e  r  n   E  u  r  o  p  e .   *

       R  e  s  e  a  r  c   h   G  r  o  u  p

       T  r   i  a   l

       R  e   f  e  r  e  n  c  e

       R  e  g   i  o  n

       Y  e  a  r  s

       S  u   b  g  r  o  u  p

       N  o .  o   f

        P  a   t   i  e  n   t  s

       E  v  e  n   t

      -   f  r  e  e

       S  u  r  v   i

      v  a   l   †

       O  v  e  r  a   l   l

       S  u  r  v   i  v  a   l   †

       p   e   r   c   e   n    t

       C   O   G

       M  a  n  y   t  r   i  a   l  s

       H  u  n  g  e  r  e   t  a   l .   3   7

       U  n   i   t  e   d   S   t  a   t  e  s ,

       C  a  n  a   d  a ,

       A  u  s   t  r  a   l   i  a ,

       N  e  w   Z  e  a   l  a  n   d

       2   0   0   0  –   2   0   0   5

       A   l   l  p  a   t   i  e  n   t  s

       B  -  c  e   l   l   A   L   L

       T  -  c  e   l   l   A   L   L

       6   9   9   4

       5   8   4   5

       4   5   7

       N   /   A

       N   /   A

       N   /   A

       9   1 .   3

       9   2 .   0

       8   1 .   5

       S   J   C   R   H

       T  o   t  a   l   T   h  e  r  a  p  y   S   t  u   d  y   X   V

       P  u   i  e   t  a   l .   5

       6

       U  n   i   t  e   d   S   t  a   t  e  s

       2   0   0   0  –   2   0   0   7

       A   l   l  p  a   t   i  e  n   t  s

       B  -  c  e   l   l   A   L   L

       T  -  c  e   l   l   A   L   L

       4   9   8

       4   2   2

       7   6

       8   5 .   6

       8   6 .   9

       7   8 .   4

       9   3 .   5

       9   4 .   6

       8   7 .   6

       D   F   C   I

       D   F   C   I   A   L   L   C  o  n  s  o  r   t   i  u  m

       P  r  o   t  o  c  o   l   0   0

      –   0   1

       V  r  o  o  m  a  n  e   t  a   l .   5

       7

       U  n   i   t  e   d   S   t  a   t  e  s ,   C  a  n  a   d  a

       2   0   0   0  –   2   0   0   4

       A   l   l  p  a   t   i  e  n   t  s

       B  -  c  e   l   l   A   L   L

       T  -  c  e   l   l   A   L   L

       4   9   2

       4   4   3

       4   9

       8   0 .   0

       8   2 .   0

       6   9 .   0

       9   1 .   0

       N   /   A

       N   /   A

       A   I   E   O   P  -   B   F   M

       A   I   E   O   P  -   B   F   M

        A   L   L   2   0   0   0

       C  o  n   t  e  r  e   t  a   l . ,

       4   9

        S  c   h  r  a  p  p  e

       e   t  a   l .   5

       0

       W  e

      s   t  e  r  n   E  u  r  o  p  e

       2   0   0   0  –   2   0   0   6

       A   l   l  p  a   t   i  e  n   t  s

       B  -  c  e   l   l   A   L   L

       T  -  c  e   l   l   A   L   L

       4   4   8   0

       4   0   1   6

       4   6   4

       8   0 .   3

       8   0 .   4

       7   5 .   9

       9   1 .   1

       9   1 .   8

       8   0 .   7

       M   R   C  -   N   C   R   I

       U   K   A   L   L   2   0   0   3

       V  o  r  a  e   t  a   l .   5

       8

       U  n   i   t  e   d   K   i  n  g   d  o  m

       2   0   0   3  –   2   0   1   1

       A   l   l  p  a   t   i  e  n   t  s

       B  -  c  e   l   l   A   L   L

       T  -  c  e   l   l   A   L   L

       3   1   2   6

       2   7   3   1

       3   8   8

       8   7 .   2

       N   /   A

       N   /   A

       9   1 .   5

       N   /   A

       N   /   A

       D   C   O   G

       D   C   O   G   P  r  o   t  o  c  o

       l   A   L   L  -   9

       V  e  e  r  m  a  n  e   t  a   l .   5

       9

       T   h  e   N  e   t   h  e  r   l  a  n   d  s

       1   9   9   7  –   2   0   0   4

       A   l   l  p  a   t   i  e  n   t  s

       B  -  c  e   l   l   A   L   L

       T  -  c  e   l   l   A   L   L

       8   5   9

       7   0   1

       9   0

       8   1   8   2   7   2

       8   6

       N   /   A

       N   /   A

       E   O   R   T   C   C   L   G

       E   O   R   T   C   C   L   G   5   8   5   9   1

       D  o  m  e  n  e  c   h  e   t  a   l .   6   0

       B  e   l  g   i  u  m ,

       F  r  a  n  c  e

       1   9   9   8  –   2   0   0   8

       A   l   l  p  a   t   i  e  n   t  s

       1   9   4   0

       8   2 .   6

       8   9 .   7

       N   O   P   H   O

       A   L   L  -   2   0   0   0

       S  c   h  m   i  e  g  e   l  o  w  e   t  a   l .   6

       1

       D  e  n  m  a  r   k ,   F   i  n   l  a  n   d ,

       I  c  e   l  a  n   d ,

       N  o  r  w  a  y ,

       S  w  e   d  e  n

       2   0   0   0  –   2   0   0   7

       A   l   l  p  a   t   i  e  n   t  s

       B  -  c  e   l   l   A   L   L

       T  -  c  e   l   l   A   L   L

       1   0   2   3

       9   0   6

       1   1   5

       7   9   8   1   6   4

       8   9

       9   1

       7   2

       *   I  n   f  a  n   t  s  y  o  u  n  g  e  r   t   h  a  n   1  y  e  a  r  o   f  a  g  e  w  e  r  e  e  x  c   l  u   d  e   d   f  r  o  m   t   h  e  s  e  s   t  u   d   i  e  s  w   h  e  n

      p  o  s  s   i   b   l  e .

