adaptive finite element methods lecture 1: a posteriori error

46
Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www2.math.umd.edu/ ˜ rhn 7th Z¨ urich Summer School, August 2012 A Posteriori Error Control and Adaptivity

Upload: others

Post on 11-Feb-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Adaptive Finite Element MethodsLecture 1: A Posteriori Error Estimation

Ricardo H. Nochetto

Department of Mathematics andInstitute for Physical Science and Technology

University of Maryland, USA

www2.math.umd.edu/˜rhn

7th Zurich Summer School, August 2012A Posteriori Error Control and Adaptivity

Page 2: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Outline

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

Surveys

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 3: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Outline

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

Surveys

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 4: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Warm-up: 1d Example

Question: given a continuous function u : [0, 1] → R, a partitionTN = xnN

n=0 with x0 = 0, xN = 1, and a pw constant approximationUN of u over TN , what is the best decay rate of ‖u− UN‖L∞(0,1)?

Answer 1: W 1∞-Regularity. Let u ∈ W 1

∞(0, 1) and TN be quasi-uniform.Then UN (x) = u(xn−1) for xn−1 ≤ x < xn satisfies

|Un(x)− u(x)| = |u(xn−1)− u(x)| ≤∫ xn−1

x

|u′(s)|ds 41N‖u′‖L∞(0,1).

Answer 2: W 11 -Regularity. Let u ∈ W 1

1 (0, 1). If xn is defined by∫ xn

xn−1

|u′(s)|ds =1N‖u′‖L1(0,1),

then

|Un(x)− u(x)| = |u(xn−1)− u(x)| ≤∫ xn−1

x

|u′(s)|ds ≤ 1N‖u′‖L1(0,1).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 5: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Warm-up: 1d Example

Question: given a continuous function u : [0, 1] → R, a partitionTN = xnN

n=0 with x0 = 0, xN = 1, and a pw constant approximationUN of u over TN , what is the best decay rate of ‖u− UN‖L∞(0,1)?

Answer 1: W 1∞-Regularity. Let u ∈ W 1

∞(0, 1) and TN be quasi-uniform.Then UN (x) = u(xn−1) for xn−1 ≤ x < xn satisfies

|Un(x)− u(x)| = |u(xn−1)− u(x)| ≤∫ xn−1

x

|u′(s)|ds 41N‖u′‖L∞(0,1).

Answer 2: W 11 -Regularity. Let u ∈ W 1

1 (0, 1). If xn is defined by∫ xn

xn−1

|u′(s)|ds =1N‖u′‖L1(0,1),

then

|Un(x)− u(x)| = |u(xn−1)− u(x)| ≤∫ xn−1

x

|u′(s)|ds ≤ 1N‖u′‖L1(0,1).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 6: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Warm-up: 1d Example

Question: given a continuous function u : [0, 1] → R, a partitionTN = xnN

n=0 with x0 = 0, xN = 1, and a pw constant approximationUN of u over TN , what is the best decay rate of ‖u− UN‖L∞(0,1)?

Answer 1: W 1∞-Regularity. Let u ∈ W 1

∞(0, 1) and TN be quasi-uniform.Then UN (x) = u(xn−1) for xn−1 ≤ x < xn satisfies

|Un(x)− u(x)| = |u(xn−1)− u(x)| ≤∫ xn−1

x

|u′(s)|ds 41N‖u′‖L∞(0,1).

Answer 2: W 11 -Regularity. Let u ∈ W 1

1 (0, 1). If xn is defined by∫ xn

xn−1

|u′(s)|ds =1N‖u′‖L1(0,1),

then

|Un(x)− u(x)| = |u(xn−1)− u(x)| ≤∫ xn−1

x

|u′(s)|ds ≤ 1N‖u′‖L1(0,1).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 7: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Sobolev Number

Let ω ⊂ Rd be Lipschitz and bounded, k ∈ N, 1 ≤ p ≤ ∞. The Sobolevnumber of W k

p (ω) is

sob(W kp ) := k − d

p.

Remark 1. This number governs the scaling properties of seminorm|v|W k

p (ω): consider x = 1hx which transforms ω into ω and note

|v|W kp (bω) = hsob(W k

p )|v|W kp (ω) ∀v ∈ W k

p (ω).

Remark 2. Let d = 1 and ω = (0, 1). Then W 1∞(ω) is the linear (and

usual) Sobolev scale of L∞(ω), but W 11 (ω) is in the nonlinear scale of

L∞(ω), i.e.

sob(W 11 ) = 1− 1

1= 0− 1

∞= sob(L∞).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 8: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Sobolev Number

Let ω ⊂ Rd be Lipschitz and bounded, k ∈ N, 1 ≤ p ≤ ∞. The Sobolevnumber of W k

p (ω) is

sob(W kp ) := k − d

p.

Remark 1. This number governs the scaling properties of seminorm|v|W k

p (ω): consider x = 1hx which transforms ω into ω and note

|v|W kp (bω) = hsob(W k

p )|v|W kp (ω) ∀v ∈ W k

p (ω).

