advanced foundation engineering (57011)

Upload: anonymous-wbyqiej

Post on 21-Feb-2018

245 views

Category:

Documents


8 download

TRANSCRIPT

  • 7/24/2019 Advanced Foundation Engineering (57011)

    1/535

    AdvancedFoundationEngineering

    IVYear

    B.Tech,

    ISemester

    Dr.PVSNPavan Kumar

    Associate Professor

    GuruNanakInstitutionsTechnicalCampus

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    2/535

    Syllabus Unit 1BearingCapacitytheories,eccentricand

    ,

    Unit 2

    Settlement

    of

    foundations

    Unit 4

    Pile

    foundations

    Settlement

    of

    piles

    Unit 5Lateralearthpressuretheories

    Retainingwalls

    Unit 6

    sheet

    pile

    walls

    Unit 7Caissons&wellfoundations

    Unit

    8

    Expansive

    soil

    and

    treatment

    methodsDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    3/535

    TEXTBOOKS

    th. , . . ,PWS Publishing, Singapore

    2. Bowles, J.E., (1988) Foundation Analysis and Design 4th edition,- .

    3. Geotechnical Engineering : Principles and practices of soil mechanics and

    foundation engineering by VNS Murthy, Taylor & Francis Group

    REFERENCE BOOKS

    1. Geotechnical En ineerin b C. Venkataramah NewA e InternationalPvt. Ltd, Publishers (2002).

    2. Analysis and Design of structures Swami Saran, Oxford & IBH. .

    3. Basic and Applied Soil Mechanics by Gopal Ranjan & ASR Rao, NewAge International Pvt. Ltd, Publishers (2002).

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    4/535

    Unit I

    Bearingcapacitytheories

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    5/535

    Contents

    Introduction

    Terminology,Terzaghi andMeyerhofbearingcapacity

    theories Hansenbearingcapacitytheory

    Vesic bearingcapacitytheory

    Foundationsonlayeredsoil

    Tutorialsand

    assignments

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    6/535

    IntroductionFoundation

    e es gne s ruc uresres ngon eear

    mustbecarriedbysomekindinterfacingelementca e oun a on.

    Foundation

    transmits

    the

    load

    into

    the

    supporting

    soilorrock.

    Structurewillconsistofthreeparts Super

    structure,sub

    structure

    and

    foundation.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    7/535

    Introduction

    Foundationsare

    classified

    as

    shallow

    foundations

    anddeepfoundations.

    Shallow

    foundation

    have

    D/B

    1.Footings,combinedfootings,strapfootingsormat/raftfoundations.

    Dee

    foundationhave

    L B

    4.Exam les ilesdrilledpiersordrilledcaissons.

    spreadingtheloadslaterallyandsupportcolumn.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    8/535

    Introduction

    Matisaspecialfootingusedtosupportseveral

    randoml s acedcolumnsortosu ortseveral

    rowsof

    parallel

    columns.

    ratherthanhorizontally.

    tostructureislessthanbearingcapacityofsoiland

    .

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    9/535

    Introduction

    Fewbuildingscollapsefromexcessivesettlements,

    member.Unsightly

    wall

    and

    floor

    cracks

    uneven

    , .

    Variability

    of

    soil

    in

    combination

    with

    unanticipated

    oa sorsu sequen so movemen s ear qua es

    canresultinsettlementproblems.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    10/535

    Bearingcapacity

    Soilmustbecapableofcarryingtheloadsfromthe

    structure lacedonitwithoutshearfailureandwith

    resultingsettlements

    within

    tolerable

    limits.

    , u

    pressurethefootingissubjectedforshearfailureof

    Footingpunchesintothegroundwitha

    .

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    11/535

    thefooting

    is

    subjected

    to

    avoid

    abase

    shear

    .

    qa=

    FSult

    q

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    12/535

    Bearingcapacitytheory(=0)

    S=c+tan

    Unitwidthstrip

    footing,Element1

    Rotationoffootin about ointo

    Element2

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    13/535

    Bearingcapacitytheory

    Element1Element2

    1and3=Majorandminorprincipalstress

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    14/535

    Bearingcapacityequation

    Element2

    32

    12=q +2c(for=0)Element1

    = =q +2c11 =q +2c+2c=q+4c(for=0)

    ult

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    15/535

    Bearingcapacity(csoil)Element2

    Soilwedge

    agb moves

    down

    Lateralpressures

    develo alon lineag andtranslates

    blockagf

    horizontallyagainst

    Element1

    .

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    16/535

    Bearingcapacity(csoil)

    DeterminethepassivepressurePPandconsiderthe

    bearingcapacity,

    qultas

    follows

    ult c q

    Some

    limitations

    of

    the

    above

    procedure

    isZoneagf isneglected.

    Footinginterfaceisroughandcontributestoroughness

    e ect

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    17/535

    Bearingcapacity(csoil)Shapeofblockagfe poorlydefinesthezoneresistingthe

    wedgemovementintothesoil.Alogarithmicspiralbetter

    defines

    the

    slip

    surface

    from

    g

    to

    f

    and

    partly

    along

    f

    to

    e.Solutionisforunitwidthstripacrossaverylongfooting,so

    ithastobeadjustedforround,square,orfinitelength

    footings

    (it

    needs

    shape

    factors).Shearresistancefromplaneae tothegroundsurfacehas

    beenneglected,itrequiressomekindofadjustment(i.e.

    Ifloadisinclinedfromvertical,inclinationfactorsare

    .

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    18/535

    ,

    Meyerhofbearing

    capacity

    theory,

    1963

    Hansen earingcapacityt eory,1970

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    19/535

    Terzaghi bearingcapacityequation(1943)

    Acomprehensivetheoryfortheevaluationofthe

    ultimatebearin ca acit ofrou hshallowfoundations

    (DfB). A licableforacontinuous orstri foundation i.e.

    onewhosewidthtolengthratioapproacheszero).

    mayalsobeassumedtobereplacedbyanequivalent

    surchar e, = D where isaunitwei htofsoil .

    Generalshearfailureisassumed.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    20/535

    Terzaghi bearingcapacitytheory

    Radial shear zones ADF and CDE, with the curves DE and DF being arcs of a

    lo arithmic s iral.