       A   I   E   O   P   d  e  n  o   t  e  s   I   t  a   l   i  a  n   A  s  s  o  c   i  a   t   i  o

      n  o   f   P  e   d   i  a   t  r   i  c   H  e  m  a   t  o   l  o  g  y  a  n   d   O  n  c  o   l  o  g  y ,   B   F   M

        B  e  r   l   i  n  –   F  r  a  n   k   f  u  r   t  –

       M   ü  n  s   t  e  r ,

       D   C   O   G   D  u   t  c   h   C   h   i   l   d   h  o  o

       d   O  n  c  o   l  o  g  y   G  r  o  u  p ,

       D   F   C   I   D  a  n  a  –   F  a  r   b  e  r   C  a  n  c  e  r   I  n  s   t   i   t  u   t  e ,

       E   O   R   T   C   C   L   G   E  u  r  o  p  e  a  n   O  r  g  a

      n   i  z  a   t   i  o  n   f  o  r   R  e  s  e  a  r  c   h  a  n   d   T  r  e  a   t  m  e  n   t  o   f   C  a

      n  c  e  r  –   C   h   i   l   d  r  e  n   ’  s

       L  e  u   k  e  m   i  a   G  r  o  u  p ,

       M   R   C  -   N   C   R   I   M  e   d   i  c  a   l   R  e  s  e  a  r  c   h   C  o  u  n  c   i   l  –   N  a   t   i  o  n  a   l   C  a  n  c  e  r   R

      e  s  e  a  r  c   h   I  n  s   t   i   t  u   t  e ,

       N   /   A  n  o   t  a  v  a   i   l  a   b   l  e ,

       N   O   P   H

       O   N  o  r   d   i  c   S  o  c   i  e   t  y  o   f   P  a  e   d   i  a   t  r   i  c   H  a  e  m  a   t  o   l  o  g  y  a  n   d   O  n  c  o   l  o  g  y ,

       S   J   C   R   H   S   t .   J  u   d  e   C   h   i   l   d  r  e  n   ’  s   R  e  s  e  a

      r  c   h   H  o  s  p   i   t  a   l ,  a  n   d   U   K   A   L   L   M  e   d   i  c  a   l   R  e  s  e  a  r  c   h   C  o  u  n  c   i   l   W  o  r   k   i  n  g   P  a  r   t  y  o  n   L  e  u   k  a  e  m   i  a   i  n   C

       h   i   l   d  r  e  n   U   K   N  a   t   i  o  n  a   l   A  c  u   t  e   L  y  m  p   h  o   b   l  a  s   t   i  c

       L  e  u   k  a  e  m   i  a   T  r   i  a   l .

       †   S  u  r  v   i  v  a   l  p  e  r  c  e  n   t  a  g  e  s  s   h  o  w  n  a  r  e   t   h  e  r  a   t  e  s  a   t   5  y  e  a  r  s  e  x  c  e  p   t   f  o  r   t   h  e  r  a   t  e  s   f  o  r

       t   h  e   A   I   E   O   P  -   B   F   M

        t  r   i  a   l ,  w   h   i  c   h  w  e  r  e  r  e  p  o  r   t  e   d

      a   t   7  y  e  a  r  s .

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    8/12

    n engl j med 373;16  nejm.org  October 15, 20151548

    T h e   n e w e n g l a n d j o u r n a l o f    medicine

    tion and duration of chemotherapy are unknown.Because maintenance therapy is prolonged andrequires daily oral drug administration, adherencecan be problematic; 20% of patients are less than90% adherent, and decreased adherence is associ-ated with a risk of relapse that is 4 times as highas the risk among patients whose rate of adher-

    ence is 90% or more.62 Host polymorphisms mayinfluence both the efficacy and toxicity of mer-captopurine, which is the backbone of mainte-nance therapy.63

    CNS-Directed Therapy

    Cranial irradiation dramatically improved curerates among patients with ALL in the 1960s and1970s, but it was associated with an increasedrisk of secondary CNS tumors, delayed growth,endocrinopathies, and neurocognitive effects.64 Consequently, CNS irradiation has been limited toprogressively smaller patient subgroups over time.

    Several research groups have eliminated CNSirradiation for most or all children with newlydiagnosed ALL, and their results are quite simi-lar to those obtained by groups that continue toinclude irradiation in therapy for children withALL.56,59  The current role of CNS irradiation iscontroversial, but all groups now treat at least80% of children who have newly diagnosed ALL without the use of cranial irradiation.

