ad-a159 in tapered cantilever beans (gap li'1 … › dtic › tr › fulltext › u2 ›...

48
AD-A159 887 DEFLECTION IN TAPERED CANTILEVER BEANS DEFLECTION (GAP li'1 OPENING) IN DOUBLE.. (U) RMY RMAMENT RESEARCH AND DEVELOPMENT CENTER NATERYLIET NY L.. B RVITZUR RUG 85 UNCLASSIFIED RLCB-TR-9527 SBI-AD-E44B 29? F/6 2/11 NL 7mhE EEIE EhohhhEEEEmhhE EhhhEEEohmhmhE I..'..mmmm

Upload: others

Post on 29-Jan-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • AD-A159 887 DEFLECTION IN TAPERED CANTILEVER BEANS DEFLECTION (GAP li'1OPENING) IN DOUBLE.. (U) RMY RMAMENT RESEARCH ANDDEVELOPMENT CENTER NATERYLIET NY L.. B RVITZUR RUG 85

    UNCLASSIFIED RLCB-TR-9527 SBI-AD-E44B 29? F/6 2/11 NL7mhE EEIEEhohhhEEEEmhhEEhhhEEEohmhmhEI..'..mmmm

  • 1.0 W -8 J .....

    dI

    .

    jQ

    IIIII "-'1.25II 1111-4 111111.

    MICROCOPY RESOLUTION TEST CHARTNATIONAL BUREAU OF STANDAROS - 1 - A

    4. !

    d,- ,~.- -.- s '';d -".;"e.-""- :- ''":-;"" -"" ' """"',--'""-:'":g

  • AD-A159 887

    IAD

    TECHNICAL REPORT ARLCB-TR-85027

    DEFLECTION IN TAPERED CANTILEVER BEAMSDEFLECTION (GAP OPENING) IN DOUBLE CANTILEVER

    TYPE FRACTURE TOUGHNESS SPECIMENS

    BOAZ AVITZUR

    AUGUST 1985

    US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTERLARGE CALIBER WEAPON SYSTEMS LABORATORY

    BENET WEAPONS LABORATORYWATERVLIET N.V. 12189-

    APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

    * L

    * .

    • .o , 5 9 12 002

  • ii..

    DISCLAIME

    The findings in this report are not to be construed as an official

    Department of the Army position unless so designated by other authorized

    documents.

    The use of trade name(s) and/or manufacture(s) does not constitute

    an official indorsement or approval.

    DISPOSITION

    Destroy this report when it is no longer needed. Do not return it

    to the originator.

    F-•--" --. .' .--, .-i .- -.':- ------ -i " . i- -.-i 'i, -2 -'. -.- .' .- .... .. :- :, i' i. .. -- . " .- .-' , -. . - - -" .'. ..-.. ". -,- '. ' '.,- .'..' -... .. .' '

  • F.W, Wr* V,.... . . -

    SECURITY CLASSIFICATION OP THIS PAGE (When Date Entere)

    REPORT DOCUMENTATION PAGE EADCtONM~BEFORE COMPLE"rMG FORM1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

    "* ARLCB-TR-85027 LD -jAtr19 ,'9"74. TITLE (and Subdtie) S. TYPE OF REPORT A PERIOD COVERED

    DEFLECTION IN TAPERED CANTILEVER BEAMSDEFLECTION (GAP OPENING) IN DOUBLE CANTILEVER FinalTYPE FRACTURE TOUGHNESS SPECIMENS S. PERFORMING ORO. REPORT NUMBER

    * 7. AUTNO () S. CONTRACT OR GRANT NUMMER1()

    *Boaz Avitzur

    S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK[-. AREA & WORK UNIT NUMBERS

    US Army Armament Research & Development CenterBenet Weapons Laboratory, SMCAR-LCB-TL AMQ'S No. 7280.12.12.000Watervliet, NY 12189-5000 PRON No. 1A423M891A1A

    11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

    US Army Armament Research & Development Center August 1985Large Caliber Weapon Systems Laboratory 13. NUMBER OF PAGESDover, NJ 07801-5001 3814. MONITORING AGENCY NAME & ADORESS(If different fmm Controlling Office) IS. SECURITY CLASS. (of this report)

    UNCLASSIFIEDIS&. DECLASSI FICATION/ OWNGRADING

    SCHEDULE

    16. DISTRIBUTION STATEMENT (of this Report)

    Approved for public release; distribution unlimited.

    17. DISTRIBUTION STATEMENT (of the absetract entered In Block 20, It different from Report)

    111 SUPPLEMENTARY NOTES

    19. KEY WORDS (Continu, on reverse side If necessary nd identify by block number)

    Gap OpeningFracture Toughness

    .- Tapered Beam

    1= A@STRIAC (Catffawe swrvee *sft ffnamsin, ~aitUt S b oek number)When an othervise homogeneous material under stress contains small defects(i.e., internal cracks and/or voids), the stresses at parts of the material-defect Interface significantly exceed the ones anticipated at that location in

    the absence of such irregularities. Consequently, a structural member, other-wise calculated to safely sustain the applied loads, might unpredictably fail.

    That branch of engineering which intends to account for such 'stress-raisers'is known as fracture mechanics. Fracture mechanics studies have found that

    (CONT'D ON REVERSE)porn

    DO J 1413 Eo OF ,NOvs5SOLETE UNCLASSIFIEDSECUITY CLASSIFICATION OF THIS PAGE (When Date Entered)

    ......... .....

  • *SgCUMTV CLASSFIPCATION OF THIS PAGUhM1e Di hm 4

    a..

    *20. ABSTRACT (CONT'D)

    * "different materials (and even the same material when loaded in different-; orientations) reflect different sensitivity to such 'stress-raisers'-aamaterial property known as fracture toughness. Test samples and testing

    procedur3s have been devised in order to quantify this material property. The-" relation between the applied load and its displacement (or gap opening) at the

    point of crack growth is being used herein to determine (compute) materialfracture toughness.

    While the equations derived for the stress field near the edge of a defect inan otherwise uniform field assume an infinite volume of material to surroundthe (relatively) very small defect, the crack to width and/or height in theselaboratory size testing samples is definitely a finite one. This report

    - offers a mathematical relation between the applied load and that part of theeflection (gap opening) which is due to the cantilever-like part of the

    - sample, for that class of fracture toughness test specimens which can be- described as double cantilever. A beam theory approach is used.

    SECUITY CLASSIFICATION OF THIS PAGgrheM De Entea'.)

    %"%

  • A-W

    --4

    -. TABLE OF CONTENTSPane

    INTRODUCTION 1

    PARALLEL STRESS COMPONENTS 3

    Deflection Due to Bending Forces Only 8

    Deflection Due to Combined Bending and Compressive Forces 12

    CONVERGING STRESS COMPONENTS 18

    Deflection Due to Bending Forces Only 20

    Deflection Due to Combined Bending and Compressive Forces 26

    SUMMARY 31

    REFERENCES 32

    TABLES

    I. GAP OPENING (HALF) IN TAPERED DOUBLE CANTILEVER BEAMS 33

    LIST OF ILLUSTRATIONS

    1. Tapered double cantilever beam. 1

    2. Compact fracture toughness specimen. 1

    3. Definition of cartesian coordinates and major parameters. 3

    4. Conversion from cartesian to cylindrical coordinate system. 18

    5. Radial and cartesian components of normal stresses. 19

    .

    I

    t.i

    o-

  • 2 . 2%

    INTRODUCTION

    g One type of specimen commonly used in tests designed for thedetermination of a material's fracture toughness can be looked upon as a double

    cantilever beam, as shown in Figures I and 2.

    -~~ 2- -- h=h x *tanoc

    FO. ,cos cce -P-i , P

    x

    P'.sincc,,,p ./ - _. , -,

    Figure 1. Tapered double cantilever beam.

    hz= tz-. X'

    Figure 2. Compact fracture toughness specimen.

    • ; ." . " " ' L .' ' ' _ ' ' _ ._ , " .. ., ... - ... .-' -. ' , ." , , ... " ," . . .% . .- • • • .-. ., • • .. ' -/ -' ' .-. ' - .. -" ., I

  • The data collected in such tests to determine the material's fracture

    toughness property includes the gap opening, 26', at a given load, ', and for

    a given crack length, V. The stress distribution in such specimens is a

    complex one and so is the resultant strain distribution and its contribution to

    the gap opening. The computation of that portion of the gap opening attributed

    to the elastic bending of a cantilever beam is the subject of this report.

    These calculations are based on an elastic beam theory. The shortcomings of

    the computed gap opening derived are as follows:

    1. The fracture rarely propagates without attaining a plastically

    deformed region near the tip of the crack.

    2. The calculations do not account for the deformation in the remaining

    portion of the specimen, namely at the areas x1 > V, beyond the crack length.