Remark 2. Let d = 1 and ω = (0, 1). Then W 1∞(ω) is the linear (and

usual) Sobolev scale of L∞(ω), but W 11 (ω) is in the nonlinear scale of

L∞(ω), i.e.

sob(W 11 ) = 1− 1

1= 0− 1

∞= sob(L∞).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 9: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Sobolev Number

Let ω ⊂ Rd be Lipschitz and bounded, k ∈ N, 1 ≤ p ≤ ∞. The Sobolevnumber of W k

p (ω) is

sob(W kp ) := k − d

p.

Remark 1. This number governs the scaling properties of seminorm|v|W k

p (ω): consider x = 1hx which transforms ω into ω and note

|v|W kp (bω) = hsob(W k

p )|v|W kp (ω) ∀v ∈ W k

p (ω).

Remark 2. Let d = 1 and ω = (0, 1). Then W 1∞(ω) is the linear (and

usual) Sobolev scale of L∞(ω), but W 11 (ω) is in the nonlinear scale of

L∞(ω), i.e.

sob(W 11 ) = 1− 1

1= 0− 1

∞= sob(L∞).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 10: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Conforming Meshes: The Bisection Method and REFINE

• Labeling of a sequence of conforming refinements T0 ≤ T1 ≤ T2 ford = 2 (similar but much more intricate for d > 2)

0

00 0

0 0

0

0

11

1 1

11

1

1

1

1 1

2

2

2 2

2

2

2

2

2

2

2 2

3

33

3

• Shape regularity: the shape-regularity constant of any T ∈ T solelydepends on the shape-regularity constant of T0.

• Nested spaces: refinement leads to V(T ) ⊂ V(T∗) because T ≤ T∗.• Monotonicity of meshsize function hT : if hT |T := hT := |T |1/d, then

hT∗ ≤ hT for T∗ ≥ T , and reduction property with b ≥ 1 bisections

hT∗ |T ≤ 2−b/dhT |T ∀T ∈ T \ T∗.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 11: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Complexity of REFINE

I Recursive bisection of T3 (sequence of compatible bisection patches)

3

1 2

3

2

2

2 2

1

3

1 2

3

22

2

3

3

3

3

4

4 4

4

3

1 2

3

2

22

2

3

33

3

I Naive estimate is NOT valid with Λ0 independent of refinement level

#T∗ −#T ≤ Λ0 #M

I Complexity of REFINE (Binev, Dahmen, DeVore ’04 (d = 2), andStevenson’ 07 (d > 2)): If T0 has a suitable labeling, then there existsa constant Λ0 > 0 only depending on T0 and d such that for all k ≥ 1

#Tk −#T0 ≤ Λ0

k−1∑j=0

#Mj .

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 12: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Complexity of REFINE

I Recursive bisection of T3 (sequence of compatible bisection patches)

3

1 2

3

2

2

2 2

1

3

1 2

3

22

2

3

3

3

3

4

4 4

4

3

1 2

3

2

22

2

3

33

3

I Naive estimate is NOT valid with Λ0 independent of refinement level

#T∗ −#T ≤ Λ0 #M

I Complexity of REFINE (Binev, Dahmen, DeVore ’04 (d = 2), andStevenson’ 07 (d > 2)): If T0 has a suitable labeling, then there existsa constant Λ0 > 0 only depending on T0 and d such that for all k ≥ 1

#Tk −#T0 ≤ Λ0

k−1∑j=0

#Mj .

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 13: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Complexity of REFINE

I Recursive bisection of T3 (sequence of compatible bisection patches)

3

1 2

3

2

2

2 2

1

3

1 2

3

22

2

3

3

3

3

4

4 4

4

3

1 2

3

2

22

2

3

33

3

I Naive estimate is NOT valid with Λ0 independent of refinement level

#T∗ −#T ≤ Λ0 #M

I Complexity of REFINE (Binev, Dahmen, DeVore ’04 (d = 2), andStevenson’ 07 (d > 2)): If T0 has a suitable labeling, then there existsa constant Λ0 > 0 only depending on T0 and d such that for all k ≥ 1

#Tk −#T0 ≤ Λ0

k−1∑j=0

#Mj .

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 14: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Piecewise Polynomial Interpolation

Quasi-local error estimate: if 0 ≤ t ≤ s ≤ n + 1 (n ≥ 1 polynomialdegree) and 1 ≤ p, q ≤ ∞ satisfy sob(W s

p ) > sob(W tq ), then for all

T ∈ T

‖Dt(v − IT v)‖Lq(T ) . hsob(W s

p )−sob(W tq )

T ‖Dsv‖Lp(NT (T )),

where NT (T ) is a discrete neighborhood of T and IT is a quasiinterpolation operator (Clement or Scott-Zhang). If sob(W s

p ) > 0, then vis Holder continuous, IT can be replaced by the Lagrange interpolationoperator, and NT (T ) = T .

• Quasi-uniform meshes: if 1 ≤ s ≤ n + 1 and u ∈ Hs(Ω), then

‖∇(v − IT v)‖L2(Ω) 4 |v|Hs(Ω)(#T )−s−1

d .

• Optimal error decay: If s = n + 1 (linear Sobolev scale), then

‖∇(v − IT v)‖L2(Ω) 4 |v|Hn+1(Ω)(#T )−nd .