    Treatment of Relapsed ALL, Including

    Hematopoietic-Cell Transplantation

    Relapse occurs in 15 to 20% of children with ALL,and cure rates are much lower after relapse.65 Prog-nostic factors at relapse include the time to re-lapse (a shorter time is associated with a worseprognosis), immunophenotype (T-cell immuno-phenotype is associated with a worse prognosis),and the site of relapse (bone marrow disease isassociated with a worse prognosis than extra-medullary disease).66 Leukemia cells obtained frompatients with early relapse frequently harbor mu-

    tations that decrease sensitivity to common che-motherapy drugs.67,68  If relapse occurs after thecompletion of primary treatment, most children will enter a second remission, and the chance forcure is about 50%. If relapse occurs during ther-apy, the chance of attaining a second remission isonly 50 to 70%, and only 20 to 30% of patientsare cured.

    Allogeneic hematopoietic-cell transplantationis used much more commonly after relapse (in≥50% of patients) than during primary therapy

    (in 5 to 10% of patients). Assessment of the mini-mal residual disease response may be helpful indetermining which patients should undergo trans-plantation during a second remission and whichpatients should not.69

    ALL is frequently a polyclonal disease, andmutations in subclones may be selected by chemo-

    therapy and promote resistance. These includeCREBBP  mutations that are linked to resistance toglucocorticoids67 and NT5C2 and PRPS1 mutationsthat are associated with resistance to thiopu-rines.68,70,71 In future studies, it will be importantto identify emerging mutations that are associ-ated with resistance and explore the potentialfor modifying therapy to circumvent relapse.

    Targeted Therapy and Precision Medicine

    The dramatic improvements in survival amongchildren with ALL over the past 50 years are duealmost exclusively to identification of the mosteffective doses and schedules of chemotherapeu-tic agents that have been widely available for de-cades rather than to the development of newtherapies. Recent discoveries regarding the geneticbasis of ALL and the development of therapiesthat target molecular lesions that drive survivalof ALL cells have paved the way for the expandinguse of precision-medicine approaches to cancer.72 One notable example is the use of tyrosine kinaseinhibitors in patients with chronic myeloid leu-

    kemia, a cancer that is driven by the BCR-ABL1fusion oncoprotein.73 Treatment with tyrosine ki-nase inhibitors (imatinib and related agents) hasconverted chronic myeloid leukemia from a dis-ease requiring intensive therapy that often includedhematopoietic stem-cell transplantation to a chronicdisease that can in most cases be managed success-fully for decades with oral tyrosine kinase in-hibitors, with the potential for discontinuationof treatment in some patients.74

    The BCR-ABL1 fusion protein also occurs in25% of adults and in 3 to 5% of children with

    ALL (Ph-positive ALL), and in ALL, as compared with chronic myeloid leukemia, it is associated with secondary genetic alterations, part icularlyalterations of IKZF1.75 Before the use of tyrosinekinase inhibitors, less than half the children with Ph-positive ALL survived.41 Combining ima-tinib with cytotoxic chemotherapy has proved tobe highly effective in children with Ph-positiveALL and has minimized the need for hematopoi-etic-cell transplantation in the first remission.76-78

    Ph-like ALL is associated with a poor progno-

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    9/12

    n engl j med 373;16  nejm.org  October 15, 2015 1549

    Acute Lymphoblastic Leukemia in Children

    sis, and it is a logical candidate for individuallytailored tyrosine kinase inhibitor therapy.30,43,79 Adiverse range of genetic alterations activate kinasesignaling in Ph-like ALL; these include a highfrequency of rearrangements that converge on alimited number of signaling pathways, includingABL-class and JAK–STAT signaling. Extensive pre-

    clinical studies show that the activation of sig-naling pathways induced by these alterations issensitive to tyrosine kinase inhibitors; this sug-gests that precision-medicine approaches shouldbe successful in this ALL subgroup. These findingsare supported by anecdotal reports of dramaticresponses of chemotherapy-refractory Ph-like ALLto tyrosine kinase inhibitor therapy.30,80 This isparticularly important in older children andadults, in whom Ph-like ALL is more common.30

    An important challenge in the design of futureclinical trials will be to ensure adequate enroll-ment of patients harboring each class of geneticalteration. To meet this challenge, internationalclinical trials that involve multiple cooperativegroups will have to be developed, as has beendone successfully in studies of Ph-positive ALL.

    Immunotherapy

    CD19 is a cell-surface antigen that is present athigh density on most B-cell ALL cells. Severalgroups have developed strategies to transduce au-tologous T-cells with an anti-CD19 antibody frag-

    ment coupled to intracellular signaling domains ofthe T-cell receptor, thereby redirecting cytotoxicT lymphocytes to recognize and kill B-cell ALLcells. These chimeric antigen receptor–modifiedT cells provide a major new treatment option.

    In one study, 30 children with heavily pre-treated ALL that had relapsed multiple times weretreated with chimeric antigen receptor–modifiedT cells; 90% of the children attained remission, with sustained remission in about two thirds.Approximately three quarters of the children were alive 6 months after the infusion.81 Remis-

    sions were durable with 1 to 3 years of follow-up.Many patients had a severe cytokine-releasesyndrome after activation of the cytotoxic T cellsin vivo. This syndrome was accompanied byhigh levels of serum interleukin-6 that could betreated successfully with the anti–interleukin-6monoclonal antibody tocilizumab. Studies of thedurability of chimeric antigen receptor T-celltherapy (ClinicalTrials.gov number, NCT02445222)and its role in patients with ALL who have less-advanced disease (NCT02435849) are ongoing.