    The added gap opening due to the propagation of plastic deformation should

    be computed separately using the technique used by this author elsewhere (ref

    1). The contribution of the deformation in the region x' > ' towards the gap

    opening, can also be computed separately. (Neither one of these calculations

    is included here.)

    In treating each half of the specimen as a tapered cantilever, one has to

    realize that its neutral axis in bending is not parallel to the specimen's

    plane of symmetry (x' axis in Figure 1), but rather at an angle a to it (as

    will be shown later, the effective neutral plane deviates from the bisecting

    plane of each cantilever, too). As a consequence, the computation of the

    lBoaz Avitzur, "Retained Deflection in Circular and Concentrically Hollowed

    Beams After Local Removal," to be published.

    " "' "" " ?' " °" " " "" --- " . - ' "." ,.---- - i.'- --. ..- '" ' .-. ' . .- -- --... -. , ... . -. .,2-

  • bending moment and of the shear forces, as well as that of the resultant

    stresses thereof, will be based on the component P - P'. cos a of the appliedho

    load P', where P acts normal to the axis of symmetry, x (where x - [x' - - tan2

    a] cos a).

    PARALLEL STRESS COMPONENTS

    As a first approximation, the gap opening 6 - 6bend + 6shear is calculated

    in the cartesian coordinates system x-y-z, which is at an angle a to the

    xI-y -z t coordinates and only the normal component, oxx, and the shear

    component, OXY - oyx, are considered. This is followed later by correcting the

    stress components to be parallel to the external surfaces at the boundaries

    ho + 2x'tan a=-+±

    2

    h' h

    P~~~~ - coc -P

    P'cosx =P/P

    p= P'. sine

    Figure 3. Definition of cartesian coordinates and major parameters.

    3

  • The basic dimensions in the x-y coordinates and their relation to those in

    the x'-y' coordinates (see Figure 3) are as follows:

    ho t

    ho - = the beam's cross-sectional height at the point of load applicationCos a

    ho

    x - (x' - -- tan a)cos a, where x' is being measured along the top surface of2

    the beam, which is the fracture toughness specimen, along the crack

    surface.

    hot

    = (t' - -- tan a)'cos a E-distance of crack tip from point of load2

    application

    t - 2"tan a

    P - P'cos a E component of load normal to plane of symmetry

    p - P'*sin a E component of load parallel to plane of symmetry

    h - ho + t*x E beam's height normal to the plane of symmetry at a distance x

    from the point of load application.

    Thus, the cross-sectional moment of inertia becomes

    bh3 (ho+tX)3

    12 12

    and the local curvature p of the beam is

    1 M(x) Px P x- =- . .- . 12 - - (2)SE1I(x) EI(x) Eb (ho+tx)

    3

    and the total deflection due to bending moment is

    Yo+ eodx+ 12 f drdx (3)0 Eb 0 o (ho + tx)

    3

    4

    / .'."-... ...- .- -, -.,. .- , ....- .. . .* ..* - -... .-.... -. .-.. ,," -, . ..: . - ..-. .. * . .. - .- *. ..-. -.-. -..

  • for whiche 2P Jfo x__ . Px - + 1 ho

    x

    -E oo + 2h -o+tx) dx-0o+ 2 h - o + tx 2(otx2 o

    p x2

    00 12 -- - (4)Eb 2ho(ho+tX) 2

    where 0 - angle of deflection

    60 = angle of deflection at the point of load application.

    However, at the tip of the crack, x = 1, OX - 0. Therefore,

    p 9.2e= = e0 o - 12 -- *-------

    Eb 2ho(ho+t 9)2

    from which we can determine thatp 9.2

    0 = 6 - --- (5)Eb ho(ho+t 9)2

    By applying Eq. (5) to Eq. (3), one gets

    Y W YO + 6odx + 12 !-oxj -x) dxdx

    0 Eb o o (ho+tx)2

    Ebho h0 t) tx d

    P2 x 1 ho xYo +6-- {t------- / - -- [h°+tx - 2h° log(h°+tx) - ------- I

    Ebh 0 (h0+t9.2) o t 3 ho + tx o

    P t 2 1 2ho + tx ho + txY+6 --- (---x- [- tx -2h o log -o ---- (6)

    Ebho (h0+tT)i t ho+ tx ho

    5

  • Since at the tip of the crack, x - £, and the deflection y, 0, one gets

    p 3 2ho + tZ ho + tiyi - 0 - Yo + 6 -- [- -- tt - 2h o log -- ]} (7)Ebho (ho+tt)2 t ho + tX ho

    However, for a straight cantilever where t 0 0, one has to determine

    t3 L3 I 2ho + tx ho + txyp - o y + 6- {---- ----- lim(-- [---------- tx- 2holog--------1)

    Ebho (ho+tt) 2 t+0 t [ho- tx ho

    whereI 2ho + tx ho + tx x

    3 x 3

    tO t-------- tx - 2ho log -------- lim .-------- (8)t+o t ho + tx ho t+ 3(ho+tx)

    2 3ho 2

    from whichp Z 3 X3 p 2 3

    lim Yo - -6 ---- .--- --- -4 -- (--) = yo' (9)t+O Ebho ho

    2 3ho Eb ho

    which is the same as being reported in handbooks (ref 2) for a straight

    cantilever of a uniform cross-section.

    Another method of computing the gap opening is by invoking Castigliano's

    theorem (ref 3), equating the internal deformation energy with that of the

    outside work done on the structural member. This method will facilitate

    computation of the gap opening due to bending moment and due to shear force

    (and any other forces that impose internal deformation work).

    The distribution of that component of normal stresses, 0 xx'm. which is

    parallel to the axis of symmetry and which results from the bending moment, is

    as follows:

    2Raymond J. Roark and Warren C. Young, Formulas for Stress and Strain, FifthEdition, McGraw-Hill, NY, 1975, p. 98.

    3A. C. Ugural and S. K. Fenster, Advanced Strength and Applied Elasticity,American Elsevier, NY, 1981, pp. 146-148.

    6

  • H Paxxm = Yy (10)

    where P - P' cos a, a - arctan (t/2) - arctan (Ah/2Ax), and I - bh3/12bb (ho+tx)3 .12

    The component of shear stress which lies in a plane normal to the plane

    of symmetry and in the direction of the axis of symmetry (or opposite to it),

    ayxm and its equivalent oxy,m , is assumed to be due to gradient in that

    component of the normal stress doxx,m/dx, resulting from the bending moment.

    This is computed as follows:

    2 Ih/2 fb/2 Alxx,m dzdy

    0 o Ax

    yx'm 2

    where M

    Oxx'm y

    Thusdaxx,m d M d 12 P d x

    Sd( () - P . y - -- x) 12 - y -- ( --------)dx dx I dx b(ho +tx)

    3 b dx (ho +tx) 3

    where

    d x ho + tx - 3tx ho - 2tx 1 tx-(----------------- ------ [1 -3----

    dx (hO+tx) (ho+tx) 4 (ho+tX) 4 (ho+tx) 3 ho + tx

    and thusp f.(ho+tx)/2 b/2 ho - 2tx

    24 -f f 'zd

    b y 0 (h0+tx)4 12P (ho+tx)/2 ho - 2tx

    ayx' m M f ydyb b y (ho+tX)

    4

    3p ho - 2tx 3p ho - 2tx y 2

    oyx'm - - ------- [(h+tx)2 - 4y 2 ] - 2-----2 [1 - (2-ho-tX

    (ho 2b (hootX) h[+tx

    3P ho- t

    2b (ho +tx)2 ho+tx

    7

  • Thus

    Ubend3 -(12 +- t2)t5 bE o (h0.itx)3~d

    whereX2 1 ho + tx 2ho + 3tx

    dx -- [lo - -------- - txo (ho+tx) 3 d 3 ho 2(ho+tx) 2

    Thus

    12 9 1 p2 ho + tx 2ho + 3txUbend3 (-I + - -) - [lo9 -- 2--- -3--------- tx] = P6bend3

    t 5 t bE ho 2(h0+tx)

    from which12 9 1 P ho + tx 2ho + 3tx

    6bend3 f (- 5 + - -) -- [o10 ------- --------- tx] (26)

    t 5 t bE ho 2(h0+tx)2

    and as before

    12 9 1 p ho + tx 2ho + 3tx

    bend3 + bE ho 2(ho+tX)2 txcos2

    At the limit, as t + 0, for a beam of a constant cross-section,

    P 12 9 1 ho + tx 2ho + 3tx

    lim 6bend3 -- z ((- +- JI9---------2txt+O bE t+O 3 5 t ho 2(ho+tx) 2 tx]

    whered ho + tx 2ho + 3tx-- [log ---------------- tx]

    ho + tx 2ho + 3tx dt ho 2(ho+tx)

    2

    lim [log tx] nlim -------------------t+O t ho 2(ho+tx) t*0 d

    -- (t 3)db

    x [(2ho+3tx)x + 3tx2](ho+tX)2 - 2(2ho+3tx)•tx"(ho+tX)"x

    ho + tx 2(ho+tx)4= lim 2- - - - - - - -- - - -t+O 3t2

    21

    .-.. :,...