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 15: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Piecewise Polynomial Interpolation

Quasi-local error estimate: if 0 ≤ t ≤ s ≤ n + 1 (n ≥ 1 polynomialdegree) and 1 ≤ p, q ≤ ∞ satisfy sob(W s

p ) > sob(W tq ), then for all

T ∈ T

‖Dt(v − IT v)‖Lq(T ) . hsob(W s

p )−sob(W tq )

T ‖Dsv‖Lp(NT (T )),

where NT (T ) is a discrete neighborhood of T and IT is a quasiinterpolation operator (Clement or Scott-Zhang). If sob(W s

p ) > 0, then vis Holder continuous, IT can be replaced by the Lagrange interpolationoperator, and NT (T ) = T .

• Quasi-uniform meshes: if 1 ≤ s ≤ n + 1 and u ∈ Hs(Ω), then

‖∇(v − IT v)‖L2(Ω) 4 |v|Hs(Ω)(#T )−s−1

d .

• Optimal error decay: If s = n + 1 (linear Sobolev scale), then

‖∇(v − IT v)‖L2(Ω) 4 |v|Hn+1(Ω)(#T )−nd .

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 16: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Adaptive Approximation (Binev, Dahmen, DeVore, Petrushev ’02)

Question: can one achieve the same decay rate with lower regularity?

• Let n = 1, d = 2 and note that H2(Ω) ⊂ A1/2 where

A1/2 = v ∈ H10 (Ω) : inf

#T −#T0≤N|v − IT v|H1(Ω) 4 N−1/2

• Let v ∈ W 2p (Ω; T0) ∩H1

0 (Ω) with p > 1, and notice that

sob(W 2p ) = 2− 2

p> 1− 2

2= 0 = sob(H1).

• Theorem 1. Given any δ > 0, the following algorithm THRESHOLD

THRESHOLD(T , δ)while M := T ∈ T : ‖∇(v − IT v)‖L2(T ) > δ 6= ∅T := REFINE(T ,M)

end whilereturn(T )

terminates and its output satisfies

|v−IT v|H1(Ω) . δ(#T )1/2, #T −#T0 . δ−1 |Ω|1−1/p‖D2v‖Lp(Ω;T0).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 17: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Adaptive Approximation (Binev, Dahmen, DeVore, Petrushev ’02)

Question: can one achieve the same decay rate with lower regularity?

• Let n = 1, d = 2 and note that H2(Ω) ⊂ A1/2 where

A1/2 = v ∈ H10 (Ω) : inf

#T −#T0≤N|v − IT v|H1(Ω) 4 N−1/2

• Let v ∈ W 2p (Ω; T0) ∩H1

0 (Ω) with p > 1, and notice that

sob(W 2p ) = 2− 2

p> 1− 2

2= 0 = sob(H1).

• Theorem 1. Given any δ > 0, the following algorithm THRESHOLD

THRESHOLD(T , δ)while M := T ∈ T : ‖∇(v − IT v)‖L2(T ) > δ 6= ∅T := REFINE(T ,M)

end whilereturn(T )

terminates and its output satisfies

|v−IT v|H1(Ω) . δ(#T )1/2, #T −#T0 . δ−1 |Ω|1−1/p‖D2v‖Lp(Ω;T0).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 18: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Proof of Theorem 1

1. If r := sob(W 2p )− sob(H1) = 2− 2

p > 0, ET := ‖∇(v− IT v)‖L2(T )

for T ∈ T , thenET . hr

T ‖D2v‖Lp(T ),

we deduce that THRESHOLD terminates in finite steps k(δ) ≥ 1.2. Decompose M := ∪k

j=0Mj into the sets Pj of market elements T :

2−(j+1) ≤ |T | < 2−j ⇒ 2−(j+1)/2 ≤ hT < 2−j/2.

Elements of Pj are disjoint for otherwise they are contained in oneanother contradicting the definition. Hence

2−(j+1) #Pj ≤ |Ω| ⇒ #Pj ≤ |Ω| 2j+1.

3. Since δ ≤ ET . 2−(j/2)r‖D2v‖Lp(T ) for T ∈ Pj , we get

δp #Pj . 2−(j/2)rp∑

T∈Pj

‖D2v‖pLp(T ) ≤ 2−(j/2)rp ‖D2v‖p

Lp(Ω;T0),

whence#Pj . δ−p 2−(j/2)rp ‖D2v‖p

Lp(Ω;T0).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 19: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

4. The crossover takes place for j0 such that

2j0+1|Ω| = δ−p 2−j0rp2 ‖D2v‖p

Lp(Ω;T0)⇒ 2j0 ≈ δ−1 ‖D

2v‖Lp(Ω;T0)

|Ω|1/p.

5. Compute

#M =∑

j

#Pj . |Ω|∑j≤j0

2j + δ−p ‖D2v‖pLp(Ω;T0)

∑j>j0

(2−rp/2)j

.(δ−1 + δ−pδp−1

)︸ ︷︷ ︸=2δ−1

|Ω|1−1/p ‖D2v‖Lp(Ω;T0).

Apply Theorem about complexity of REFINE to arrive at

#T −#T0 . #M . δ−1 |Ω|1−1/p ‖D2v‖Lp(Ω;T0).

6. Upon termination of THRESHOLD, ET ≤ δ for all T ∈ T , whence

|v − IT v|2H1(Ω) =∑T∈T

E2T ≤ δ2 #T .