    A different strategy to harness the T-cell im-mune response against ALL cells is provided byblinatumomab, a genetically modified antibodythat contains fragments that recognize both CD19and CD3 (which is present on all T cells) and there-fore brings T cells into direct contact with B-cellALL cells, allowing the cytotoxic T cells to kill

    them.82  Blinatumomab is now being tested inchildren with a first relapse of B-cell ALL(NCT02101853).

    Short-Term and Long-Term Toxic Effects

    of Treatment

    About 1 to 2% of children with ALL die beforeattaining remission, and an additional 1 to 2%die from toxic effects during remission.83 Patients with Down’s syndrome, infants, older teenagers,and those receiving more intensive therapy havean increased risk of death from toxic effects,mostly due to infection. Risks can be mitigatedby modifications to therapy and supportive care.As cure rates for childhood ALL improve, treat-ment-related death accounts for a higher percent-age of all deaths.

    One of the most vexing problems associated with contemporary therapy for ALL is osteone-crosis, which occurs in 5 to 10% of patients.84 The risk is much higher among teenagers (15 to20%) than among young children, and girls areaffected more commonly than boys. Osteonecro-

    sis most commonly affects major joints, particu-larly the hips, knees, shoulders, and ankles, andoften requires surgical management, including joint replacement. Modifications to glucocorti-coid administration schedules can decrease therisk of osteonecrosis.85

    Additional treatment-related effects includethe metabolic syndrome and obesity, cardiovas-cular impairment, and CNS and peripheral nervoussystem toxic effects. Each is caused by highly effec-tive antileukemic agents, and a person’s risk oftoxic effects is inf luenced by host genetic factors

    that influence drug metabolism and activity.Thus, an important goal is the tailoring of drugexposure according to the predicted risk of bothrelapse and specific toxic effects.

    A child who is cured of ALL is expected tohave 60 to 80 years of remaining life. Criticalquestions are whether that expected life span isshortened by the leukemia, its treatment, or both, whether chronic health conditions that affect dailylife develop at a higher frequency or increased se- verity in survivors than in persons who were never

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    10/12

    n engl j med 373;16  nejm.org  October 15, 20151550

    T h e   n e w e n g l a n d j o u r n a l o f    medicine

    treated for childhood ALL, and whether thereare lasting emotional or neurocognitive effectsthat limit full realization of a survivor’s poten-tial. Unfortunately, many ALL survivors do havechronic toxic effects,86  and the neurocognitiveeffects appear to increase as they approach mid-dle age.64 Continued long-term follow-up of per-

    sons who had ALL in childhood is essential todefine the risks and to develop strategies to de-crease risks, ameliorate toxic effects, or both.

    Implications of the Successof Treatment

    Survival rates among teenagers with ALL are in-ferior to those among young children, and sur- vival is even worse among young adults.87,88 Thereasons for these differences are multifactorialand include treatment factors, a higher preva-lence of unfavorable genetic subtypes among theolder patients, the reduced ability of teenagersand young adults to receive intensive therapy with-out untoward side effects, and social factors suchas insurance coverage and lack of parental super- vision of therapy. Institutions and cooperativegroups treating young adults with ALL have suc-cessfully adopted treatment modeled on pediatricregimens. This strategy is feasible for patients upto about 50 years of age, with early results sug-gesting major improvements in survival.89

    Since the population of children is higher inlow-income and middle-income countries than inhigh-income countries, the total number of chil-dren with a diagnosis of ALL is also higher inthese countries; these children have inferior sur- vival as compared with children treated in high-income countries.90 Because ALL can be diagnosed with simple techniques and treated successfully with relatively inexpensive chemotherapeutic agents,

    it is feasible to rapidly improve the outcome inchildren with ALL in low-income and middle-income countries. Partnerships and “twinning”relationships between centers in high-income cen-ters in North America and Western Europe andpediatric cancer centers in Asia, Central and SouthAmerica, and Eastern Europe have substantially

    improved survival among children with ALL.90-92

    Conclusions

    In the past few years, we have witnessed tremen-dous advances in our understanding of the biol-ogy of ALL and the remarkable efficacy of targetedchemical and biologic therapeutic approaches inotherwise refractory disease. It is anticipated thatin the next several years, the genomic landscapeof ALL will be completely described, the biologiccauses for treatment failure fully elucidated, andthe roles of a range of new chemical and bio-logic agents defined. As the cure rate for child-hood ALL approaches 100%, major challenges will be to identify persons who require less inten-sive therapy to achieve cure and to refine com-plex, toxic regimens to incorporate simpler, saferapproaches that will result in a high quality oflife coupled with long-term survival.

    Dr. Hunger reports receiving consulting fees from Jazz Phar-maceuticals, Sigma-Tau Pharmaceuticals, and Spectrum Phar-maceuticals and owning stock in Amgen; Dr. Mullighan, receiv-ing consulting fees from Incyte Pharmaceuticals and speakingfees from Amgen Pharmaceuticals; and Drs. Hunger and Mul-

    lighan, being named as inventors on a pending patent applica-tion related to gene-expression signatures for detection of un-derlying Philadelphia chromosome–like events and therapeutictarget ing in leukemia (PCT/US2012/069228). No other potentialconflict of interest relevant to this article was reported.

    Disclosure forms provided by the authors are available withthe full text of this article at NEJM.org.