  • .... Z . ........ ..

    Since fxxm (or arr,m) is tensile in the range 0 4 8 < a (or 0 4 y 4

    (ho+tx)/2) and compressive In the range -a 4 6 4 0 (or -(ho+tx)/2 < y 4 0),

    ayy,m , Oxx,mtan e maintains its upwards component and these do not cancel

    each other (Figure 5). Nevertheless, no discontinuity prevails at 6 - 0 (or

    y - 0), since ayy,m = 0 on that (internal) surface. The contribution of the

    stress component, ayy,m to the deflection is accounted for by the energy

    balance in its totality.

    Deflection Due to Bending Forces Only

    Since

    P xyUxx,m = 1217xxM 12b (ho +tX) 3

    p t 2y2 xyOrr,m = 12 - +-- -------

    b (ho+tx)2 (ho+tx) 3

    from which the local strain energy, due to bending moment, ubend3 becomes

    yrr,m 2 p 2 t2y 2 x2y2

    ubend3 °rr,m"crr,m 144 (h+t2 (h;+tx2 6

    Hence, one can compute the total strain energy due to the bending moment as

    follows:p2 f(ho+tX)/2 b/2 x~y

    2 x2y 2

    Ubend3 f Ubend3"dv - 576 -. r P [ - -- -Idz'dy'dx

    b2E o o 10 (he+tx) 2 (he+tx)6

    p2 x(ho+tx)/2 3 2Y2l288-f f I1 + --- - - ' dydx

    bE o o (h+x)2 (h0+tx)rwhere

    (ho+tx)/2 t2y2 x2y2 X2 y3 t 2 y5 (hei-tx)/2f ~[ + - - I....... ........a(h +tx)2 (h0+t) 6 (h ttx)6 3 (h+x25o

    x 2 1 t 2

    (h0-4tx)3 24 160

    20

    % **...*% . --*..- - - . % .- -. .....- . ". . . .. -. . . -* . -*",-* "• -. - . - ... o. ,- .".. -. ...- .. ...-.-. . . ...-. . .. . .. . ..".-.

  • of any cross-sectionl at a distance x from the line of load application is

    L a L'+x - + x from the origin of these cylindrical coordinates (wheret

    t - 2-tan ai), and the distance I of any point (x,y) on a plane x and at a

    distance y from the ais of symmetry is:

    I -7 + y'- ( )2 + y 2 - -(h 0+tx) 2

    t t

    from whichOrr = '(ho+t) + t'Y' -

    ox L ho+ tx ho+tx

    or

    Orr 2 [+ -~y 2(ho+tx) 1 Ox

    Figure S. Radial and cartesian components of normal stresses.

    19

  • CONVERGING STRESS COMPONENTS

    By assuming that the normal stresses, oxx, are parallel to the plane of

    symmetry, one violates the boundary condition at y - ± (ho+tx)/2, in a tapered

    beam. Therefore, it will be assumed here that the normal stresses, Orr- at the

    surfaces of y - ± (ho+tx)/2 (or e - ± a) (see Figure 4) are parallel to these

    surfaces and that the radial stresses gradually align themselves with the axis

    of symmetry (6 - 0). Or, in other words, these are radial stresses, as their

    subscript suggests, in a cylindrical coordinate with the origin at L'

    (ho/2)*tan a - ho/t distance from the point where x - 0. Thus, the distance L

    h '

    Figure 4. Conversion from cartesian to cylindrical coordinate systems.

    18

    "'' " '' . / " " "' " '""""" "" "', ' " "".. . . . . . . . . . . . . ."" ".-- - - - -" -".'- '.' '- - - ,- - -,,- - °'.-.-'.

  • Hence HnvP 12 1 ho + tx 2ho + 5tx P ho + txsheer2 " - (-- (41og 3 tx] + -- og -- ) (24)

    E bho 2(ho+tx) 2 2 -

    and1+v P' 12 1 ho + tx 2ho + 5tx t 3 ho + tx-- --{--. [4-log --- - 3 tx] + - log

    -.--- cos2 ashear2 b 5 t ho 2(ho+tx) 2 24 (4

    (24a)

    Combining Eqs. (22) and (24), one gets

    1+v P 12 1 ho + t5tx t3 ho + tx

    --- { - [4.log -------- 3 - - tx] +--log--

    6shear2 E b 5 t ho 2(ho+tx)2 24 ho

    ------------ ----------------------------------- ------------------------6bend2 P 12 ho+tx 2ho + 3tx t ho

    + tx- {2 [log -- -------------- xl+ --- ------bE t 3 ho 2(ho+tx) 2 4 (25)

    As before (in computing lim 6bend),t+o

    ho + txlia {_ log ---- I - 0t*0 24 ho

    Therefore12 P 1+v x

    lim 6shear2 - - - (--)c+0 5 b E ho

    as in Eq. (16), and

    6shear2 3 holim ( 1+V) (-_) 2

    t+O 6bend2 5 x

    as in Eq. (17).

    17

  • * - --- - ~ - ----. 7 7 7'7'- -,.7" - ' _ _'. . :- I C -.-- ' _.

    Thus, the total shear strain energy due to the combined bend and

    compressive forces and over the entire volume of the beam Ushear2 becomes

    f(ho+tX)/2 l+v p 2 1 hO+tx)/2___ar- 2b_ ser*yd 9(ho 24hotx+4t 2x2).Ushear2 02b 0 E b 00

    I 8y2 16y 4

    - ---- ------------(0 tx)' (h0+tx)

    6 (h0+tx)8

    t4 1 41yI 4y2

    +--_ [ -------- ----- --------- ]dydx4 (ho +tX)

    2 (ho+tx)3 ' (ho+tx)

    As in the derivation of Eq. (4)

    (ho+tx)/2 1 8y2 16y 2 4 1f - - ----- ---- ----- ------ dy -. ----S(h+tx) 4 (ho+tx)

    6 (ho+tx) 15 (ho+tX)

    and

    (ho+tx)/2 1 41yl 4y 2 1 1 1 1 1f -- - ---------- dy[- -- +--------- ---------

    0 (h0+tx)2 (h0 tx)

    3 (h0+tx)4 2 2 6 ho + tx 6(ho+tx)

    Thusl+v p2 12 ho2 - 4hotx + 4t 2x 2 t4 1

    Ushear2 . - -- . f {-----------------}dxE b o 5 (ho+tx) 3 24 ho + tx

    As in the derivation of Eq. (14)

    ho 2 - 4hotx + 4t2x2 1 ho + tx 2ho + 5tx(ho+tX)3 - dx - - {4"log --- - 3 ------- tx}(h+x3 t ho3 2(ho-9-X)

    2

    whereas

    x dx 1 ho + tx

    f - - logo ho+tx t

    Thus

    l+v P 2 12 1 ho + tx 2ho + 5tx t3 ho + tx

    Ushear2 7 -- [4 "log ------ - 3 -h-)... tx] + -- log --5tho 2(h 0 +tx)2 24 h

    6shear2

    16

  • an in Eq. (9), since

    lim -0 og -+ t 0t*O 4 ho

    By adding the two components of shear stresses due to the bend forces, P'

    * Cos a, and due to the compressive forces, P' sin a, from Eqs. (11) and (18),

    respectively, one gets

    P ho -2tx yt 2 lyla YXMCrY' + a {3 *1 - (2 Ty-)21-----1- - 2----11

    2b 0 tx h07x 2(h 0 +tx) h0 7t

    Thus, the local combined shear strain energy, ushear, due to the bending and

    compressive forces is

    1+IV 1+v P2 ho - 2txC 2 a 2 --_ --- { - ---- [ 2 Y-,ushear2 OY -X 2 3TX E 2b2 (h0+tx) - ho,+tx

    t2 lyl(ho+tx) ho+ tx

    - +V p2 {9h 02

    -4hoti + 4t2-x2 (2 y--2(2

    E 2b2 (h0-Itx)4- -[ h0+tx ho-Itx

    ho- 2tx -( - --- t 2 + -t'h07t).l ( ho.itx ho-Itx 4(h0+tx)

    2

    a s4 -4 l y- - + -e(

    ho + tx (h+tx)3

    where, due to symmetry around the -axis, the term

    h o 2tx3 " 1 . .- (2 (Y--)2 ]*[1 - 2 tt(h-+tx) ho+tx ho + t(

    cancels itself on both sides of the axis of symmetry.

    15

    r.~~i - % 2+.2 o - t

    - SS.. ........ - 2 ...---. .-~~ ~ - 5 .. , 2(ho*tX h o-... + tx *-.-< '.