    Two triangular Rankine passive zones AFH and CEG

    Shear resistance of soil above the base of footing is neglected i.e. along the failure

    Dr.PVSNPavanKumar

    surfaces GI and HJ was neglected.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    21/535

    Terzaghi bearingcapacityequation

    Consideringverticalequilibriumofforcesonfooting

    Sc=1+0.3

    L

    B

    Rectangularfooting

    Sq=1

    S=10.2L

    B

    , ,

    =angleofinternalfriction,q=effectiveoverburdenpressureatbase

    Dr.PVSNPavanKumar

    o oo ng

    kp

    =Coefficientofpassivepressure

  • 7/24/2019 Advanced Foundation Engineering (57011)

    22/535

    Terzaghi bearingcapacitytheory

    Terzaghi developedbearingcapacityequations

    considerin a eneralshearfailureinadensesoil

    andalocal

    shear

    failure

    for

    aloose

    soil.

    cohesionandas"

    .

    For local shear failure modified bearing capacity

    ac ors are e erm ne rom = an

    . an

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    23/535

    Tutorial1

    equation for a square footing and soil properties shownin Figure below. B = 3m Use factor of safety = 3.0ca cu a e qa

    =20

    c . , q . , .

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    24/535

    Meyerhofbearingcapacitytheory

    Terzaghi bearingcapacitytheoryhasfollowingshortcomings

    Shearresistance

    along

    failure

    surface

    in

    soil

    above

    the

    basefoundationisneglected(alongGIandHJ).

    Loadonthefoundationmaybeinclined.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    25/535

    Meyerhofbearingcapacitytheory

    bearingcapacity

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    26/535

    Meyerhofbearingcapacityequation

    qult=cNcScdcic+qNqSqdqiq+0.5BNS d i c, q,

    Sc,Sq,S

    Shape

    factors

    c, q, ept actors

    ic,iq,i

    inclination

    factors

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    27/535

    MeyerhofbearingcapacityequationAny

    Anycot1= qc NN

    tan2 LB

    KS pc 2.01+= D

    Kd pc 2.01+=

    >10 >102q

    =

    ( ) 4.1tan1= qNN B

    KSS pq 1.01+== D

    Kdd pq 1.01+==

    =0 =0

    1== SSq1== ddq

    Any

    FordepthD=BMeyerhof

    qultissameasTerzaghi

    theory.Differenceismore

    2

    901

    ==

    qc ii

    >10 pronouncedat

    larger

    D/B

    ratios.

    Inclinationfactorsreduce

    1

    =

    i

    Dr.PVSNPavanKumar

    =0 thebearingcapacitywhen

    theload

    is

    inclined

    from

    vertical.

    =

  • 7/24/2019 Advanced Foundation Engineering (57011)

    28/535

    Tutorial

    A foundation column has to carr a ross allowable total mass of15,290 kg. The depth of foundation is 0.7m. The load is inclined at

    angle 20 to the vertical as shown in Fig.1 below. Determine thew t o t e oun at on, . se actor o sa ety o . se

    Meyerhofs method. For = 30, Nc = 30.14, Nq = 18.4, N = 22.4Dec 2012

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    29/535

    Tutorialqult=cNcScdcic+qNqSqdqiq+0.5BNS d i C=0;=30;Nc=30.14,N =18.4,N =22.4

    q=18*0.7=12.6

    kN/m

    2

    = = = c q

    kp =3

    c . . q . .

    ic=iq=(1(20/90))2=0.60i=(1(20/30))

    2 =0.11

    qult =15290 BB=0.75m

    Dr.PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    30/535

    Tutorial

    Afooting

    of

    size

    2m

    x4m

    is

    placed

    at

    adepth

    of

    1.5m

    belowthegroundsurface.Estimatethenetsafe

    loadthatcanbesupportedbythefooting.Take

    factorofsafety=2.5,c=22kN/m2.=30 Nc=30.1,Nq=18.4,N=16.7.UseMeyerhof

    recommendation

    (June/July

    2014)

    Dr.PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    31/535

    Hansenbearingcapacitytheory(1970)

    Hansen theory extends the bearing capacity equation for a footing

    Dr.PVSN

    Pavan

    Kumar

    tilted from horizontal and possibility of slope of ground supporting the

    footing.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    32/535

    Hansenbearingcapacitytheory(1970)

    qult=cNcScdcicgcbc+qNqSqdqiqgqbq+0.5BNS d i gb

    B.C.Factors ShapeFactors

    BNq=qc

    tan2

    45tan eNq

    +=

    LNcc

    tan1

    B

    Sq +=

    tan15.1 = qNN 6.04.01 =L

    BS

    IncaseofeccentricloadingBandLarereplacedbyBandL,the

    effective dimensions of footin B=B2e L=L2e

    Dr.PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    33/535

    Hansenbearingcapacitytheory(1970)

    DepthFactors InclinationFactors

    c .. +=

    1/ =B

    DforBDK 1

    =q

    q

    qc

    N

    ii

    1)/(tan 1 >= B

    forBDK

    Kin

    radians

    cot

    5.01

    +

    =a

    qAcV

    Hi

    kdq2

    )sin1(tan21 +=5

    7.01

    = H

    i

    Hishorizontalloadonfooting,Vverticalloadonfooting,A=BL(effectivearea),

    . co+ a

    c

    Dr.PVSN

    Pavan

    Kumar

    a . .

  • 7/24/2019 Advanced Foundation Engineering (57011)

    34/535

    Hansenbearingcapacitytheory(1970)

    Groundfactors baseonslo e

    Basefactors(tiltedbase)

    Dr.PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    35/535

    Hansenbearingcapacitytheory(1970)

    For=0

    qult=5.14su(1+sc+dcicbcgc)+q

    Kisdefinedabove

    Dr.PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    36/535

    Vesic bearingcapacitytheory(1973)

    Vesic conformed the basic nature of failure surface

    similar to Terza hi.

    Inclined surface AC and BC make an angle 45+ with

    horizontal instead of . 2

    Dr.PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    37/535

    Vesic bearingcapacitytheory(1973)

    Sameas

    Hansen

    theory

    except

    N

    qult=cNcScdcicgcbc+qNqSqdqiqgqbq+0.5BNS d i gb

    B.C.Factors ShapeFactors DepthFactors

    =

    cot1= qc NN LB

    NS

    c

    q

    c +=1c ..