    We thank the many colleagues who provided helpful com-ments on this article, including Drs. William Carroll, MignonLoh, Shannon Maude, Camille Pane, Elizabeth Raetz, SusanRheingold, Sarah Tasian, David Teachey, and Naomi Winick.

    References

    1.  Smith MA, Seibel NL, Altekruse SF, etal. Outcomes for children and adolescents

     with cancer: challenges for the twenty-firstcentury. J Clin Oncol 2010;28:2625-34.2.  Linaber y AM, Ross JA. Trends in child-hood cancer incidence in the U.S. (1992-2004). Cancer 2008;112:416-32.3.  Farber S, Diamond LK. Temporary re-missions in acute leukemia in childrenproduced by folic acid antagonist, 4-ami-nopteroyl-glutamic acid. N Engl J Med1948;238:787-93.4.  Ries LAG, Smith MA, Gurney JG, et al.Cancer incidence and survival among chil-dren and adolescents: United States SEER

    Program 1975-1995. Bethesda, MD: Na-tional Cancer Institute, SEER Program,

    1999.5.  Lim JY, Bhatia S, Robison LL, Yang JJ.Genomics of racial and ethnic disparitiesin childhood acute lymphoblastic leuke-mia. Cancer 2014;120:955-62.6.  Buitenkamp TD, Izraeli S, Zimmer-mann M, et al. Acute lymphoblastic leuke-mia in children with Down syndrome: aretrospective analysis from the Ponte diLegno study group. Blood 2014;123:70-7.7.  Perez-Andreu V, Roberts KG, HarveyRC, et al. Inherited GATA3 variants are as-sociated with Ph-like childhood acute lym-

    phoblastic leukemia and risk of relapse.Nat Genet 2013;45:1494-8.

    8.  Treviño LR, Yang W, French D, et al.Germline genomic variants associated with childhood acute lymphoblastic leuke-mia. Nat Genet 2009;41:1001-5.9.  Papaemmanuil E, Hosking FJ, Vijay-akrishnan J, et al. Loci on 7p12.2, 10q21.2and 14q11.2 are associated with risk ofchildhood acute lymphoblastic leukemia.Nat Genet 2009;41:1006-10.10.  Shah S, Schrader KA, Waanders E, et al.A recurrent germline PAX5 mutation conferssusceptibility to pre-B cell acute lymphoblas-tic leukemia. Nat Genet 2013;45:1226-31.

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    11/12

    n engl j med 373;16  nejm.org  October 15, 2015 1551

    Acute Lymphoblastic Leukemia in Children

    11.  Zhang MY, Churpek JE, Keel SB, et al.Germline ETV6 mutations in familialthrombocytopenia and hematologic ma-lignancy. Nat Genet 2015;47:180-5.12. Hunger SP, Mullighan CG. RedefiningALL classification: toward detecting high-risk ALL and implementing precision med-icine. Blood 2015 May 21 (Epub ahead ofprint).

    13.  Harrison CJ. Cytogenetics of paediat-ric and adolescent acute lymphoblastic leu-kaemia. Br J Haematol 2009;144:147-56.14.  Ma X, Edmonson M, Yergeau D, et al.Rise and fall of subclones from diagnosisto relapse in pediatric B-acute lymphoblas-tic leukaemia. Nat Commun 2015;6:6604.15.  Zhang J, Mullighan CG, Harvey RC, etal. Key pathways are frequently mutated inhigh-risk childhood acute lymphoblasticleukemia: a report from the Children’s On-cology Group. Blood 2011;118:3080-7.16. Nachman JB, Heerema NA, Sather H,et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leu-kemia. Blood 2007;110:1112-5.

    17.  Holmfeldt L, Wei L, Diaz-Flores E, etal. The genomic landscape of hypodiploidacute lymphoblastic leukemia. Nat Genet2013;45:242-52.18.  Wiemels JL, Cazzaniga G, Daniotti M,et al. Prenatal origin of acute lymphoblas-tic leukaemia in children. Lancet 1999;354:1499-503.19.  Mullighan CG, Phillips LA, Su X, et al.Genomic analysis of the clonal origins ofrelapsed acute lymphoblastic leukemia.Science 2008;322:1377-80.20. Russell LJ, Capasso M, Vater I, et al.Deregulated expression of cytokine recep-tor gene, CRLF2, is involved in lymphoidtransformation in B-cell precursor acutelymphoblastic leukemia. Blood 2009;114:2688-98.21.  Russell LJ, De Castro DG, Griffiths M,et al. A novel translocation, t(14;19)(q32;p13), involving IGH@ and the cyto-kine receptor for erythropoietin. Leukemia2009;23:614-7.22. Aifantis I, Raetz E, Buonamici S. Mo-lecular pathogenesis of T-cell leukaemiaand lymphoma. Nat Rev Immunol 2008;8:380-90.23.  Meyer C, Hofmann J, Burmeister T, etal. The MLL recombinome of acute leuke-mias in 2013. Leukemia 2013;27:2165-76.24.  Andersson AK, Ma J, Wang J, et al. The

    landscape of somatic mutations in infantMLL-rearranged acute lymphoblastic leu-kemias. Nat Genet 2015;47:330-7.25.  Mullighan CG, Goorha S, Radtke I, etal. Genome-wide analysis of genetic altera-tions in acute lymphoblastic leukaemia.Nature 2007;446:758-64.26.  Clappier E, Auclerc MF, Rapion J, et al.An intragenic ERG deletion is a marker ofan oncogenic subtype of B-cell precursoracute lymphoblastic leukemia with a favor-able outcome despite frequent IKZF1 dele-tions. Leukemia 2014;28:70-7.27.  Heerema NA, Carrol l AJ, Devidas M,

    et al. Intrachromosomal amplification ofchromosome 21 is associated with inferioroutcomes in children with acute lympho-blastic leukemia treated in contemporarystandard-risk children’s oncology groupstudies: a report from the Children’s On-cology Group. J Clin Oncol 2013;31:3397-402.28.  Zhang J, Ding L, Holmfeldt L, et al.