  • ,z(h.+tx)/2 P2ho+tx) 2 z2y2 +t2(' +./ f. Odeo(7

    2b e7d-------- + t2 )

    Ubend2 Jo o 2bE o o (ho+tx)4

    0 1

    dyodx(ho+tx) 2

    where, as in the derivation of Eq. (12)

    f (ho+tx)/2 x2y2 1 x2o hIX dy =

    0 (h0+tx)6 24 (ho+tx)3

    ." In addition,

    (ho+tx)/2 t 2 t2

    fo (ho+tx) 2 dy 2(ho+tX)

    Thus

    p2 X2 t2

    Ubend2 - {24 + dx2bE o (ho+tX) 3 2(ho+tx)

    p2 24 2h0 ho2 t x

    { -- ( log(ho+tx) + -- - - -1+ - log(h0 +tx) }ho t tx 2(ho+tx) 2 0

    P2 12 ho + tx 2ho + 3tx t ho + tx

    - -I- [log ho -- ho--- tx] + - log -- } - P6bend2 (21)bE t3 ho 2(h0+tx)

    2 4 h

    from which P 12 ho + tx 2ho + 3tx t ho + tx6bend2 {3 (log h+ - log -- (22)

    b' ho 2(ho+tx) 2 4

    and as before

    P' 12 ho + tx 2ho + 3tx t ho + tx

    6'en2 -{- (og - -- -- - x]+ - log -- coo2 a (22a)bEbend2 { [ h0 2(h+tx) ho

    which, as was previously shown (following the derivation of Eq. (12))

    *.. P x

    lim 6bend - -4 - (--)3

    t+O bE ho

    14

    *° ..." .

    *, *'*.- %i' *-* ", .** % "e , *"'. ."" .',;' - 7''''..-,..,:-,- , '- '7' ' ' '_'.'_' , '. :.' ..-.'.-.' •.

  • Considering the symmetry of the beam, one arrives at

    -Pt2 lyl -P't lylOy~ p- bhot (1 - 2----] - [----- - 2h -+ ui tx1a- bh o + tx 4b(ho+tx) [- 2 tx

    By adding the two components of normal stresses due to the bend forces,

    P''cos a, and due to the compressive forces, P' sin a, one gets

    P xy P t P xy 1Oxx axx,m + -xx,p 12 -------- -- 24---- - t)

    b (ho+tx)3 2b ho + tx 2b (ho+tX)2 ho + tx

    (19)The term

    {24 ....- - ti(ho+tx) 2

    in Eq. (19) is not symmetric in respect to the plane of symmetry (y - 0)

    (except for beams of constant cross-section, where t - 0). Thus the beam's

    geometrical plane of symmetry is not necessarily the plane of symmetry for the

    stress distribution.

    As in the derivation of Eq. (12), the local strain energy due to normal

    stresses, ubend2, is

    dxx 2 p 2 {5 2 Y 1Ubend 2 - Oxxcxx - -- (76 - 8(ot)2t+ t2 (ho+tX) 2

    E 4bE (ho+tx)' (h0+tx)2 ( 0 t)

    (20)

    However, in integrating over the entire volume and due to the symmetry

    around the x-axis, the form

    48 xy

    (ho+tX)2

    cancels itself on both sides of this axis. Thus, the total strain energy due

    to the normal stresses and over the entire volume, Ubend, is

    13

    .. ..... .. -.. - ..... -...*. .*.* .. , -..?. ,., -. .. ?.,*, ,. *?.? . .......... ,.......''. "-.* -,*'.-.. , o''.- . '."-" . .. . ,. ., .

  • Thus12P1+v x 12 P 1+v x

    S 6shearl - - - -(4-3)(;) - () (16)t.o 5 6 R 5 b E (;0,

    and together with Eq. (9) (where yo - 6bend)

    12 P 1+v x

    6shearl 5 b E ho 3 ho.rn - M - _ M - (,+V) (_-) 2 (17)

    t+O 6bendl P x 3 5 x4 b- (ho)bE ho

    Deflection Due to Combined Bending and Compressive Forces

    If one incorporates the effect of the compressive stresses

    PS P sin a Pt-xx-p . sin a-b(ho+tx) b(ho+tx) cos a 2b(ho+tx)

    then the change in compressive stresses due to change in cross-sectional area

    becomes" '. d oxx 2 P1' tX X S P~i' t - - i

    dx 2b (ho+tx) 2 b (ho tx) 2

    from which the associated shear stresses will be

    (ho+tx)/2 b/2 doxx,p Pt 2 (ho+tx)/2 /22f f - dz'dy -2 ..... dz*dyy 0 dx 2b(ho+tx)2 y o- - -- ----------- -

    -p b b

    --Ft2 ho + tx _Ft2 y

    Ibh+t) 2 - YJ w Ill 2 ---- Ix2b(ho+tx)2 2 ho + tx

    -P't y- [1-2 -----.sin a (18)

    4b(ho+tx) ho + tx

    12

    i-.-;'..'.'.'..'.-"....'..'v,. ,-....--..-.,.. ..-..--..-,.--.---..--..,-,-.....,-..-.-",-,----,...-,.,.--.,,.----.'--,---'--'...,-. . . . ... ''.,-

  • and as before

    12 P' 1+v 1 ho + tx 2h o + Stx

    8shearl 5 b 4 log 2 txco a (14a)

    which, together with Eqs. (12) and (12a), yields:

    12 P 1+v I ho + tx 2ho + 5tx

    -- -{4 log - -3 - tx)ashearl 5 b E t ho 2(h0+tx)

    2 61 shear.

    6bendl P 1 ho + tx 2ho + 3tx 6'bendl

    12-- log tx}bE t 3 ho 2(ho+tx)

    2

    or++v ho+tx 2ho + 5tx

    --- (4 log . . 3 ------- x6shearl 5 ho 2(ho+tX) 2 6S shearl

    .... ...-- (15)6bendl 1 ho + tx 2ho + 3tx

    6 bendl

    2 (log ho 2(ho+tx) }

    However, at the limit as t+O, which is equivalent to a straight cantilever

    of uniform cross-section, one getsho + tx

    4 log

    12 P 1+v ho 2ho + 5txlim 6shearl - - - lira {-.. . .. 3 x}t+O 5 b E t+O t 2(hoytx)

    2

    whereho + tx d ho

    + txlog ---- - log---

    ho dt ho x x

    Irn (- -} lie { .- .- .. } lie -tO t t+O d t+O ho + tx ho•--(t)

    dtand

    2ho + 5tx x1a -- x ---t+0 2(ho+tx)2 ho

    p1

    .1

    |o

    ** *, w.* ,.**-..tt~g r'.." " " " " " '" " " ". . '-/" ." ' " ' . . ' " . - ', .: ''... .''' " " , ." " " " '. " -.-. ' '''- ...'''' -.- ' '. -2 .

  • Thus 9 ht tx

    Usheari l dxb 15 E o (h4,+tx) 3

    for which

    dx ho2 1 h0 2 . 1 2h + txho 2 .--- , / - tIo(h0+tx)3 2 (h0+tx)2 it (h04-tx) t2h~x

    andx xdx 1 1ho x 1 4t~,c2

    -4hot f --- ~-4hot -. 1 [ ------- 72-J -0(h0+tx)3 t ho+tx 2(h0+t)a t 2(h0+tx) 2

    andx x2dx 4 2h0 h0 2 x

    4t 2 J f -- I log(h0+tx) ------ ----------- ]o (h0+tx) 3 t ho+tx 2(h0+tx) 2 0

    4 ho,+tx 2h0 + 3tx

    t holo - 2(h0+tx)2 tx

    ThusSh0

    2 - 4hotx +4t 2 E2 1 h + txI ----- dx { 4 log --0 (h 0 +tx) 3 t h

    2hotx + ~ 2 - 4t~x - 8hotx - 12 t 2 X2

    2(ho+tx)2

    1 ho +tx 2h + 5tx-- (4 log - --- 3 ---- tx}

    t ho2(h 0 +tx) 2

    from whichP712p 2 1+v 1 ho +tx 2h + 5tx

    U5 heart - - - - (4 log - - 3 -t)Pser5 b E t ho 2(ho+tx) 2 - her

    and thus

    12p 2 1+V 1 ho +tx 2h 0 + tx6shearl - {4E log 3-- 2h+x txl (14)

    10

  • If, however, in the derivation of Eq. (12) one uses P''cos a for P and is

    to determine the displacement 6' in the x'-y' coordinate system, one will get

    the following:

    P' 1 ho + tx 2ho + 3txbendl - 12 - 7 {l g h ( ° t ) x }-co 2 ( 2 )

    --- (h,;tx)