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 20: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Remarks on Adaptive Approximation

• Let v ∈ H10 (Ω) ∩W 2

p (Ω; T0), n = 1, d = 2, p > 1. For N > #T0 thereexists T ∈ T such that

|v− IT v|H1(Ω) . |Ω|1−1/p ‖D2v‖Lp(Ω;T0)N−1/2, #T −#T0 . N.

Choose δ = |Ω|1−1/p ‖D2v‖Lp(Ω)N−1 in algorithm THRESHOLD.

• W 2p (Ω; T0) ⊂ A1/2 for d = 2 and p > 1. All geometric singularities for

d = 2 (corner and interfaces) satisfy this (Nicaise’ 94).

• For arbitrary n ≥ 1, d ≥ 2, comparing Sobolev numbers yields

n + 1− d

p> sob(H1) = 1− d

2⇒ p >

2d

2n + d.

This may give p < 1 and corresponding Besov space Bn+1p,p (Ω). Proof

above works. Regularity theory for elliptic PDE is incomplete for p < 1.

• Anisotropic elements: Isotropic refinement is not always optimal ford = 3.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 21: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Remarks on Adaptive Approximation

• Let v ∈ H10 (Ω) ∩W 2

p (Ω; T0), n = 1, d = 2, p > 1. For N > #T0 thereexists T ∈ T such that

|v− IT v|H1(Ω) . |Ω|1−1/p ‖D2v‖Lp(Ω;T0)N−1/2, #T −#T0 . N.

Choose δ = |Ω|1−1/p ‖D2v‖Lp(Ω)N−1 in algorithm THRESHOLD.

• W 2p (Ω; T0) ⊂ A1/2 for d = 2 and p > 1. All geometric singularities for

d = 2 (corner and interfaces) satisfy this (Nicaise’ 94).

• For arbitrary n ≥ 1, d ≥ 2, comparing Sobolev numbers yields

n + 1− d

p> sob(H1) = 1− d

2⇒ p >

2d

2n + d.

This may give p < 1 and corresponding Besov space Bn+1p,p (Ω). Proof

above works. Regularity theory for elliptic PDE is incomplete for p < 1.

• Anisotropic elements: Isotropic refinement is not always optimal ford = 3.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 22: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Outline

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

Surveys

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 23: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Model Problem: Basic Assumptions

Consider model problem

−div(A∇u) = f in Ω, u|∂Ω = 0,

with

I Ω polygonal domain in Rd, d ≥ 2;

I T0 is a conforming mesh made of simplices with compatible labeling;

I A(x) is symmetric and positive definite for all x ∈ Ω witheigenvalues λ(x) satisfying

0 < amin ≤ λi(x) ≤ amax, x ∈ Ω;

I A is piecewise Lipschitz in T0;

I f ∈ L2(Ω) (and in Lecture 3 f ∈ H−1(Ω));I V(T ) space of continuous elements of degree ≤ n over a conforming

refinement T of T0 (by bisection).

I Exact numerical integration.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 24: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Galerkin Method

I Function space: V := H10 (Ω).

I Bilinear form: B : V× V → R

B(v, w) :=∫

Ω

A∇v · ∇w ∀v, w ∈ V.

Then solution u of model problem satisfies

u ∈ V : B(u, v) = 〈f, v〉 ∀v ∈ V.

I Finite element space: If Pn(T ) denote polynomials of degree ≤ nover T , then

V(T ) := v ∈ H10 (Ω) : v|T ∈ Pn(T ) ∀T ∈ T .

I Galerkin solution: The discrete solution U = UT satisfies

U ∈ V(T ) : B(U, V ) = 〈f, V 〉 ∀V ∈ V(T ).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 25: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Galerkin Method (Continued)

I Residual: R ∈ V ∗ = H−1(Ω) is given by

〈R, v〉 := 〈f, v〉 − B(U, v) = B(u− U, v) ∀v ∈ V.

I Galerkin Orthogonality: 〈R, V 〉 = 〈f, V 〉−B(U, V ) ∀V ∈ V(T ).

I Quasi-Best (Cea Lemma): α1 ≤ α2 coercivity and continuityconstants of B

α1‖u− U‖2V ≤ B(u− U, u− U) = B(u− U, u− V )≤ α2‖u− U‖V‖u− V ‖V ∀V ∈ V(T ).

⇒ ‖u− U‖V ≤α2

α1inf

V ∈V(T )‖u− V ‖V.

I Approximation Class As: Let 0 < s ≤ n/d (n ≥ 1) and

As :=

v ∈ V : |u|s := supN>0

(Ns inf

#T −#T0≤Ninf

V ∈V(T )‖v − V ‖V

)⇒ ∃ T ∈ T : #T −#T0 ≤ N, inf

V ∈V(T )‖v − V ‖V ≤ |v|sN−s.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 26: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

A Priori Error Analysis

If u ∈ As, 0 < s ≤ n/d, there exists T ∈ T with #T −#T0 ≤ N and

‖u− U‖V ≤α2

α1|u|sN−s.

I If n = 1, d = 2, p > 1, and u ∈ V ∩W 2p (Ω; T0), then THRESHOLD

shows that |u|1/2 4 ‖D2u‖Lp(Ω;T0) whence (optimal estimate)

∃ T ∈ T : #T −#T0 ≤ N, ‖u− U‖V 4 ‖D2u‖Lp(Ω;T0)N−1/2.