    The genetic basis of early T-cell precursoracute lymphoblastic leukaemia. Nature2012;481:157-63.29. Coustan-Smith E, Mullighan CG, On-ciu M, et al. Early T-cell precursor leukae-mia: a subtype of very high-risk acute lym-phoblastic leukaemia. Lancet Oncol 2009;10:147-56.30.  Roberts KG, Li Y, Payne-Turner D, et al.Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014;371:1005-15.31.  Kuiper RP, Schoenmakers EF, vanReijmersdal SV, et al. High-resolution ge-nomic profiling of childhood ALL revealsnovel recurrent genetic lesions affecting

    pathways involved in lymphocyte differen-tiation and cell cycle progression. Leuke-mia 2007;21:1258-66.32. Smith M, Arthur D, Camitta B, et al.Uniform approach to risk classificationand treatment assignment for children with acute lymphoblastic leukemia. J ClinOncol 1996;14:18-24.33.  Pui CH, Sandlund JT, Pei D, et al. Re-sults of therapy for acute lymphoblasticleukemia in black and white children. JAMA 2003;290:2001-7.34.  Harvey RC, Mullighan CG, Chen IM, etal. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration ofIKZF1, Hispanic/Latino ethnicity, and apoor outcome in pediatric B-progenitoracute lymphoblastic leukemia. Blood 2010;115:5312-21.35.  Liu GJ, Cimmino L, Jude JG, et al. Pax5loss imposes a reversible differentiationblock in B-progenitor acute lymphoblasticleukemia. Genes Dev 2014;28:1337-50.36.  Schwickert TA, Tagoh H, Gültekin S, etal. Stage-specific control of early B cell de- velopment by the transcription factorIkaros. Nat Immunol 2014;15:283-93.37.  Hunger SP, Lu X, Devidas M, et al. Im-proved survival for children and adoles-cents from 1990-2005: a report from theChildren’s Oncology Group. J Clin Oncol

    2012;30:1663-9.38. Van Vlierberghe P, Palomero T, Khia-banian H, et al. PHF6 mutations in T-cellacute lymphoblastic leukemia. Nat Genet2010;42:338-42.39.  Van der Meulen J, Sanghvi V, MavrakisK, et al. The H3K27me3 demethylase UTXis a gender-specif ic tumor suppressor in T-cell acute lymphoblastic leukemia. Blood2015;125:13-21.40.  Moorman AV, Ensor HM, RichardsSM, et al. Prognostic effect of chromosom-al abnormalities in childhood B-cell pre-cursor acute lymphoblastic leukaemia: re-

    sults from the UK Medical ResearchCouncil ALL97/99 randomised trial. LancetOncol 2010;11:429-38.41.  Aricò M, Schrappe M, Hunger SP, et al.Clinical outcome of children with newlydiagnosed Philadelphia chromosome-positive acute lymphoblastic leukemiatreated between 1995 and 2005. J Clin On-col 2010;28:4755-61.

    42. Harrison CJ, Moorman AV, Schwab C,et al. An international study of intrachro-mosomal amplification of chromosome 21(iAMP21): cytogenetic characterization andoutcome. Leukemia 2014;28:1015-21.43.  Mullighan CG, Su X, Zhang J, et al. De-letion of IKZF1 and prognosis in acute lym-phoblastic leukemia. N Engl J Med 2009;360:470-80.44. Kuiper RP, Waanders E, van der VeldenVH, et al. IKZF1 deletions predict relapsein uniformly treated pediatric precursorB-ALL. Leukemia 2010;24:1258-64.45.  Coustan-Smith E, Sancho J, HancockML, et al. Clinical importance of minimalresidual disease in childhood acute lympho-

    blastic leukemia. Blood 2000;96:2691-6.46. Borowitz MJ, Devidas M, Hunger SP, etal. Clinical significance of minimal residualdisease in childhood acute lymphoblasticleukemia and its relationship to other prog-nostic factors: a Children’s Oncology Groupstudy. Blood 2008;111:5477-85.47.  Campana D. Minimal residual diseasemonitoring in childhood acute lympho-blastic leukemia. Curr Opin Hematol 2012;19:313-8.48.  Pui CH, Pei D, Coustan-Smith E, et al.Clinical utility of sequential minimal re-sidual disease measurements in the con-text of risk-based therapy in childhoodacute lymphoblastic leukaemia: a prospec-tive study. Lancet Oncol 2015;16:465-74.49. Conter V, Bartram CR, Valsecchi MG,et al. Molecular response to treatment re-defines all prognostic factors in childrenand adolescents with B-cell precursoracute lymphoblastic leukemia: results in3184 patients of the AIEOP-BFM ALL 2000study. Blood 2010;115:3206-14.50.  Schrappe M, Valsecchi MG, BartramCR, et al. Late MRD response determinesrelapse risk overall and in subsets of child-hood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011;118:2077-84.51. Vora A, Goulden N, Mitchell C, et al.Augmented post-remission therapy for a