    The local strain energy due to that component of shear stress resulting

    from the gradient in normal bend stresses and acting on planes normal to the

    plane of symmetry and in the axial direction, ayxm (or its equivalent acting

    on planes parallel to the plane of symmetry and in the direction normal to the

    plane of symmetry, axym) Ushearl, is

    l+v 9P2 l+v (ho-2tx) 2

    S= - (--- - --------- -(2_ --- 2] 2Ushearl -yxmCyx,m 2 - 2 ..4b2 E (h0+tX) 2 2

    9P 2 1+V 1 8y2 16y 4

    S2b -E- (h°2-4hotx+4t 2x2)[( -h--)-- (h+tX) 6 -(h+ 8 (13)

    for which the total shear strain energy, Ushearl, over the entire volume

    becomes:

    9p 2 l+v , (ho+tx)/2Ushearl - T b-2 f (ho 2 -4hotx+4t 2x 2)•a00

    1 8y2 16y 4

    (ho+tX) 4 (ho+tx) 6 (ho+tx)8

    for which(ho+tx)/2 1 8y 2 16y 4

    (ho+tx)4 (h+tx)6 h h;tx)e

    ]dy

    y 8y3 16y 5 (ho+tx)/2 4 1

    (Zho tX) 3(ho+tX)6 5(ho+tx)8o "15 (ho8t

    6 9

  • Deflection Due to Bending Forces Only

    The local strain energy due to normal stresses, ubendl, is

    O2 P2 x 2y 2 p2 x2y2--- 144 - _144 cos 2 aUbendi -xxm " xm - E b2 (h+t) 6 b 2E (ho+tX) 6

    Thus, the total bending strain energy, Ubendi, over the entire volume of the

    (deformed) beam becomes:

    ,°t .(ho+tx)/2 p2 0 ho+tX)/2 x2y2

    Ubend - 2bf f Ubenddyddx 288 -bE - -- dy'dx0 o o o (ho+tx)

    where(hO+tx)/2 x2y2 1 2(h+tx)/2 1 x 2

    oa (ho+tX) 6 dy 3 (h+tX)6 y3 (htx) 3 (ho o 24 (ho+tX)3

    for which

    x x 2 1 ho + tx 2ho + 3txo (ho+tx)3 "dx [log -x]th o 2(ho+tX)

    or288 p2 1 ho + tx 2h o + 3tx

    Ubendi -- - {log ---- - ------- tx}24 bE t 3 { ho 2(h°+tx) 2

    p2 1 ho + tx 2ho + 3tx- 12 - - {log -x} = P

    bE t 3 h 2(h+tx) 6bendl

    from which

    p 1 ho + tx 2ho + 3tx6bendl - 12 - -- {log --- -- (12)bE t ho 2(ho+tx) 2 t}(

    which is the same as Yo arrived at in Eq. (7) through the double integration of

    the bending moment method, and as such

    • P x

    lim 6bendl -4 -(;;)t+O bEh

    as in Eq. (9).

    8

    -*.i:-:. .... *.~*

  • x 2h. 2% + 8h~tX2 + 60 X3

    -4h.tx2 - 6t 2x 3

    ho + tx 2(h 0+tx) 3

    t*O 3t2

    *2h 02x + 4hotX2 +- 2t 2-x3 -2h 0~x - 8hotx

    2 - 6t 2x3 + 4hotX2 + 6t 2x3

    liii 2(h-ttx) 3

    t+o 3t2

    *2t 2x3

    2(h 0 +tx)3 3 1 x 3---------------------------- - i-----------= ()t+o 3t2 t+0 3(h0+tx) 3 3 ho

    to which one may add thatho+ tx

    log---- --

    1 ho +tx 2h + 3tx ho2h + 3txlirn{- [log ------- ------ tI lirn- - lim- - x

    t+o t ho 2(h0+tx) 2 t-+J t t+ 2(h04-tx)2

    * whereho+ tx

    t+O t ho +tx ho

    and

    2h + 3tx

    t0 2(h0+tx) ho

    Thus1 o h+tx ZhQ+ 3tx

    urn ( [log 0- -t+O t ho 2(h0+tx) 2tx

    ThereforeP 1 x P x

    lim 6 bend3 n2 -(-) - 4 -(;)t+o bE 3ho bE h

    22

  • which, except for the sign, is the same as that arrived at in Eq. (9), and

    which concurs with the value given in handbooks (ref 2) for a straight

    cantilever of a uniform cross-section.

    Even though the shear stress O approaches zero at the specimen's

    boundaries, y - (ho+tx)/2, and thus it is not in violation on the boundaries,

    it is assumed here that, as with the normal stresses, Oyx is the cartesian

    component of a radial shear stress, a0 r, which converges at (or radiates from)

    the same cylindrical coordinate origin at L = -(ho/t + x) as before.

    • : Oe ,= A + ( ty___2

    aer,m h-tr- ho+tX

    or22 ]2

    c12 r,m + h+--------21 yx,m

    Thus, since3P ho -2tx Y 2

    ,. o,m- 2b 4tx)2 ho+tx

    3p ho -2tx )12. / y 2erm -2b (hotx ' ho+tX h+tx

    Thus, the local shear strain energy'due to the bending forces, Ushear3 is

    1+v 9p2 1+V

    Ushear3 - Oer,mcer,m =2 - 2 r,m - -- (h°2-4h tx+4t2i 2).

    1 8y2 _ ___4 t2y2

    - +tX) +i +

    2Raymond J. Roark and Warren C. Young, Formulas for Stress and Strain, FifthEdition, McGraw-Hill, NY, 1975, p. 98.

    23

    r"P.

    °r c

  • *7%

    from which the total shear energy due to bending forces only over the entire

    " beam's volume

    Ushear3 4 f ushear3"dz"dy'dx

    9p2 1+V x (ho+tx)/2 1 8y2 16y 49P2 l~~~v fx (ho~2-4hotx+4t2x2).[-h;) h~X) -°;8

    2b E o o (ho (h0+tx)6 (h0 Itx)

    "2y2

    [1 + ho )2dydx(h0+tx)2

    where

    (ho+tx)/2 1 8y2 16y4 t2y2

    (ho2-4hotx+4t2 2)[------- -------- - -------9dy0"f (ho+tX)4 (ho+tx)6 (ho+tx)8 (h o + tx)2j~

    y (8-t 2 )y 3 8(2-t 2 )y 5 16t 2y 7 (ho+tx)/2

    (ho+tX) 4 3(ho+tx) 6 ' 5(ho+tx) 8 ' 7(h0+tx)l 0]

    h 2 - 4hotx + 4t2x 2 1 8-t2 2-t2 t 2

    (hoItx) 3 [2 24 20 +56

    ""ho2 -4hotx + 4t2x 2 1 1 1 1 1 1-- - + - ) + (----- + -)t 2]

    (h0+tx)3 L%2 3 10 24 20 56

    4 t 2 ho - 4hotx + 4t2 2

    15 105 (h0+tx)3

    -"1 t 2 ho - 4hotx + 4t 2x 2

    Thus,3 t 2 p 1+v , h 4hotx

    + 4t2x 2

    Ushear3 - (4 + -) - - - - - dx10 7 b E o (h0+tX)

    3

    r--

    24

  • where, as in the derivation of Eq. (14)

    h 2 - 4hotx + 4t2x2 1 ho+tx 2ho + 5tx

    fo (ho-t------ dx - -( 4 "log L - 3 --- txI0 (h 0 +tx)

    3 t ho2(h 0 +tx)2

    Thus3 4 t p 2 1+v ho + tx 2ho + 5txU 4-1og -- ... 3x

    Ushear3 0 0 ( 7 b E ho 2(ho+tx)2 shear3

    Hence3 4 t P 1+v ho

    + tx 2ho + 5tx6shear3 - (- + -) - {4og------------------ tx} (27)

    10 t 7 b E ho 2(ho+tX)2

    and as before,

    3 4 t P 1+v ho + tx 2ho + 5tx

    6 shear3 -(- + -4log ------- 3 -------- 2tx )cos2 a (27a)

    10 t 7 b E ho 2(ho+tx)2

    Sinceho + tx 2ho + 5tx

    lim {t[4"log- - 3 tx]} 0

    t0 ho 2(h+tx)

    as in the derivation of Eq. (16) above

    12 P 1+v xlim 6shear3 = (.--)t+O 5 b E h0

    as it should be. Also,

    3 4 t P 1+v ho + tx 2ho + 5tx

    - + {4.og -3 - -tx6shear3 10 t 7 b E ho

    2(ho+tX)2

    6bend3 12 9 1 P ho + tx 2ho + 3tx

    - lo g -txlt 5 t bE ho 2(ho+tx)

    2

    or

    3 4 t ho + tx 2ho + 5tx

    - -+ -)(1+v)({4'log - -3 - -- tx}6shear3 10 t 7 h 2(ho+tx)2 tx }.. . = - - - - - - (28)6bend3 12 9 1 ho + tx 2ho + 3tx(I+ -) (os tx)

    t 5 t ho 2(ho+tx) 2

    25

    -. . .i".. .--.-. - .-. = .."-. .--. - -"-. -'-,.., '< '-''-, '.-. ,".'.. " -.'''''- -" . . .,. '" ,., -", -%

  • Deflection Due to Combined Bending and Compressive Forces

    The same process of considering the converging stresses used in the above

    calculations of the gap-opening due to the bending forces can be used for the

    combined bending and compressive forces.