    1/ =

    B

    DforBDK

    tan2

    245tan eNq

    +=

    tan1L

    Sq += 1)/(tan 1 >=

    BforBDK

    Kinradians

    tan12 += qNN 6.04.01 = LS kdq2

    )sin1(tan21 +=

    allford 0.1=

    Dr.PVSN

    Pavan

    Kumar

    b h ( )

  • 7/24/2019 Advanced Foundation Engineering (57011)

    38/535

    Vesic bearingcapacitytheory(1973)

    InclinationFactors Ground factors

    isinradians

    Basefactors tilted

    base

    Dr.PVSN

    Pavan

    Kumar

    V i b i i h (1973)

  • 7/24/2019 Advanced Foundation Engineering (57011)

    39/535

    Vesic bearingcapacitytheory(1973)

    u=0

    Dr.PVSN

    Pavan

    Kumar

    T i l

  • 7/24/2019 Advanced Foundation Engineering (57011)

    40/535

    Tutorial

    Compare the ultimate bearing capacity of a strip footing 1.5m

    wide with its base at a depth of 1m resting on a dry sand

    stratum with c = 0, = 3 8 and d = 17 kN/m3. UseMeyerhof, Hansen and Vesic theory (June 2010)

    Dr.PVSN

    Pavan

    Kumar

    I li d l d d f ti

  • 7/24/2019 Advanced Foundation Engineering (57011)

    41/535

    Inclinedloadedfooting

    Anal sisofhorizontalload Eccentricload

    Dr.PVSN

    Pavan

    Kumar

    Bearing capacity of footings subjected to

  • 7/24/2019 Advanced Foundation Engineering (57011)

    42/535

    Bearingcapacityoffootingssubjectedto

    Foundation subjected to lateral loads and momentsresult in eccentric loadin .

    If point of application of resultant of all loads is awayfrom centriod results in eccentric loading.

    Eccentricity, e is distance between the point of

    application of resultant load and centre of footing. Thiss ou e < .

    Foundationsubjectedtoaneccentricverticalloadtilts

    pressureincreasesonthesideoftiltanddecreaseson

    Dr.PVSN

    Pavan

    Kumar

    Bearing capacity of footings subjected to eccentric

  • 7/24/2019 Advanced Foundation Engineering (57011)

    43/535

    Bearingcapacityoffootingssubjectedtoeccentric

    loadin

    Eccentricallyloaded

    footing

    Dr.PVSN

    Pavan

    Kumar

    Bearing capacity of footings subjected to eccentric

  • 7/24/2019 Advanced Foundation Engineering (57011)

    44/535

    Bearingcapacityoffootingssubjectedtoeccentric

    loadin

    Eccentricityabout

    yaxisEccentricityabout

    xandyaxis

    Dr.PVSN

    Pavan

    Kumar

    Bearing capacity of footings subjected to eccentric

  • 7/24/2019 Advanced Foundation Engineering (57011)

    45/535

    Bearingcapacityoffootingssubjectedtoeccentric

    loadin

    Meyerhofindicatetheeffectivefootingdimensions

    L'=L2exand

    B'

    =B

    2ey

    Effectiveareaoffooting,A=L'B

    Ultimateload

    bearing

    capacity

    of

    afooting

    subjectedtoeccentricloads=Q'ult=quA

    =ultimatebearin ca acit ofthefootin of

    dimensionL

    xB

    Dr.PVSN

    Pavan

    Kumar

    M i d i i b

  • 7/24/2019 Advanced Foundation Engineering (57011)

    46/535

    Maximumandminimumbasepressures

    Maximumpressuredevelops

    atCandminimumatDgiven

    asfollows

    Dr.PVSN

    Pavan

    Kumar

    Eccentric loading

  • 7/24/2019 Advanced Foundation Engineering (57011)

    47/535

    Eccentricloading

    ncreaseo

    eccen r c y

    o

    oa

    ncreases

    e

    maximumpressureatoneedgeoffootingand

    ecreases epressurea o eren ens on .

    Soilis

    poor

    in

    carrying

    tensile

    stress

    and

    the

    eccentricityislimitedtoanareaknownasKern.

    ex1

    11

    5.014.4

    d

    BN s += 2

    1.114.4

    d

    BN s +=

    21

    212

    NN

    NNNc +

    =Circularfooting33.005.5

    BN +=

    66.005.5

    BN +=

    Dr.PVSN

    Pavan

    Kumar

    1d 1d

    Foundation on layered soil

  • 7/24/2019 Advanced Foundation Engineering (57011)

    53/535

    Foundationonlayeredsoil

    ( )dHdModi ied 2111

    +=

    H

    ( )cdHcdcModified 2111

    +=

    Ultimatebearingcapacity,qultisdeterminedfrommodifiedc,

    Dr.PVSN

    Pavan Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    54/535

    UNITIISettlementoffoundations

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    55/535

    Elasticsettlementoffootingsinsandsandclays

    FootingsonsoilsofFinitethickness

    Schmertamann's method

    Janbu method

    Dr.PVSNPavanKumar

    Allowable bearing capacity

  • 7/24/2019 Advanced Foundation Engineering (57011)

    56/535

    Allowablebearingcapacity

    Inmanycases,theallowablesettlementofa

    bearingcapacity.

    Settlementsarelargewhenthewidthoffootingis

    large

    Dr.PVSNPavanKumar

    Causes of settlement

  • 7/24/2019 Advanced Foundation Engineering (57011)

    57/535

    Causesofsettlement

    Duetoweightofrecentlyplacedfill Fa o groun water eve orpumping

    Under

    ground

    mining/tunneling Formationofsinkholes

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    58/535

    duetotheapplicationofloadisknownas.

    Dr.PVSNPavanKumar

    Introduction

  • 7/24/2019 Advanced Foundation Engineering (57011)

    59/535

    Introduction

    Foundationsettlementsmustbeestimatedwithgreat

    careforbuildin s brid es towers ower lants and

    similarhighcoststructures.