    minimal residual disease-defined high-risksubgroup of children and young people with clinical standard-risk and intermedi-ate-risk acute lymphoblastic leukaemia(UKALL 2003): a randomised controlledtrial. Lancet Oncol 2014;15:809-18.52.  Faham M, Zheng J, Moorhead M, et al.Deep-sequencing approach for minimalresidual disease detection in acute lympho-blastic leukemia. Blood 2012;120:5173-80.53.  George P, Hernandez K, Hustu O,Borella L, Holton C, Pinkel D. A study of“total therapy” of acute lymphocytic leuke-mia in children. J Pediatr 1968;72:399-408.

    The New England Journal of Medicine

    Downloaded from nejm.org at UFPE on December 6, 2015. For personal use only. No other uses without permission.

    Copyright © 2015 Massachusetts Medical Society. All rights reserved.

  • 8/19/2019 Acute Lymphoblastic Leukemia in Children.

    12/12

    n engl j med 373;16  nejm.org  October 15, 20151552

    Acute Lymphoblastic Leukemia in Children

    54.  Aur RJ, Simone J, Hustu HO, et al. Cen-tral nervous system therapy and combina-tion chemotherapy of childhood lympho-cytic leukemia. Blood 1971;37:272-81.55.  Riehm H, Gadner H, Henze G, Langer-mann H-J, Odenwald E. The Berlin child-hood acute lymphoblastic leukemia thera-py study, 1970-1976. Am J Pediatr HematolOncol 1980;2:299-306.

    56.  Pui CH, Campana D, Pei D, et al. Treat-ing childhood acute lymphoblastic leuke-mia without cranial irradiation. N Engl JMed 2009;360:2730-41.57.  Vrooman LM, Stevenson KE, Supko JG,et al. Postinduction dexamethasone andindividualized dosing of Escherichia ColiL-asparaginase each improve outcome ofchildren and adolescents with newly diag-nosed acute lymphoblastic leukemia: re-sults from a randomized study — Dana-Far-ber Cancer Institute ALL ConsortiumProtocol 00-01. J Clin Oncol 2013;31:1202-10.58.  Vora A, Goulden N, Wade R, et al.Treatment reduction for children and young adults with low-risk acute lympho-

    blastic leukaemia defined by minimal re-sidual disease (UKALL 2003): a ran-domised controlled trial. Lancet Oncol2013;14:199-209.59.  Veerman AJ, Kamps WA, van den BergH, et al. Dexamethasone-based therapy forchildhood acute lymphoblastic leukaemia:results of the prospective Dutch ChildhoodOncology Group (DCOG) protocol ALL-9(1997-2004). Lancet Oncol 2009;10:957-66.60. Domenech C, Suciu S, De Moerloose B,et al. Dexamethasone (6 mg/m2/day) andprednisolone (60 mg/m2/day) were equallyeffective as induction therapy for child-hood acute lymphoblastic leukemia in theEORTC CLG 58951 randomized trial. Hae-matologica 2014;99:1220-7.61.  Schmiegelow K, Forestier E, Hellebos-tad M, et al. Long-term results of NOPHOALL-92 and ALL-2000 studies of childhoodacute lymphoblastic leukemia. Leukemia2010;24:345-54.62. Bhatia S, Landier W, Hageman L, et al.6MP adherence in a multiracial cohort ofchildren with acute lymphoblastic leuke-mia: a Children’s Oncology Group study.Blood 2014;124:2345-53.63. Moriyama T, Relling MV, Yang JJ. In-herited genetic variation in childhoodacute lymphoblastic leukemia. Blood 2015May 21 (Epub ahead of print).

    64. Krull KR, Brinkman TM, Li C, et al.Neurocognitive outcomes decades aftertreatment for childhood acute lymphoblas-tic leukemia: a report from the St Jude life-time cohort study. J Clin Oncol 2013;31:4407-15.65.  Nguyen K, Devidas M, Cheng SC, et al.Factors influencing survival after relapsefrom acute lymphoblastic leukemia: a Chil-dren’s Oncology Group study. Leukemia2008;22:2142-50.66.  Raetz EA, Bhatla T. Where do westand in the treatment of relapsed acutelymphoblastic leukemia? Hematology Am

    Soc Hematol Educ Program 2012;2012:129-36.67.  Mullighan CG, Zhang J, Kasper LH, etal. CREBBP mutations in relapsed acutelymphoblastic leukaemia. Nature 2011;471:235-9.68.  Meyer JA, Wang J, Hogan LE, et al.Relapse-specific mutations in NT5C2 inchildhood acute lymphoblastic leukemia.