    As in Eq. (19) before, the Cartesian component of the combined forces

    oaxx - Oxx,m + Oxx,p - b {24 (h-) t 1

    2b (h0 .tx) ho + tx

    * Thus, as before, the full normal stress will be

    P ty xy0r~ i 0;+t) 24 --- x-- t}--------

    b(h0+t)2 ho + tx

    • - and the local strain energy due to normal stresses, ubend4, will be

    02rr p 2 t 2 y 2

    Ubend4 0rr~rr - --- ---E 4b2 (h0+tx)

    x 2 y2 txy 2{576----48 -- -;-+----

    (ho+tx)6 (ho+tx) (ho+tx) 2}

    However, due to the beam's symmetry, when integrating throughout the entire

    beam's volume, the term

    48 txy

    (ho+tX)4

    from both sides of the plane of symmetry cancels itself, and one gets for the

    total bending strain energy, Ubend4, the following:

    x hX +tx/2 b/2 p 2 0 (h°+tx)/2 t2y2

    Ubend4 f f f ubend4"dz-dy-dx - 2bE [ + (h0+X)2 ]

    {56 x2y2 t 2

    {576 -t)-- - -- }dydx

    (h-+tx) 6 (ho+tx)2

    26

    a.

    a.' " """': , " " , - -,,: ,-,, ..- ,-,- -- "-""" - ."'''' 2'. ----------. i';" . " -- '- :" - ---- -,-.

    '.pi' ,'. : - , ti:2. -_. ,,: ao .... ,,,, ,. •.: -, . .,, ,

  • |.1

    ' where

    f (ho+tx)/2 t2y2 x2y2 t2[1+t 21 {576 + zb d

    fo(h+t) h+tx) 6 (h+tx) 2d

    2_ X2 _4 y 53 t~s . (ho+tx)/2- ---- + (576 __ _+ Ox 3 576 0 tx -o(ho+tx)2 (h0+tx)

    6 ( 70 t'-j) 5htx8

    18 X2 1 t2 t 2

    5 (ho+x) 24 2 ho + tx

    Thusp 2 x 18 x2 1 t 2 t 2

    Ubend4 [(24 + -- t 2) ---- + )--------]dx2bE o 5 (h0+tx) 3 24 2 ho+ ]tx

    where

    x x 2 1 ho + tx 2ho + 3txf - tx) dx;-3[log ------ ----------

    o (ho+tX)3 d ho 2(ho+tx) 2

    and

    x dx 1 ho + txf -- log

    Sho+ tx t ho

    as has been shown before. Thus,

    p2 24 18 1 ho + tx 2ho + 3tx 1 t3 ho + txObend4 -{(- +- )og + (2 t + 2)log- . }

    ibE {t 5 2(h~tho

    = P6bend4

    ThusP 24 18 1 ho + tx 2ho + 3tx

    6bend4 -- {- +--)lg- tX]b bE ((t + -5 t)[1o8 ho 2(ho+tx)3

    1 t 3 ho + tx+ (- t +_ -)log - "(29)

    24 2 h -(9

    27*5. . * - - - . . . * ' , . * - . . . . . . * , 5 ..i- ' . - .* . . . . . . . - . . .. . * - 5 . . . .?

  • - - . - ' -. . -...- . ..- ..

    andP 24 18 1 ho + tx 2h o + 3tx

    S6 t bend4 - - {t + -- )[log - - -- X tx]2ed bEF t 5 5th 0 2h+

    1+ (3 t + -)log - --"}cos 2 a (29a)24 ho

    Since1 t3 ho

    + txin {(-- t + -)log - - 0t+O 24 2ho

    as before' P X

    lim 6bend4 - 4 ( -)t+o bE ho

    Incorporating the bending and the compressive components of the applied

    force into the computation of the resultant radial shear stresses, aer, yields

    the following:P hv-_2tx - t2

    aer - 00r,m + Gerp {3 3- -[1(2---2b (h0+tx)2 ho-Itx 2(h0+tx)

    [1 . A ty -

    ho + tx ho+tx

    Thus the local shear strain energy resulting from the radial shear stresses due

    to the combined bending and compressive forces is

    1+ VUshear4 - o08rc(r = 2 - 2 Or

    Ep2 +v h0 2 -4hotx + 4t 2x 2 2 4•{9 [1 -2(2 -+-- (2 Y-- -

    2b 2 E (ho+tX) 4 ho+tx ho+tx

    ho - 2tx ll2 -Y) 3

    -3" t 2 lyl - ( )-- '-) + ( -- 1,(ho+tx i ho + tx h+tx h+tx

    t4lyl 2 2 ~ y

    4(hh+tx)2 ho+tx ho+tx (ho+tx)2

    28

  • However, when integrating over the entire volume one can omit the term

    ho - 2tx lyl y 2 3y3h t 2 [1 - 2 - (2 ) + (2 -)J

    (ho+tx) 3 ho + tx ho+tx ho+tx

    since it cancels itself on both sides of the plane of symmetry. Therefore

    Ushear4 4 f (hO,+tx)/2 /2 ushear4dzdydx0 0 0

    p2 1+v _x (ho+tx)/2 ho2 - 4hOtx + 4t2x2 'y2f f ---- --- [1 -2(2----) + (2----) ]

    b E o o (ho+tX)4 ho+tx ho+tx

    t4 yly_2 t2y2tlyl y

    + ---- 2 [1 - 4 ---- + (2 -- ]1[ + ---- dydx4(ho+tx) ho+tx ho+tx (ho+tx)

    where

    (ho+tx)/2 ho2 - 4hotx + 4t2x2 y_2 4h09 --.----- [1 - 2(2 + (2 ]

    o(ho+tX) t x ho+tx

    + 4"'o"x''1 - 4 ---t + (2 ho tx ]'1 + 'I+x' dy

    h12 - 4hotx + 4t2x 2 8-t2 y3 16 8t2 y5 16t2 y7-9 ----- ... [' o ; + -.-; '- + -o- '- --

    42 2 24 16 20 (otx

    t4 4 y2 4+t2 y 4t2 y4 4t2 y5_}h~X/. . .. .y .. .. . . ...+-4(ho+tX [Y ho + tx 2 '(ho+tX)

    2 3 (ho+tX) 3 4 (hot4 5 o

    ho 2 -4hotx + 4t:2x2 1 - 2 2-t2 t2 t4

    -9 (ho+tx)3 L[2 24 -20 56 4(ho+tX)

    1 1 4+t2 t2 t2

    [i -i + "- -- - -; + -1

    29

    ; .-. -. ' .. _.._ , V '- - .... _-.;.. - . .,.. • .. - .-... ' ,.. '..'. .....--..

  • 3 t2 h. 4htX + 4t2x 2 + 7 t 2 ) t

    -3 (4 + j_ J#- + (+5 7 (h0+t)

    3 6 240 4(ho+tx)

    for hich ho - 4hotx + 4t2x2 1 ho + tx 2ho + 5tx

    hot- -- dx (4 -log o 3 -tX) 2 txl

    0 (ho+tx)3 t h (o

    anddx 1 ho + tx

    ---- - log----o ho + tx t ho

    Thus P 2(1+v) 3 4 t ho + tx 2ho + 5tx

    Ushear4- ---------- (- + -)'[41log ------- 3 -------- tx]bE 5 tho

    2(ho+tx)2

    t 3 7 ho + tx

    + (6- + i- t 5 ).log - } - P 6shear4

    from which

    P 1+v 3 4 t ho + tx 2ho + 5tx

    6shear4 - - - {-(- + -)°[4"log ho 3 --------- tx]b E 5 t 7 ho2(h 0-Itx)

    2

    t 3 7 ho + tx+ (--+ - t5)-_log ... --(30)6 240 ho

    and similarly

    P' 1+v 3 4 t ho + tx 2ho + 5tx

    shear4 {( + -)[41-g 3 -x]a b E 5 tho 2(o

    tX) 2

    t3 7 ho + tx

    + (-- + -o t5).log ---- }cos 2 a (30a)6 240

    since

    t3 7 ho + txlira (- + --- t 5) log ___-- _ 0

    t+0 6 240 ho

    as before3 h

    lir 6shear4 - 1 V)(_) 2t+O 5 x

    30

    , . o, . . ..,. . "~ ~~~. . .. . . . ......, % . % o . . o . .. -. ... . * • • . • ~ . Q . o.. .. ~

  • and6shear4

    6bend4

    3 4 t ho + tx 2ho + 5tx 1 7 ho + tx(1+v){-.(- + -)'[4log - - 3 - - , txj + ( + -- t

    2)t3.log

    5 t 7 h 2(h+tx) 6 240 ho

    1 ((!4 18 1 ho + tx 2ho + 3tx 1 t2 ho + tx+ ---) -[lo +tx 2 t ] + ( 4+ -)t~log -h

    2 t 5 t ho3 2(h0+x 2 (31)

    SUMMARY

    'riis report provides equations for the determination of that part of the

    gap opening in fracture toughness specimens, which is due to the deflection of

    the cantilever portion of the specimen. The method used is based on beam

    theory and it covers elastic deformation only. Four different field

    combinations were considered.