I THRESHOLD needs access to the element interpolation error ET

and so to the unknown u. It is thus not practical.

I The a posteriori error analysis provides a tool to extract this missinginformation from the residual R. This is discussed next.

I The a priori analysis is valid for a bilinear for B on a Hilbert space Vthat is continuous and satisfies a discrete inf-sup condition

|B(v, w)| ≤ α1‖v‖V‖w‖V ∀v, w ∈ V;

α2‖V ‖V ≤ supW∈V

B(V,W )‖W‖V

∀V ∈ V(T ).Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 27: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

A Priori Error Analysis

If u ∈ As, 0 < s ≤ n/d, there exists T ∈ T with #T −#T0 ≤ N and

‖u− U‖V ≤α2

α1|u|sN−s.

I If n = 1, d = 2, p > 1, and u ∈ V ∩W 2p (Ω; T0), then THRESHOLD

shows that |u|1/2 4 ‖D2u‖Lp(Ω;T0) whence (optimal estimate)

∃ T ∈ T : #T −#T0 ≤ N, ‖u− U‖V 4 ‖D2u‖Lp(Ω;T0)N−1/2.

I THRESHOLD needs access to the element interpolation error ET

and so to the unknown u. It is thus not practical.

I The a posteriori error analysis provides a tool to extract this missinginformation from the residual R. This is discussed next.

I The a priori analysis is valid for a bilinear for B on a Hilbert space Vthat is continuous and satisfies a discrete inf-sup condition

|B(v, w)| ≤ α1‖v‖V‖w‖V ∀v, w ∈ V;

α2‖V ‖V ≤ supW∈V

B(V,W )‖W‖V

∀V ∈ V(T ).Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 28: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

A Priori Error Analysis

If u ∈ As, 0 < s ≤ n/d, there exists T ∈ T with #T −#T0 ≤ N and

‖u− U‖V ≤α2

α1|u|sN−s.

I If n = 1, d = 2, p > 1, and u ∈ V ∩W 2p (Ω; T0), then THRESHOLD

shows that |u|1/2 4 ‖D2u‖Lp(Ω;T0) whence (optimal estimate)

∃ T ∈ T : #T −#T0 ≤ N, ‖u− U‖V 4 ‖D2u‖Lp(Ω;T0)N−1/2.

I THRESHOLD needs access to the element interpolation error ET

and so to the unknown u. It is thus not practical.

I The a posteriori error analysis provides a tool to extract this missinginformation from the residual R. This is discussed next.

I The a priori analysis is valid for a bilinear for B on a Hilbert space Vthat is continuous and satisfies a discrete inf-sup condition

|B(v, w)| ≤ α1‖v‖V‖w‖V ∀v, w ∈ V;

α2‖V ‖V ≤ supW∈V

B(V,W )‖W‖V

∀V ∈ V(T ).Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 29: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Outline

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

Surveys

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 30: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Error-Residual Equation (Babuska-Miller’ 87)

• Since 〈R, v〉 = 〈f, v〉−B(U, v) = B(u−U, v) for all v ∈ V, we deduce

‖u− U‖V ≤1α1‖R‖V∗ ≤

α2

α1‖u− U‖V.

• Residual representation: elementwise integration by parts yields

〈R, v〉 =∑T∈T

∫T

f + div(A∇U)︸ ︷︷ ︸=r

v +∑S∈S

∫S

[A∇U ] · ν︸ ︷︷ ︸=j

v ∀v ∈ V

where r = r(U), j = j(U) are the interior and jump residuals.

• Localization: The Courant (hat) basis φzz∈N (T ) satisfy thepartition of unity property

∑z∈N (T ) φz = 1. Therefore, for all v ∈ V,

〈R, v〉 =∑

z∈N (T )

〈R, vφz〉 =∑

z∈N (T )

( ∫ωz

rvφz +∫

γz

jvφz

).

• Galerkin orthogonality:∫

ωzrφz +

∫γz

jφz = 0 ∀z ∈ N0(T )

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 31: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Reliability: Global Upper A Posteriori Bound

• Exploit Galerkin orthogonality

〈R, v〉 =∑

z∈N (T )

( ∫ωz

r(v − αz(v))φz +∫

γz

j(v − αz(v))φz

)and take αz(v) :=

Rωz

vφzRωz

φzif z is interior and αz(v) = 0 if z ∈ ∂Ω.

• Use Poincare inequality in ωz

‖v − αz(v)‖L2(ωz) ≤ C0hz‖∇v‖L2(ωz) ∀z ∈ N (T )

and a scaled trace lemma, to deduce∣∣〈R, vφz〉∣∣ 4

(hz‖rφ1/2

z ‖L2(ωz) + h1/2z ‖jφ1/2

z ‖L2(γz)

)‖∇v‖L2(ωz).