    Nat Genet 2013;45:290-4.69.  Peters C, Schrappe M, von StackelbergA, et al. Stem-cell transplantation in chil-dren with acute lymphoblastic leukemia: aprospective international multicenter trialcomparing sibling donors with matchedunrelated donors — the ALL-SCT-BFM-2003 trial. J Clin Oncol 2015;33:1265-74.70.  Tzoneva G, Perez-Garcia A, CarpenterZ, et al. Activating mutations in the NT5C2nucleotidase gene drive chemotherapy re-sistance in relapsed ALL. Nat Med 2013;19:368-71.71.  Li B, Li H, Bai Y, et al. Negative feed-back-defective PRPS1 mutants drive thio-

    purine resistance in relapsed childhoodALL. Nat Med 2015;21:563-71.72. Collins FS, Varmus H. A new initiativeon precision medicine. N Engl J Med 2015;372:793-5.73.  Kantarjian H, Sawyers C, Hochhaus A,et al. Hematologic and cytogenetic re-sponses to imatinib mesylate in chronicmyelogenous leukemia. N Engl J Med2002;346:645-52.74. Ross DM, Branford S, Seymour JF, etal. Safety and efficacy of imatinib cessa-tion for CML patients with stable undetect-able minimal residual disease: resultsfrom the TWISTER study. Blood 2013;122:515-22.75.  Mullighan CG, Miller CB, Radtke I, etal. BCR-ABL1 lymphoblastic leukaemia ischaracterized by the deletion of Ikaros. Na-ture 2008;453:110-4.76.  Schultz KR, Carroll A, Heerema NA, etal. Long-term follow-up of imatinib in pe-diatric Philadelphia chromosome-positiveacute lymphoblastic leukemia: Children’sOncology Group study AALL0031. Leuke-mia 2014;28:1467-71.77.  Schultz KR, Bowman WP, Aledo A, etal. Improved early event-free survival withimatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: aChildren’s Oncology Group study. J Clin

    Oncol 2009;27:5175-81.78.  Biondi A, Schrappe M, De Lorenzo P, etal. Imatinib after induction for treatmentof children and adolescents with Philadel-phia-chromosome-positive acute lympho-blastic leukaemia (EsPhALL): a randomised,open-label, intergroup study. Lancet Oncol2012;13:936-45.79.  Den Boer ML, van Slegtenhorst M, DeMenezes RX, et al. A subtype of childhoodacute lymphoblastic leukaemia with poortreatment outcome: a genome-wide classifi-cation study. Lancet Oncol 2009;10:125-34.80. Weston BW, Hayden MA, Roberts KG,

    et al. Tyrosine kinase inhibitor therapy in-duces remission in a patient with refracto-ry EBF1-PDGFRB-positive acute lympho-blastic leukemia. J Clin Oncol 2013;31(25):e413-e416.81.  Maude SL, Frey N, Shaw PA, et al. Chi-meric antigen receptor T cells for sus-tained remissions in leukemia. N Engl JMed 2014;371:1507-17.

    82.  Topp MS, Gökbuget N, Stein AS, et al.Safety and activity of blinatumomab foradult patients with relapsed or refractoryB-precursor acute lymphoblastic leukae-mia: a multicentre, single-arm, phase 2study. Lancet Oncol 2015;16:57-66.83.  Blanco E, Beyene J, Maloney AM, et al.Non-relapse mortality in pediatric acutelymphoblastic leukemia: a systematic re- view and meta-analysis. Leuk Lymphoma2012;53:878-85.84.  Te Winkel ML, Pieters R, Wind EJ, Bes-sems JH, van den Heuvel-Eibrink MM.Management and treatment of osteonecro-sis in children and adolescents with acutelymphoblastic leukemia. Haematologica

    2014;99:430-6.85. Mattano LA Jr, Devidas M, Nachman JB, et al. Effect of alternate-week versuscontinuous dexamethasone scheduling onthe risk of osteonecrosis in paediatric pa-tients with acute lymphoblastic leukaemia:results from the CCG-1961 randomisedcohort trial. Lancet Oncol 2012;13:906-15.86. Oeffinger KC, Mertens AC, Sklar CA,et al. Chronic health conditions in adultsurvivors of childhood cancer. N Engl JMed 2006;355:1572-82.87.  Stock W. Adolescents and young adults with acute lymphoblastic leukemia. Hema-tology Am Soc Hematol Educ Program2010;2010:21-9.88.  Pulte D, Gondos A, Brenner H. Im-provement in survival in younger patients with acute lymphoblastic leukemia fromthe 1980s to the early 21st century. Blood2009;113:1408-11.89.  DeAngelo DJ, Stevenson KE, DahlbergSE, et al. Long-term outcome of a pediat-ric-inspired regimen used for adults aged18-50 years with newly diagnosed acutelymphoblastic leukemia. Leukemia 2015;29:526-34.90.  Yeoh AE, Tan D, Li CK, Hori H, Tse E,Pui CH. Management of adult and paediat-ric acute lymphoblastic leukaemia in Asia:resource-stratified guidelines from the

    Asian Oncology Summit 2013. Lancet On-col 2013;14(12):e508-e523.91.  Stary J, Zimmermann M, Campbell M,et al. Intensive chemotherapy for child-hood acute lymphoblastic leukemia: re-sults of the randomized intercontinentaltrial ALL IC-BFM 2002. J Clin Oncol 2014;32:174-84.92. Navarrete M, Rossi E, Brivio E, et al.Treatment of childhood acute lymphoblas-tic leukemia in central America: a lower-middle income countries experience. Pedi-atr Blood Cancer 2014;61:803-9.Copyright © 2015 Massachusetts Medical Society.

    The New England Journal of Medicine

    Downloaded from nejm org at UFPE on December 6 2015 For personal use only No other uses without permission