    Forstructuressuchasfills earthdams braced

    sheeting,andretainingwallsagreatermarginoferror

    inthesettlements. WhatistheconsequenceofUnderandoverprediction

    ofsettlements?

    Underprediction Unsafedesignandfailureofstructure.

    caissonfoundationorimprovementofsoil.Dr.PVSNPavanKumar

    I i

  • 7/24/2019 Advanced Foundation Engineering (57011)

    60/535

    In r i n

    D

    Dqult

    Additional stress due to the footing produces a time

    , , ,

    and elastic distortions in a limited influence zone beneath theloaded area.

    The statistical accumulation of movements in the direction of

    interest is the settlement. Dr.PVSNPavanKumar

    Introduction

  • 7/24/2019 Advanced Foundation Engineering (57011)

    61/535

    Introduction

    Particleslidingandrollingproduceadecreaseinthe

    Onlyasmallfractionofsettlementiselasticand

    ofsample.

    nsp eo a oveso s rea e asae as cma er a

    withparametersEs,G', , and ksto estimate

    se emen s.

    Dr.PVSNPavanKumar

    Classification of settlements

  • 7/24/2019 Advanced Foundation Engineering (57011)

    62/535

    Classificationofsettlements

    Immediate, or those that take place as the load isli r i hin im ri f 7

    Applicable for all fine-grained soils including silts andclays with a degree of saturation,s 90 % and for allcoarse-grained soils with a large coefficient of

    permeability above 10-3m/s.

    onso a on se emen s are ose a are me-dependent and take months to years to develop.

    consolidation settlement for over 700 years. The lean iscaused b the consolidation settlement bein reater onone side.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    63/535

    important.

    (S=100%)andnegligibleforS=0

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    64/535

    LeaningtowerofPisa

  • 7/24/2019 Advanced Foundation Engineering (57011)

    65/535

    g

    Towercompletedbetween1360to1370.Angleof

    tiltatthattimeis3fromrestoftower.

    Ittook

    200

    years

    to

    complete

    project.

    ,

    about2.5metersintotheground.

    yen o e cen ury e o a wasa ou

    5.5degrees.

    Towerisclearly

    on

    the

    brink

    of

    collapse.

    Pressureonsoil62to930kPa.

    Aminorearthquakecouldcauseittotopple.Dr.PVSNPavanKumar

    Classificationofsettlement

  • 7/24/2019 Advanced Foundation Engineering (57011)

    66/535

    Secondary

    Compression:

    e aye progress ve s ppage o gra n as e par c es

    adjust themselves to a medium dense condition.Settlement due to secondary compression

    tcp

    ste

    og1 0+

    = e0initialvoidratio

    Hthicknessoflayer

    tisanytimetptimeforcompletionofprimary

    conso at on

    Dr.PVSNPavanKumar

    Depth of influence, H is taken as

    4B to 5B or hard layer with bottom

  • 7/24/2019 Advanced Foundation Engineering (57011)

    67/535

    4B to 5B or hard layer with bottom

    qulth1

    layer having E ten times higherthan top layer

    E1,1,1,q 1

    .

    Theory of elasticity assumes thatsoil is homo enous and isotro ic

    E , ,q

    h2 H

    =

    n

    iihsettlementTotal H

    ,

    h3

    =1

    = =q

    3,3,3, q3

    sE

    foundationonlayeredsoilDr.

    PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    68/535

    (Es9

    G', , and ks)

    Duetoaboveproblemsgreatertendencytouse

    ns tutestssuc asSPT,DCPT,SCPT,P ate oa

    testetc.

    Thesetestsgivehorizontalvaluesinsteadofverticalvaluesactuallyneeded(Anisotropy)

    Dr.PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    69/535

    UnconfinedCompressiontest Triaxial Compressiontest

    Dr.PVSN

    Pavan

    Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    70/535

    s

    Triaxial test Insitutestssuc asSPT,CPT,pressuremeter

    test,flatdilatometer.

    Theabovetestsgivemodulusofelasticityin

    horizontaldirectionbutthemodulusofelasticity

    v u .

    Dr.PVSN

    Pavan

    Kumar

    Modulusofelasticityfromfieldtests

  • 7/24/2019 Advanced Foundation Engineering (57011)

    71/535

    y

    Dr.

    PVSN

    Pavan

    Kumar

    Stressincreaseinsoilduetofootingpressure

  • 7/24/2019 Advanced Foundation Engineering (57011)

    72/535

    2V:1HMethoderme o s

    Dr.

    PVSN

    Pavan

    Kumar

    Stressincreaseinsoilduetofootingpressure

  • 7/24/2019 Advanced Foundation Engineering (57011)

    73/535

    Dr.

    PVSN

    Pavan

    Kumar

    Stressincreaseinsoilduetofootingpressure

  • 7/24/2019 Advanced Foundation Engineering (57011)

    74/535

    Boussinesq theory(1885)givethestressatdifferent

    ointsbelowthe roundsurfacedueto

    concentratedload,lineandstriploads,rectangular

    andcircularloadedareas.

    Westergaard (1938)equationisusedestimateof

    v strataoffineandcoarsematerials,asbeneatha

    Dr.

    PVSN

    Pavan

    Kumar

    Immediatesettlement

  • 7/24/2019 Advanced Foundation Engineering (57011)

    75/535

    Settlement of the corner of a rectangular base of

    ' '

    half

    space can be computed from an equation

    and Goodier (1951)] as follows

    Dr.PVSNPavanKumar

    Immediatesettlement

  • 7/24/2019 Advanced Foundation Engineering (57011)

    76/535

    q0=intensityofcontactpressureinunitsofEs

    = east atera mens on o contr ut ng ase area

    Es, = elastic soil parameters (Avg. mod of different layers)

    1

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    77/535

    Depth

    factor,If

    ground,dependingonPoisson'sratioandL/B.Dr.PVSNPavanKumar

    Immediatesettlement

  • 7/24/2019 Advanced Foundation Engineering (57011)

    78/535

    Aboveequationisapplicableforflexiblefootings.

    decreasesby7%offlexiblefootings.