• Sum over z ∈ N (T ) and use∑

z∈N (T ) ‖∇v‖2L2(ωz) 4 ‖∇v‖2L2(Ω) to get

‖R‖V∗ 4( ∑

z∈N (T )

h2z‖rφ1/2

z ‖2L2(ωz) + hz‖jφ1/2z ‖2L2(γz)

)1/2

.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 32: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Reliability: Global Upper A Posteriori Bound

• Exploit Galerkin orthogonality

〈R, v〉 =∑

z∈N (T )

( ∫ωz

r(v − αz(v))φz +∫

γz

j(v − αz(v))φz

)and take αz(v) :=

Rωz

vφzRωz

φzif z is interior and αz(v) = 0 if z ∈ ∂Ω.

• Use Poincare inequality in ωz

‖v − αz(v)‖L2(ωz) ≤ C0hz‖∇v‖L2(ωz) ∀z ∈ N (T )

and a scaled trace lemma, to deduce∣∣〈R, vφz〉∣∣ 4

(hz‖rφ1/2

z ‖L2(ωz) + h1/2z ‖jφ1/2

z ‖L2(γz)

)‖∇v‖L2(ωz).

• Sum over z ∈ N (T ) and use∑

z∈N (T ) ‖∇v‖2L2(ωz) 4 ‖∇v‖2L2(Ω) to get

‖R‖V∗ 4( ∑

z∈N (T )

h2z‖rφ1/2

z ‖2L2(ωz) + hz‖jφ1/2z ‖2L2(γz)

)1/2

.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 33: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Reliability: Global Upper A Posteriori Bound

• Exploit Galerkin orthogonality

〈R, v〉 =∑

z∈N (T )

( ∫ωz

r(v − αz(v))φz +∫

γz

j(v − αz(v))φz

)and take αz(v) :=

Rωz

vφzRωz

φzif z is interior and αz(v) = 0 if z ∈ ∂Ω.

• Use Poincare inequality in ωz

‖v − αz(v)‖L2(ωz) ≤ C0hz‖∇v‖L2(ωz) ∀z ∈ N (T )

and a scaled trace lemma, to deduce∣∣〈R, vφz〉∣∣ 4

(hz‖rφ1/2

z ‖L2(ωz) + h1/2z ‖jφ1/2

z ‖L2(γz)

)‖∇v‖L2(ωz).

• Sum over z ∈ N (T ) and use∑

z∈N (T ) ‖∇v‖2L2(ωz) 4 ‖∇v‖2L2(Ω) to get

‖R‖V∗ 4( ∑

z∈N (T )

h2z‖rφ1/2

z ‖2L2(ωz) + hz‖jφ1/2z ‖2L2(γz)

)1/2

.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 34: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Upper A Posteriori Bound (Continued)

• Use that hz 4 h(x) for all x ∈ ωz, and∑

z∈N (T ) φz = 1, to derive

‖R‖V ∗ 4(‖hr‖2L2(Ω) + ‖h1/2j‖2L2(Γ)

)1/2

in terms of weighted (and computable) L2 norms of the residuals.

• Upper bound: Introduce element indicators ET (U, T )

ET (U, T )2 = h2T ‖r‖2L2(T ) + hT ‖j‖2L2(∂T )

and error estimator ET (U)2 =∑

T∈T ET (U, T )2. Then

‖u− U‖V ≤1α1‖R‖V ∗ 4

1α1ET (U).

• Jump residual dominates interior residual: Let rz = 〈r,φz〉〈φz,1〉 ∈ R and

note∫

ωzr(v − αz(v))φz =

∫ωz

(r − rz)(v − αz(v))φz. Then

⇒ ‖R‖V∗ 4( ∑

z∈N (T )

h2z‖(r − rz)φ1/2

z ‖2L2(ωz) + hz‖jφ1/2z ‖2L2(γz)

)1/2

.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 35: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Upper A Posteriori Bound (Continued)

• Use that hz 4 h(x) for all x ∈ ωz, and∑

z∈N (T ) φz = 1, to derive

‖R‖V ∗ 4(‖hr‖2L2(Ω) + ‖h1/2j‖2L2(Γ)

)1/2

in terms of weighted (and computable) L2 norms of the residuals.

• Upper bound: Introduce element indicators ET (U, T )

ET (U, T )2 = h2T ‖r‖2L2(T ) + hT ‖j‖2L2(∂T )

and error estimator ET (U)2 =∑

T∈T ET (U, T )2. Then

‖u− U‖V ≤1α1‖R‖V ∗ 4

1α1ET (U).

• Jump residual dominates interior residual: Let rz = 〈r,φz〉〈φz,1〉 ∈ R and

note∫

ωzr(v − αz(v))φz =

∫ωz

(r − rz)(v − αz(v))φz. Then

⇒ ‖R‖V∗ 4( ∑

z∈N (T )

h2z‖(r − rz)φ1/2

z ‖2L2(ωz) + hz‖jφ1/2z ‖2L2(γz)

)1/2

.