    1. Where only the stress components which are parallel (or normal) to the

    cantilever beam's plane of symmetry are being considered.

    2. Where the stresses are assumed to be parallel to the beam's outer

    surfaces, at these surfaces, and where they gradually rotate in between.

    Each of the above stress fields was considered as the result of

    a. the bending component of the applied force only, and

    b. the combined bending and compressive components of the applied force.

    In all of the above cases, the contributions of bending stresses and shear

    stresses were computed. Table I is a computer printout for the computed half

    gap opening for varying angles of specimen taper and for varying crack length

    to beam's cross-sectional height ratios. The gap openings to be anticipated by

    each of the above assumed stress fields are compared.

    31

    "i -. . . . - ..L". . .. ..-... . .. . .. . : ... .. > . . . .: . . - .-.-..... :. .... .. . ,... . : . - . .

  • REFERENCES

    1. Boaz Avitzur, "Retained Deflection in Circular and Concentrically Hollowed

    Beams After Local Removal," to be published.

    2. Raymond J. Roark and Warren C. Young, Formulas for Stress and Strain, Fifth

    Edition, McGraw-Hill, NY, 1975, p. 98.

    3. A. C. Ugural and S. K. Fenster, Advanced Strength and Applied Elasticity,

    American Elsevier, NY, 1981, pp. 146-148.

    32

    , . .-.. :.i -: .,., ... ,-.-.o... -...-. -... . .-. .... e: . - - * -. . .. . .. .- ... ' .-.- . -. . . . .

  • 00000 00000 occoo

    F"0 'a4 *0 l"m 40 9% Gof" c

    *00 -40400 'o 0 4r. 4sm m6100600 6000 W% m i

    to GoNN NN

    'S0000 00000 Q000016 .11 1 1 jI

    UL JJIJL IA"4' owro wIl % w w i"4"4*"f la a9 ~M Vfl n % c r WN4m -I l 0. m N N NN m t- r-f~l

    000cc 0*0 0000 00000000

    h(a

    hi -4 a.0 0 61 N1 N1 1 -"mm( N( ne

    -i -k. ",4...4 00000 00000 00000

    0- 61% "4r (" m4'Ifl co ItCIDo r- in 10 -4 --*0 0 0.0. 0T -wh w 0 0 a.0N Q 0 elin r-

    4nf 0 00 60 0000 0 .000 Q0 0

    hi '0 0 0 - f-0 6 00 0 ( 0 (

    ~ 1hii00000 00000 00000CL 0 000000 i, uu1110d 000000C 0 .W ww W W W WjW

    'a 0000O0.0owWLJL w w w0%00000 00 0 r- 0 C4(I o 4hiGo 0 .0 -ra f0! l.-4('S0Un n0 0 Cc 0 4A f- -4 4 3't%a m 0 meY

    0-%001 00%0%00hi P4 0'O 0 0 0E10~f 0 0 40a

    .01000 00000 000400

    t i w -

    a4Z 0 a cc01- h . 13 0 A 0 0 S.'L WLLZ1 4. ' a -. %J61 L 61 WUJ 0% eWJul0 Ihi W4. 6 . g 0 0 c OD~ CUff an 1

    a. P404 MCL06 0

    0 0 v45' "40 600 0 0 P40 a wA0 A - i"

    s &'6 W .4h hi" .4V: C C

    1. 0. aS jA- -v - ---------- - - - -

    4 1U A4ab 0 "

    SigAj

    .P4* ..4

    -1 - - - - - - -

    33*

  • oooo 000400 00000 0 0 0 0 000000 0 0 0 00 0 0000 0 aw'o

    40 A Z 6r0 S S, S0 in 0 im. 0P-' 00 i 00 00 00C.ni usin - r0P - QOy 0000 0 00 't 00 0 000cc0

    $NCN N N C N N 'N N mN N r4N e NN riN r4N N N 400000 0000 0 0000a 0 0000C U)UCo A 00 0Q0

    P o f- 4r-rm 4 r- 1-0% L ?I-- O 0 D P m r-u V P-U' PP

    0d I 0r t~ u -jir 0 NC ~ .%U U)0 coi n % o ( 4z~. .1 Dr .l~ 4 In ~ J UVNN) %0N -4I~j% l CDCOD4% GoP coCa C w C U

    4' 0c m N 0n -nwa %0 nW n 01 4m mG10 c i V t i"c 0000 N (%~rI Nr i N C, mt4 C4 Nrl 4 NN r

    ad~oo o ooo0 Co 000 CC)00 C 000)0 0C)0 00)U3 ~ 1 1 1 11 1 1 1 1 1111 Ii 1 1 11 11 11

    &. U LL W Uj W U L J U U LJ LwWW IWWW LLJ W WWWj ULu U.1AWWW LJUj

    9000 a0 4000 0 0 0060 0 OS 00 * O

    00000 0)0 00 0000a a0 00000C3 00000

    0 C 0 0 0 0 0 ID00 0 C a0 C) C)co 0 0 0C C

    0000 0%4a, 0 0 0 0 1*- VW C ' 0 0 0%0 C 00P T0

    C)0% N oQ 0 004,M-. 4w - l 00 n 0(0 0 QN q V 94V 4 C4rV6P4P-4 4 4

    00 WW 0 LLL 0U WU 0 0 00 0 00 0O-4 0~. 0 00 0u00 )00 0 0

    - - - -'f - - - - - - - -- - - - - - - o

    Z ) 0o C.3 00uco'

    0' LU' tu111frU)u l ju0) * .S 01 0 5 C 0% 0r M

    0.0 c 7c-o CO

    z u 4 w- w4 cmco10cupo6 (3 Qc I nr c-i

    0 0 N N C) - -

    > 0 -4 .4 -4 -4

    01 W 0 0r (r .

    S in IN p

    3 0 00

    34

  • 0i0 0 0 UWawu0u uOOOLIL 0II1)0 uJLL 0uu0 00 tj u 0 utJ LOL.00 WOU JL0 aw IJLLi i 0 vLa0Q

    Idi WWILL -WWu LUWU L j iU I L L"I II Ul L UuiW WWWWWI LIU1 jw I - a~O %TU~ - .O U 4 %0 N 4 J ' .a; ' -4f %~ .0 P-C)% r ) oo r a

    0 -, *S %a W * N S "d %0 , It P- Sy w S, -4

    IC a, Q J 0% %J Jr.JINa eJt Co N .4 ' 0, 'I(JM (%m %4r ' -

    LU LU LU 0 LU L UL ULU U a U C) L I-) dWLU LU LU u QU LU a

    1.44C N Nr-CV NN4j 40 04 N t4 ,4f0 C "0?I CNIfC~ m (4 In e

    0- -r 0O N t-% m--~ m'' J rn r-~jSU m n O T fl i -4ft 't M %) C I- o m M ,e o ir% cr m -4 %T (q)r) m Q m- 4 (n r U

    -4 4'I t 10 .3 U 0 0 0 o (3 0 0 C. r3 53 C0 L) U 5. C 5 IL 0 U . 0co w w (0 0 0 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - 0 0 0 0 0

    co j 10 IV 0 10-0 0 0 00 r'.JI (f) (',4,r IN)r~ r r rn r- Mm

    0 )0000 00000 00)0 u00U0 u C-) C C) o0 0 00LJ UUJ l IIIU il li WLIJWWW u WLIJLAJUJUJ ~ IIWIWW L u .WW UJ uP.- ' uU -0 1f .- C)NO (r1401.- ~m r- 4 f~- ff r C)nr C) l -

    1S Dt 7 o ' *), s0 1- (P 54 U5 r4e C) r m 0 D ?- g ) r %000000' ), O V )C C4 C 00 0 0 0% -.tC 00000MCDU c 3 1

    0 0000 0 cQ0 00 0 00a0.0 00Ua00 0 0C)00

    LuWLuUU LUII II j iL U II ULAJUU.)ILI UJ UJW WWWWWJUiu L- LJuw N 0 n %o t- a N P1 in 0 r1-4IV 00U -4 0 ev 0 m C

    0 0 r 0aI 0%~' r_) C rn 4 0 .0 Ol 0 010 nN0

    '- 0 00 0 a0 000000 000 0C0 a0000*0000

    03r 00QC)0C)C 00 00uC 00 a 00aC

    Ow % Ii I T I * L % TU In It LUML" 0 C) 0 - C. 0' C)u0

    +0 +J +I\ ill ll4J

    0 w IV 5 0% r- 0 e 0 5 U .m 0

    Li r" ("J U) a

    LI C-4U L

    0 -4 I00

    (3' Li- (.