    Settlementofrigidfooting=0.93xSettlementofflexiblefooting

    Settlementofrigidfooting=0.8xSettlementofflexible

    Obtaintheweightedaveragemodulusofelasticityofsoil

    Dr.PVSNPavanKumar

    Estimatethesettlementoftheraftormat

    foundationforthefollowingdata.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    79/535

    q0=134kPa BxL=33.5x39.5m

    surfacetosandstonebedrockat 14m.Raftisat .

    Esofclaylayerfrom3to6m=42.5Mpa

    Esofclaylayerfrom6to14m=60Mpa

    E forsandstone>500Mpa

    =0.35

    Dr.PVSNPavanKumar

    Elasticsettlementoffoundations

  • 7/24/2019 Advanced Foundation Engineering (57011)

    80/535

    Netelasticsettlementforaflexiblesurface

    footingis

    e

    B=widthoffoundation

    =

    Poisson

    ratioE =Modulusofelasticityofsoil

    If=InfluencefactorDr.PVSNPavanKumar

    Elasticsettlementoffoundation

  • 7/24/2019 Advanced Foundation Engineering (57011)

    81/535

    InfluencefactorIf(Bowles,1988)

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    82/535

    SdCS =

    Cr

    =Rigidityfactortakenas0.8forhighlyrigid

    foundation

    d =de thfactor

    Se=Settlementofasurfaceflexiblefooting

    Dr.PVSNPavanKumar

    Depthfactor,df

  • 7/24/2019 Advanced Foundation Engineering (57011)

    83/535

    Correction curves for elastic

    settlement for rectangular

    footings at different depthsDr.PVSNPavanKumar

    Arectangularfootingof1.5mx1.0msizeexertsapressure

    of150kN/m2 onacohesivesoilhavingEs=3x104 kN/m2

  • 7/24/2019 Advanced Foundation Engineering (57011)

    84/535

    andm=0.5.Determinetheelasticsettlementatthecenteroffootingassumingthefootingisflexible.Takethevalueof

    , f . . , .

    Asquarefootingof1.2msizeissubjectedtoapressureof2 .

    settlementatthecornerofthefootingassumingthe

    footin

    is

    ri id.

    Take

    the

    avera e

    influence

    factor

    I

    =

    0.82

    andEs=4x104 kN/m2.

    Dr.PVSNPavanKumar

    Schmertmann method

  • 7/24/2019 Advanced Foundation Engineering (57011)

    85/535

    Schmertmann (1970) observed that variation ofstrain under the footing over sand is similar to thedistribution of vertical stress due to footing

    pressure. Pressure bulb changes more rapidly from a depth of

    about 0.4B to 0.6B and this depth is interpreted to

    footings.

    diagram to model the strain distribution with. , . , , . , ,

    respectively for square and circular footing.Dr.PVSNPavanKumar

    Schmertmann method

  • 7/24/2019 Advanced Foundation Engineering (57011)

    86/535

    ForstripfootingofL/B>10,maximumstrainwill

    thebaseiszeroandimmediatelybelowthebase

    Dr.PVSNPavanKumar

    Schmertmann method

    d l f

  • 7/24/2019 Advanced Foundation Engineering (57011)

    87/535

    SquareandcircularfootingStripfooting

    z

    q

    I

    += 1.05.0

    q=Netfoundationpressure=q0q

    0 effectiveoverburdenpressure

    atbase

    q

    p0 = effective overburdenpressure at depths B/2 and B for

    square and strip foundations

    respectively.Dr.PVSNPavanKumar

    Schmertmann method

  • 7/24/2019 Advanced Foundation Engineering (57011)

    88/535

    Settlement=Areaofthestrain

    0.1

    0.5B

    embedmentdepthandtimeshall

    beadoptedasfollows:0.6 Variation

    ofstrain

    influenceForembedment

    factor,Iz

    forsquareFortime

    2B

    circular

    footing

    tinyearsDr.PVSNPavanKumar

    Schmertmann method

  • 7/24/2019 Advanced Foundation Engineering (57011)

    89/535

    Forsquarefooting

    Es=2.5qcForstripfooting,L/B10

    Es

    =3.5qcqc=Staticconepenetrationresistance

    q=Netfoundationpressure=q0 q

    Dr.PVSNPavanKumar

    Schmertmann method

  • 7/24/2019 Advanced Foundation Engineering (57011)

    90/535

    Static cone penetration test is conducted in sub soil

    layers of approximately constant values of qc

    .

    The strain influence factor I dia ram is laced

    alongside cone penetration diagram beneath the

    foundation to the same scale.

    Settlement of each layer resulting from the net

    contact pressureq is then calculated using the values

    of Es

    and Iz

    appropriate to each layer.

    Sum of the settlements in each layer is then

    correcte or t e ept an creep actors

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    91/535

    StaticCone

    penetrationtest

    Dr.PVSNPavanKumar

    Estimate the elastic settlement by

    S h t ' th d b ki f th

  • 7/24/2019 Advanced Foundation Engineering (57011)

    92/535

    Schmertmann's method by making use of therelationship qc = 4 Ncor kg/cm

    2 where qc = static

    cone penetration value in kg/cm2. Assume

    settlement is required at the end of a period of 3years. Depth of foundation = 2m

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    93/535

    Dr.PVSNPavanKumar

    Acontinuousfootingonalayerofsandisshownin

    gure

    e owa ong

    w t

    t e

    var at on

    o

    t e

  • 7/24/2019 Advanced Foundation Engineering (57011)

    94/535

    gure e ow a ong w t t e var at on o t emodulusofelasticityofthesoil,Es.Assumingthat

    = m an assum ngacreept meo

    yearsforthecorrectionfactorC2.Calculatethee as cse emen o e oun a on,us ng e

    straininfluencefactor(Nov2012).