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 36: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Efficiency: Local Lower A Posteriori Bound (n = 1) (Verfurth’89)

• Local dual norms: for v ∈ H10 (ω) we have

〈R, v〉 = B(u−U, v) ≤ α2‖u−U‖V‖v‖V ⇒ ‖R‖H−1(ω) ≤ α2‖u−U‖V

• Interior residual: take ω = T ∈ T and note 〈R, v〉 =∫

Trv. Then

‖R‖H−1(T ) = ‖r‖H−1(T )

• Overestimation: Poincare inequality yields ‖r‖H−1(T ) 4 hT ‖r‖L2(T )∫T

rv ≤ ‖r‖L2(T )‖v‖L2(T ) 4 hT ‖r‖L2(T )‖∇v‖L2(T )

• Pw constant r: Let η ∈ H10 (T ), |T | 4

∫T

η, ‖∇η‖L∞(T ) 4 h−1T . Then

‖r‖2L2(T ) 4∫

T

r(rη) ≤ ‖r‖H−1(T )‖r‖L2(T )‖∇η‖L∞(T )

4 h−1T ‖r‖H−1(T )‖r‖L2(T ) ⇒ hT ‖r‖L2(T ) 4 ‖r‖H−1(T )

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 37: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Efficiency: Local Lower A Posteriori Bound (n = 1) (Verfurth’89)

• Local dual norms: for v ∈ H10 (ω) we have

〈R, v〉 = B(u−U, v) ≤ α2‖u−U‖V‖v‖V ⇒ ‖R‖H−1(ω) ≤ α2‖u−U‖V

• Interior residual: take ω = T ∈ T and note 〈R, v〉 =∫

Trv. Then

‖R‖H−1(T ) = ‖r‖H−1(T )

• Overestimation: Poincare inequality yields ‖r‖H−1(T ) 4 hT ‖r‖L2(T )∫T

rv ≤ ‖r‖L2(T )‖v‖L2(T ) 4 hT ‖r‖L2(T )‖∇v‖L2(T )

• Pw constant r: Let η ∈ H10 (T ), |T | 4

∫T

η, ‖∇η‖L∞(T ) 4 h−1T . Then

‖r‖2L2(T ) 4∫

T

r(rη) ≤ ‖r‖H−1(T )‖r‖L2(T )‖∇η‖L∞(T )

4 h−1T ‖r‖H−1(T )‖r‖L2(T ) ⇒ hT ‖r‖L2(T ) 4 ‖r‖H−1(T )

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 38: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Efficiency: Local Lower A Posteriori Bound (n = 1) (Verfurth’89)

• Local dual norms: for v ∈ H10 (ω) we have

〈R, v〉 = B(u−U, v) ≤ α2‖u−U‖V‖v‖V ⇒ ‖R‖H−1(ω) ≤ α2‖u−U‖V

• Interior residual: take ω = T ∈ T and note 〈R, v〉 =∫

Trv. Then

‖R‖H−1(T ) = ‖r‖H−1(T )

• Overestimation: Poincare inequality yields ‖r‖H−1(T ) 4 hT ‖r‖L2(T )∫T

rv ≤ ‖r‖L2(T )‖v‖L2(T ) 4 hT ‖r‖L2(T )‖∇v‖L2(T )

• Pw constant r: Let η ∈ H10 (T ), |T | 4

∫T

η, ‖∇η‖L∞(T ) 4 h−1T . Then

‖r‖2L2(T ) 4∫

T

r(rη) ≤ ‖r‖H−1(T )‖r‖L2(T )‖∇η‖L∞(T )

4 h−1T ‖r‖H−1(T )‖r‖L2(T ) ⇒ hT ‖r‖L2(T ) 4 ‖r‖H−1(T )

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 39: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Lower A Posteriori Bound (Continued)

• Oscillation of r: hT ‖r − rT ‖L2(T ) with meanvalue rT . Then

hT ‖r‖L2(T ) 4 ‖R‖H−1(T ) + hT ‖r − rT ‖L2(T )

• Data oscillation: if A is pw constant, then r = f and

hT ‖r − rT ‖L2(T ) = hT ‖f − fT ‖L2(T ) = oscT (f, T )

• Oscillation of j: likewise hS‖j − jS‖L2(S) with meanvalue jS and

h1/2S ‖j‖L2(S) 4 ‖R‖H−1(ωS) + h

1/2S ‖j − jS‖L2(S) + hS‖r‖L2(ωS)

where ωS = T1 ∪ T2 with T1 ∩ T2 = S and T1, T2 ∈ T .

• Local lower bound: let ωT = ∪S∈∂T ωS and the local oscillation beoscT (U, ωT ) := ‖h(r − r)‖L2(ωT ) + ‖h1/2(j − j)‖L2(∂T ). Then

ET (U, T ) 4 α2‖∇(u− U)‖L2(ωT ) + oscT (U, ωT ).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 40: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Lower A Posteriori Bound (Continued)

• Oscillation of r: hT ‖r − rT ‖L2(T ) with meanvalue rT . Then

hT ‖r‖L2(T ) 4 ‖R‖H−1(T ) + hT ‖r − rT ‖L2(T )

• Data oscillation: if A is pw constant, then r = f and

hT ‖r − rT ‖L2(T ) = hT ‖f − fT ‖L2(T ) = oscT (f, T )

• Oscillation of j: likewise hS‖j − jS‖L2(S) with meanvalue jS and

h1/2S ‖j‖L2(S) 4 ‖R‖H−1(ωS) + h

1/2S ‖j − jS‖L2(S) + hS‖r‖L2(ωS)

where ωS = T1 ∪ T2 with T1 ∩ T2 = S and T1, T2 ∈ T .