    - - - - - - - - - - - - - - - - - - - - - - - -

    14 LI P- -4 -4

    -- - - - - - - - - - - - - - -

    35

  • -- -- --- --- --0- --0 - 0--- -- - 0- ---

    004000 0 600.940 6.000- 0 000 0.000lV4pqe- oQWQc ooooo WCOcID 00000 00000

    111C101O.4 F P t( t u 0000 %a Par 00000 ft t~o-0

    f*-Q in c P4NN %1~P~ 0- "W0 % n 04 - nfl- 0-4 N rf.a on

    o m. MenJ4~ N-w~- (I N N m N t .eNmMN eqm m m m r4 MIAM fm41C *00003 a~s 0 c0L) 0000 0 .j0 0

    M 4~~0 C E'1 W4ODN i % P4 r- N tn n N in ~ r %rc C n n O N

    an N1VI 1 C4 nmN " m rmN NmrrmmN NmmN rfn1Wr" I( Nw000030 cocoa 00000 00000 00000

    P- t 0 O'% p- minapci o f 4 O r - % -I ru N % 0O1. i 100 ' -: -r a C 1 0 4 P. a f 0P4 %a )~N %a00 - 4 r j .4E-14 m w N wa w-4iO--a C 0Ln 0u N N Go 00%.0 o c0 .4

    Z00000 00000 000 00 00000 00000U- Hl oc oc oc oo 0000 0000 00000ui u lujt i uiU UUjL jLUL

    G 00 0,-rN 0 0 Pit-e 0 Il -r-r 0 a ),Nf 0 0t-ir+n4 jt M@4 tr t4 +4 0 4 +- 4 0 rP4

    10 Q.c' 0- LO000 c

    04 4 CL0 CDa3 .) mc . CO ,--

    0 191

    V4 H 1-4 C -;C ;C-, -i - - - - - - - - - - - - --- - - - - -

    P-4 en 00> 0n C- 0004

    tor

    C; C; (;

    U -0 Lp 0 00 Q-

    I.

    63

    . . . .. . . .* . .

  • ii JiJ °'" LULU u U .oLU, e00000 00u00Co In N oW0

    so to '#,w.4 i t C4 4 o

    N f nm MN N "M In c00000 0000

    lii, ,1,,°

    a WWJU j WW UJ WW A ULU

    "40 r nL 0- In P-40~ %0 .4 Nee 40V c mw % P0 4.8 w0 0 0N %

    0 0

    00000 G00 0

    A0Ic 0 CO Gof0m m 0-

    0000 0N EN Ng~fmN00000 00000C W m mNi 4 i il

    000 l0 0il0 e

    0 0Vr nf NE CMi (n (" f" N

    q -c 0 0000 -0 0000

    orpor oou

    c 0000V4n0 (0 "0000 f

    -0 4o i. 0 t1

    c 0- OD n 0 0ut0 0 % 0 owW

    r- in F* m

    0 2 0 0

    . mi0

    z ~ ~ 0 E r DL

    14 0 0U0

    .4 CI %ac0

    r9 P- 0A 4 O

    a 37

  • TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

    NO. OFCOPIES

    CHIEF, DEVELOPMENT ENGINEERING BRANCHATTN: SMCAR-LCB-D 1

    -DA 1-DP I

    -DR 1-DS (SYSTEMS) 1

    -DS (ICAS GROUP) 1-DC 1

    CHIEF, ENGINEERING SUPPORT BRANCHATTN: SHCAR-LCB-S 1

    -SE 1

    CHIEF, RESEARCH BRANCHATTN: SMCAR-LCB-R 2

    -R (ELLEN FOGARTY) 1-RA 1-RM 2

    -RP 1-RT 1

    TECHNICAL LIBRARY 5ATTN: SMCAR-LCB-TL

    TECHNICAL PUBLICATIONS & EDITING UNIT 2ATTN: SMCA-LCB-TL

    DIRECTOR, OPERATIONS DIRECTORATE 1

    DIRECTOR, PROCUREMENT DIRECTORATE I

    DIRECTOR, PRODUCT ASSURANCE DIRECTORATE I

    NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: SMCAR-LCB-TL,OF ANY ADDRESS CHANGES.

    Jo

    %* .. -. .

  • ,, --- •--*- - - - - * * - t . ~ * * . -

    TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

    NO. OF NO. OFCOPIES COPIES

    ASST SEC OF THE ARMY COMMANDERRESEARCH & DEVELOPMENT US ARMY AMCCOMATTN: DEP FOR SCI & TECH 1 ATTN: SMCAR-ESP-LTHE PENTAGON ROCK ISLAND, IL 61299WASHINGTON, D.C. 20315

    COMMANDERCOMMANDER ROCK ISLAND ARSENALDEFENSE TECHNICAL INFO CENTER ATTN: SMCRI-ENM (MAT SCI DIV)ATTN: DTIC-DDA 12 ROCK ISLAND, IL 61299CAMERON STATIONALEXANDRIA, VA 22314 DIRECTOR

    US ARMY INDUSTRIAL BASE ENG ACTVCOMMANDER ATTN: DRXIB-MUS ARMY MAT DEV & READ COMD ROCK ISLAND, IL 61299ATTN: DRCDE-SG 15001 EISENHOWER AVE COMMANDERALEXANDRIA, VA 22333 US ARMY TANK-AUTMV R&D COMD

    ATTN: TECH LIB - DRSTA-TSLCOMMANDER WARREN, MI 48090ARMAMENT RES & DEV CTRUS ARMY AMCCOM COMMANDERATTN: SMCAR-LC 1 US ARMY TANK-AUTMV COMD

    SMCAR-LCE 1 ATTN: DRSTA-RCSMCAR-LCM (BLDG 321) 1 WARREN, MI 48090SMCAR-LCS 1SMCAR-LCU 1 COMMANDERSMCAR-LCW 1 US MILITARY ACADEMYSMCAR-SCM-O (PLASTICS TECH 1 ATTN: CHMN, MECH ENGR DEPT

    EVAL CTR, WEST POINT, NY 10996BLDG. 351N)

    SMCAR-TSS (STINFO) 2 US ARMY MISSILE COMDDOVER, NJ 07801 REDSTONE SCIENTIFIC INFO CTR 2

    ATTN: DOCUMENTS SECT, BLDG. 4484DIRECTOR REDSTONE ARSENAL, AL 35898BALLISTICS RESEARCH LABORATORY 1ATTN: AMXBR-TSB-S (STINFO) COMMANDERABERDEEN PROVING GROUND, MD 21005 US ARMY FGN SCIENCE & TECH CTR

    ATTN: DRXST-SDMATERIEL SYSTEMS ANALYSIS ACTV 220 7TH STREET, N.E.ATTN: DRXSY-MP 1 CHARLOTTESVILLE, VA 22901ABERDEEN PROVING GROUND, MD 21005

    NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCA-LCB-TL,WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.

  • TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

    NO. OF NO. OF4 COPIES COPIES

    COMMANDER DIRECTOR* US ARMY MATERIALS & MECHANICS US NAVAL RESEARCH LAB

    RESEARCH CENTER 2 ATTN: DIR, MECH DIV IATTN: TECH LIB - DRXMR-PL CODE 26-27, (DOC LIB) 1WATERTOWN, A 01272 WASHINGTON, D.C. 20375

    COMMANDER COMMANDERUS ARMY RESEARCH OFFICE AIR FORCE ARMAMENT LABORATORYATTN: CHIEF, IPO 1 ATTN: AFATL/DLJ iP.O. BOX 12211 AFATL/DLJG iRESEARCH TRIANGLE PARK, NC 27709 EGLIN AFB, FL 32542

    COMMANDER METALS & CERAMICS INFO CTRUS ARMY HARRY DIAMOND LAB BATTELLE COLUMBUS LABATTN: TECH LIB 1 505 KING AVENUE2800 POWDER MILL ROAD COLUMBUS, OH 43201ADELPHIA, MD 20783

    COMMANDERNAVAL SURFACE WEAPONS CTRATTN: TECHNICAL LIBRARY 1

    CODE X212DAHLGP.EN, VA 22448

    NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL,WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.

    4 4 S -

  • I.'

    FILMED

    ' 12-85Dk

    DTIC--. .-. . -.....................- ' -

    . -. :-. '.;-. -.. '':- "',-" ,""-''..-, ";'.;-.'','" ',..'';'-'', ,'.."'."",.'','" -- '" -"°-"",.', "-': %:" -'.,.'-"--*'.*.,. "..-*. .- ,. "*,"-.,, .-