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    95/535

    Dr.PVSNPavanKumar

    Janbu method

    Janbu et al (1956) proposed an equation for

  • 7/24/2019 Advanced Foundation Engineering (57011)

    96/535

    Janbu et al. (1956) proposed an equation for evaluating the average settlement of flexible strip,

    rectangular, square or circular foundations on

    saturated clay soils (Poissons ratio, 0.5)

    q0footingcontactpressure

    Dr.PVSNPavanKumar

    Janbu method

  • 7/24/2019 Advanced Foundation Engineering (57011)

    97/535

    Dr.PVSNPavanKumar

    Janbu method

  • 7/24/2019 Advanced Foundation Engineering (57011)

    98/535

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    99/535

    ConsolidationtestsetupDr.PVSNPavanKumar

    Consolidationtestme

    (Min)

    a gaugerea ng

    0.5kg/cm2 1kg/cm2 2kg/cm2 4kg/cm2 8kg/cm2 16kg/cm2

  • 7/24/2019 Advanced Foundation Engineering (57011)

    100/535

    g/ g/ g/ g/ g/ g/

    Load

    in

    Unload

    in

    Loadin Unload

    in

    Loadin Unload

    in

    Loadin Unload

    in

    Loadin Unload

    in

    Loadin Unload

    in

    0

    0.5

    2

    4

    8

    16

    25

    1

    2

    8

    16

    Dr.PVSNPavanKumar

    Consolidationsettlements

  • 7/24/2019 Advanced Foundation Engineering (57011)

    101/535

    VirginCompressionornormal

    RecompressionorOverConsolidation

    VirginCompression

    ornormal

    consolidation

    Swelling

    Resultofconsolidationtest

    Dr.PVSNPavanKumar

    Consolidationsettlements

    Settlements of finegrained, saturated cohesiveil ill b ti d d t d lid ti

  • 7/24/2019 Advanced Foundation Engineering (57011)

    102/535

    Settlementsoffine grained,saturatedcohesivesoilswillbetimedependent,andconsolidation

    eory susua yuse .

    Incaseofnormallyconsolidatedclays

    wherecc=compression index from the e versuslog p plot = 0.009(LL 10),LL=Liquidlimit(%)

    eo= in situ void ratio at the middle of clay stratumH = Stratum thickness for a thick stratum divide

    into several layersDr.PVSNPavanKumar

    Consolidationsettlements

    po =effectiveoverburdenpressureatmidheightof

  • 7/24/2019 Advanced Foundation Engineering (57011)

    103/535

    p o effective overburden pressure at mid height of

    p = average increase in pressure at middle of clay

    Overconsolidated clays

    Dr.PVSNPavanKumar

    Preconsolidated clay

  • 7/24/2019 Advanced Foundation Engineering (57011)

    104/535

    Recompression

    Vir in

    Compression

    Normal

    Dr.PVSNPavanKumar

    Consolidationsettlements

    If soil is preconsolidated

  • 7/24/2019 Advanced Foundation Engineering (57011)

    105/535

    p

    Crrecompressionindex

    C com ressionindex

    Dr.PVSNPavanKumar

    Consolidationsettlement

    Otherequationtodeterminethesettlementof

  • 7/24/2019 Advanced Foundation Engineering (57011)

    106/535

    qfoundationis

    mv=Coefficientofvolumecompressibility

    p=increaseofpressureinmiddleofclaylayer

    H=thicknessofclaylayer

    Dr.PVSNPavanKumar

    A square footing 1.2m1.2m rests at a depth of 1m

    .

    normally consolidated, having an unconfined

  • 7/24/2019 Advanced Foundation Engineering (57011)

    107/535

    y , g2.

    liquid limit of 30%, sat= 17.8 kN/m3, w=28% and

    G = 2.68. Determine the load which the footin

    can carry safely with a factor of safety of 3

    against shear. Also determine the settlement if the

    footing is loaded with this safe load (May 2010).

    Square footing

    qu= 1.3cNc+ Nq+ 0.4BN= = =, q ,

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    108/535

    Maximum

    settlement

    Dr.PVSNPavanKumar

    Allowablesettlement

    Settlements can be computed for various points suchas corner center or beneath the lightest and heaviest

  • 7/24/2019 Advanced Foundation Engineering (57011)

    109/535

    as corner, center, or beneath the lightest and heaviest

    differential settlement between adjacent points.

    If the entire structure moves verticall some amountor rotates as a plane rigid body, this movement willnot generally cause structural or architectural distress.

    a s ruc ure se es mm on one s e an mmon the other with a linear settlement variationbetween the two oints structural dama e is notlikely to develop but there are aesthetic and publicconfidence considerations.

    e emen = mm eren a se emen = mm

    Tilt = (10020)/L Dr.PVSNPavanKumar

    Allowablesettlement

    Localsettlementsbelowtiltlinewillcausethe

  • 7/24/2019 Advanced Foundation Engineering (57011)

    110/535

    .

    Initialsettlements

    that

    occur

    during

    construction

    canusua y e en ur ngcomp e ono

    building.Acrackedwallorwarpedroofismuch

    more cu oconcea .

    Dr.PVSNPavanKumar

    Allowablesettlement

  • 7/24/2019 Advanced Foundation Engineering (57011)

    111/535

    Longtimespansallowthestructuretoadjustandbetter

    resistdifferentialmovementDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    112/535

    foundations

    Whatarethetypesofsettlementsandhow

    conso at onsett ement sest mate

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    113/535

    UNITIIIPileFoundations

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    114/535

    Dynamicmethods Pi egroups

    Negativeskinfriction

    Underreamedpiles.

    Dr.PVSNPavanKumar

    Necessity

    Shallowfoundationsarenormallyusedwherethesoil close to the round surface and u to the

  • 7/24/2019 Advanced Foundation Engineering (57011)

    115/535

    soilclosetothe roundsurfaceandu tothe

    influencezonepossesssufficientbearingstrength

    tocarr thesu erstructureloadwithoutcausin distresstothesuperstructureduetosettlement.

    theloadfromthestructureistobetransferredto

    Thestructuralloadsmaybetransferredtodeeper.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    116/535

    Dr.PVSNPavanKumar

    Endbearingandfrictionalpiles

  • 7/24/2019 Advanced Foundation Engineering (57011)

    117/535

    Endbearingpile Frictionalpile

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    118/535

    through water or soft soil to a suitable bearing

    .

    strata and settlements are less.

    surrounding granular soil along their length by

    .

    Piles carry super imposed load through endear ng an s n r ct on.

    Dr.PVSNPavanKumar

    En rin n fri i n l il

  • 7/24/2019 Advanced Foundation Engineering (57011)

    119/535

    EndbearingcumfrictionalpileDr.PVSNPavanKumar

    Pilefoundations

    Piles are long slender columns either driven,

  • 7/24/2019 Advanced Foundation Engineering (57011)

    120/535

    .