• Local lower bound: let ωT = ∪S∈∂T ωS and the local oscillation beoscT (U, ωT ) := ‖h(r − r)‖L2(ωT ) + ‖h1/2(j − j)‖L2(∂T ). Then

ET (U, T ) 4 α2‖∇(u− U)‖L2(ωT ) + oscT (U, ωT ).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 41: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Lower A Posteriori Bound (Continued)

• Oscillation of r: hT ‖r − rT ‖L2(T ) with meanvalue rT . Then

hT ‖r‖L2(T ) 4 ‖R‖H−1(T ) + hT ‖r − rT ‖L2(T )

• Data oscillation: if A is pw constant, then r = f and

hT ‖r − rT ‖L2(T ) = hT ‖f − fT ‖L2(T ) = oscT (f, T )

• Oscillation of j: likewise hS‖j − jS‖L2(S) with meanvalue jS and

h1/2S ‖j‖L2(S) 4 ‖R‖H−1(ωS) + h

1/2S ‖j − jS‖L2(S) + hS‖r‖L2(ωS)

where ωS = T1 ∪ T2 with T1 ∩ T2 = S and T1, T2 ∈ T .

• Local lower bound: let ωT = ∪S∈∂T ωS and the local oscillation beoscT (U, ωT ) := ‖h(r − r)‖L2(ωT ) + ‖h1/2(j − j)‖L2(∂T ). Then

ET (U, T ) 4 α2‖∇(u− U)‖L2(ωT ) + oscT (U, ωT ).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 42: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Lower A Posteriori Bound (Continued)

• Higher order: we expect oscT (U, ωT ) ‖∇(u−U)‖L2(ωT ) as hT → 0.

• Marking: if ET (U, T ) 4 ‖∇(u− U)‖L2(ωT ) and ET (U, T ) is largerelative to ET (U), then T contains a large portion of the error. Toimprove the solution U effectively, such T must be split giving rise toa procedure that tries to equidistribute errors.

• Global lower bound: we have ET (U) 4 α2‖u−U‖V + oscT (U) where

oscT (U) = ‖h(r − r)‖L2(Ω) + ‖h1/2(j − j)‖L2(Γ).

• Discrete local lower bound (Dorfler’96, Morin, N, Siebert’00):

ET (U, T ) 4 α2‖∇(U∗ − U)‖L2(ωT ) + oscT (U, ωT ).

provided the interior of T and each of its sides contain a node ofT∗ ≥ T (interior node property).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 43: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Lower A Posteriori Bound (Continued)

• Higher order: we expect oscT (U, ωT ) ‖∇(u−U)‖L2(ωT ) as hT → 0.

• Marking: if ET (U, T ) 4 ‖∇(u− U)‖L2(ωT ) and ET (U, T ) is largerelative to ET (U), then T contains a large portion of the error. Toimprove the solution U effectively, such T must be split giving rise toa procedure that tries to equidistribute errors.

• Global lower bound: we have ET (U) 4 α2‖u−U‖V + oscT (U) where

oscT (U) = ‖h(r − r)‖L2(Ω) + ‖h1/2(j − j)‖L2(Γ).

• Discrete local lower bound (Dorfler’96, Morin, N, Siebert’00):

ET (U, T ) 4 α2‖∇(U∗ − U)‖L2(ωT ) + oscT (U, ωT ).

provided the interior of T and each of its sides contain a node ofT∗ ≥ T (interior node property).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 44: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Lower A Posteriori Bound (Continued)

• Higher order: we expect oscT (U, ωT ) ‖∇(u−U)‖L2(ωT ) as hT → 0.

• Marking: if ET (U, T ) 4 ‖∇(u− U)‖L2(ωT ) and ET (U, T ) is largerelative to ET (U), then T contains a large portion of the error. Toimprove the solution U effectively, such T must be split giving rise toa procedure that tries to equidistribute errors.

• Global lower bound: we have ET (U) 4 α2‖u−U‖V + oscT (U) where

oscT (U) = ‖h(r − r)‖L2(Ω) + ‖h1/2(j − j)‖L2(Γ).

• Discrete local lower bound (Dorfler’96, Morin, N, Siebert’00):

ET (U, T ) 4 α2‖∇(U∗ − U)‖L2(ωT ) + oscT (U, ωT ).

provided the interior of T and each of its sides contain a node ofT∗ ≥ T (interior node property).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 45: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Outline

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

Surveys

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto

Page 46: Adaptive Finite Element Methods Lecture 1: A Posteriori Error

Outline Polynomial Interpolation Model Problem A Posteriori Error Analysis Surveys

Surveys

• R.H. Nochetto Adaptive FEM: Theory and Applications toGeometric PDE, Lipschitz Lectures, Haussdorff Center forMathematics, University of Bonn (Germany), February 2009 (seewww.hausdorff-center.uni-bonn.de/event/2009/lipschitz-nochetto/).

• R.H. Nochetto, K.G. Siebert and A. Veeser, Theory ofadaptive finite element methods: an introduction, in Multiscale,Nonlinear and Adaptive Approximation, R. DeVore and A. Kunoth eds,Springer (2009), 409-542.

• R.H. Nochetto and A. Veeser, Primer of adaptive finite elementmethods, in Multiscale and Adaptivity: Modeling, Numerics andApplications, CIME Lectures, eds R. Naldi and G. Russo, Springer (toappear).

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Ricardo H. Nochetto