    Driven piles are made of a variety of materialssuch as

    concrete, steel, timber

    Castinsitu piles are concrete piles.

    If the diameter of a boredcastinsitu ile is

    greater than about 0.75 m, it is referred as adrilled ier caisson or shaft.

    Dr.PVSNPavanKumar

    ClassificationofPilefoundations

    Pilesmaybesubjectedtoverticalcompression,

  • 7/24/2019 Advanced Foundation Engineering (57011)

    121/535

    , .

    PilesareclassifiedasshortorlongbasedonL/dratio.

    Pilesareconstructedasverticalorinclinedpiles.

    Inclinedorbatterpilesareusedtocarrylargelateralloads.

    Dr.PVSNPavanKumar

    Usesofpiles

  • 7/24/2019 Advanced Foundation Engineering (57011)

    122/535

    U lift tension

    /anchorPiles

    CompressionPilesDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    123/535

    W

    Pilessubjectedtolateralload

    Dr.PVSNPavanKumar

    Timberpiles

  • 7/24/2019 Advanced Foundation Engineering (57011)

    124/535

    Protectingshoe

    SplicingDr.PVSNPavanKumar

    Timberpiles

    Materials:Timberpilesaremadeoftreetrunkswiththebranchestrimmedoff.Suchpilesshallbeofsoundquality

  • 7/24/2019 Advanced Foundation Engineering (57011)

    125/535

    andfreeofdefects.

    Length

    of

    piles:15mormore.Forlargerlengthstheendsarespliced.

    Diameterofthepilesatthebuttendvaryfrom30to40

    cmandattipendmorethan15cm.

    Life:Pilesentirelysubmergedinwaterlastlongifmarine

    borersarenotpresent.Thelifeofpilessubjectedto

    alternatewettinganddryingisless.Pilesshallbetreatedw awoo preserva ve,usua ycreoso ea g m

    forpilesinfreshwaterand350kg/m3 inseawater.Dr.PVSNPavanKumar

    Timberpiles

    Driving:Crushingofthefibersonthehead(or

  • 7/24/2019 Advanced Foundation Engineering (57011)

    126/535

    ,

    ringaroundthebutt(top).

    ax mum es gn oa perp e s ess an

    kN.

    Timberpilesarelessexpensiveinplaceswheretimberisplentiful.

    Afterbeingdriventofinaldepth,allpileheads,

    treatedoruntreated,shouldbesawedsquareto

    soundundamagedwoodtoreceivethepilecap.Dr.PVSNPavanKumar

    Timberpiles

  • 7/24/2019 Advanced Foundation Engineering (57011)

    127/535

    Dr.PVSNPavanKumar

    ConcretePiles

    Eitherprecastorcastinsitupiles.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    128/535

    castingyardandthentransportedtothesiteof

    .

    Precastpilesaremadeofuniformsectionswith

    . Taperedpilesaremanufacturedwhengreater

    ear ngres s ance srequ re .

    Normallypilesofsquareoroctagonalsections

    aremanufactured.Theseshapesareeasytocast

    inhorizontalposition.Dr.PVSNPavanKumar

    ConcretePiles

    Necessaryreinforcementisprovidedtotakecareofhandlin stresses.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    129/535

    Pilesarealsoprestressed.

    approximately2000kN andforprecastpiles

    . .

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    130/535

    Castinplace

    concretepiles

    Dr.PVSNPavanKumar

    PrecastDrivenpiles

    es may e o m er, s ee or precas concre e.

    They are driven either vertical or inclined.

    ,

  • 7/24/2019 Advanced Foundation Engineering (57011)

    131/535

    ,single acting, double acting and differential acting steam

    hammer, diesel, hydraulic and vibratory hammers. Compaction piles: Pile is driven into granular soil

    displaces the surrounding soil equal to the volume of the.

    Compacts the soil around the sides of pile.

    The dis laced soil articles enter the soil s aces of theadjacent mass which leads to densification of the mass.

    compactionofthesoilmassaroundapileincreasesitsbearingcapacity.

    Dr.PVSNPavanKumar

    Compactionpiles

    Compacts

    sandy

    soil

  • 7/24/2019 Advanced Foundation Engineering (57011)

    132/535

    2 1

    Decreases

    strength

    of

    clay

    soil

    which

    gradually

    regains

    with

    time

    Dr.PVSNPavanKumar

    PrecastDrivenpiles

    e s r ven n osa ura e s y orco es veso w

    notdensify thesoilaroundthepilebecauseofitspoordrainagequalities.

    Di l d il i l h id

  • 7/24/2019 Advanced Foundation Engineering (57011)

    133/535

    Displacedsoilparticlescannotenterthevoidspace

    unlessthewaterintheporesispushedout. tress eve ope nso uetop e r v ng aveto

    bebornebyporewater.

    andaconsequentdecreaseinthebearingcapacityofthesoil.

    Immediateeffectofpiledrivingistodecreasein

    bearingcapacityofsoil.Remoldedsoilregainspart

    disturbedparticleswithtime(thixotrophy).Dr.PVSNPavanKumar

    PrecastDrivenpiles

    Advantages: Can be precasted to the required specifications, any

    , .

  • 7/24/2019 Advanced Foundation Engineering (57011)

    134/535

    ,

    Progress of the work is rapid.

    capacity.

    Construction work is neat and clean,

    Supervision of work at the site is reduced Storage space required is very much less.

    Used in sites where a fear of meeting ground water

    under pressure due to drill holes. re erre orp es nw ar s ruc uresor e es.

    Dr.PVSNPavanKumar

    PrecastDrivenpiles

    Disadvantgaes: Must be properly reinforced to with

    stand handling stresses during transportation and

    r v ng.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    135/535

    g

    Requires heavy equipment for handling and driving. Method involves cutting off extra lengths or adding

    more lengths thus increases the cost of project.

    They are not suitable in soils of poor drainagequalities due to heaving of the soil or the lifting of

    the driven piles during the driving of a new pile.

    Foundationsofadjacentstructuresarelikelytobe

    affectedduetothevibrationsgenerated.Dr.PVSNPavanKumar

    Drivencastinsitupile

  • 7/24/2019 Advanced Foundation Engineering (57011)

    136/535

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    137/535

    depthwiththeendclosedbyadetachable

    .

    Tubeisnextconcretedandtheshellis

    . Insomecasestheshellwillnotbewithdrawn.

    Dr.PVSNPavanKumar

    BoredCast insitupiles

    Constructedbymakingholesinthegroundtotherequireddepthandthenfillingtheholewithconcrete.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    138/535

    concrete.

    Straightboredpilesorpileswithoneormorebulbsatintervalsmaybecastatthesite.Thelattertypearecalledunderreamedpiles.

    Advantages:Pilesofanysizeandlengthareconstructed,damageduetodrivingandhandling

    ,

    adjacentstructuresaresafe.Suitableinsoilsof.

    Dr.PVSNPavanKumar

    BoredCastinsitupiles

    Disadvantages: Careful su ervision and ualit control of all the

    materials is necessary for casting of piles

  • 7/24/2019 Advanced Foundation Engineering (57011)

    139/535

    materials is necessary for casting of piles.

    Sufficient stora e s ace is necessar forconstruction materials used in the construction.

    No advantage of increased bearing capacity due

    to compaction in granular soil.decreases by 3. Construction of these piles in holes with a heavy

    ground water flow or artesian pressure is very

    difficult.

    Dr.PVSNPavanKumar

    Steelpiles

    They are rolled H shapes or pipe piles.

    Designed to withstand large impact stresses

    during hard driving

  • 7/24/2019 Advanced Foundation Engineering (57011)

    140/535

    during hard driving.

    Pi e iles are either welded or seamless steelpipes which may be driven either openend or

    closedend.

    Pipe piles are often filled with concrete after

    .

    Optimumloadrangeonsteelpilesis400to

    .

    Dr.PVSNPavanKumar

    SteelHpiles

    Before

    driving Afterdriving

  • 7/24/2019 Advanced Foundation Engineering (57011)

    141/535

    Dr.PVSNPavanKumar

    Steelpipepiles

  • 7/24/2019 Advanced Foundation Engineering (57011)

    142/535

    Dr.PVSNPavanKumar

    Methodstodetermineloadcarrying

    capacityofsingleverticalpilea c ear ngcapac yequa ons

  • 7/24/2019 Advanced Foundation Engineering (57011)

    143/535

    UseofSPTandCPTvaluesFieldpileloadtests

    Dr.PVSNPavanKumar

    Staticcapacityofsinglepile

    Bearingcapacityofpiledepends ,

    T f il i i f bl

  • 7/24/2019 Advanced Foundation Engineering (57011)

    144/535

    Typeofsoil,positionofwatertable

    et o o nsta at on

    Designofpileshouldbesafeagainstshearfailure

    andsettlementswithinlimits.

    Dr.PVSNPavanKumar

    Staticcapacityofsinglepile

    Ultimateload,Qu=Qb+Qf=

    q = Ultimate bearing capacity of

  • 7/24/2019 Advanced Foundation Engineering (57011)

    145/535

    qb=Ultimatebearingcapacityof

    Ab=bearingareaofbaseofpile

    f

    s sfs=unitskinfriction

    s= o a sur aceareao p e

    embeddedbelowground

    Dr.PVSNPavanKumar

    Staticcapacityofsinglepile

    Netultimateloadcapacityofpile,

    '

    s

    n

    isbqu AkqANqQ tan

    100 += =

    o

    pile

  • 7/24/2019 Advanced Foundation Engineering (57011)

    146/535

    pile

    q

    =averageeffectiveoverburdenpressureoverthe0

    'q

    =averagelateralearthpressurecoefficientsk

    Pile Values of

    n=no.oflayers

    material

    LowDr HighDr

    Steel 20 0.5 1.0

    s

    oncrete . .

    wood 2/3 1.5 4.0

    Drivenpiles

    Maximum

    skin

    friction

    0.3m for

    proper placement of concrete in

    stem.

    ep o oun a on, e ow

    g.l > 0.6m.

    Base width of wall is between

    0.5 H to 0.7H.

    For Rankine theory a vertical

    line AB is drawn through the

    heel point.0.6m

    assumed along the vertical line

    AB. This is justified if AC makes

    an angle

  • 7/24/2019 Advanced Foundation Engineering (57011)

    277/535

    does not intersect stem

    i = angle of surcharge

    To check the stability of wall, weight of soil above the heel in the zone ABC, Ws shall beconsidered, Weight of concrete in stem, Wc and active earth pressure force Pa shall be

    considered. Dr.PVSNPavanKumar

    Proportioningofgravityretainingwalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    278/535

    Coulombtheorydirectlygivesearthpressureonthebackfaceofwall,

    we g o so , sno o econs ere .

    Dr.PVSNPavanKumar

    Proportioningof

    semi

    gravity

    retaining

    slightly smaller than gravity retaining wall.

    gravity retaining wall.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    279/535

    Dr.PVSNPavanKumar

    Proportioningofcantileverretaining

    Topwidthofwall>0.3m

    Widthofbaseslabranges

    from0.4Hto0.7H.

    Widthofstematbottomis0.1H

    Thicknessofbaseslabis

    0.1H

  • 7/24/2019 Advanced Foundation Engineering (57011)

    280/535

    Lengthoftoeprojectionis

    0.1H

    Dr.PVSNPavanKumar

    ProportioningofretainingwallsProportionsforstemand

    baseslabaresameas

    cant everwa

    Counterforts maybe

    0.3mthick

    0.3Hto0.7H

  • 7/24/2019 Advanced Foundation Engineering (57011)

    281/535

    Conterfort retainingwallDr.PVSNPavanKumar

    Stabilityofretainingwalls

    Pa=activeearthpressure

    Ph =PacosPv =Pasin=slopeangle

    =wt w s

    heelslabWc=Weightofwall

    nc u ng ases a

    Wt=resultantofwall,Wcandsoil,WsP = passive earth

  • 7/24/2019 Advanced Foundation Engineering (57011)

    282/535

    Pp=passiveearth

    pressureatthetoesideof

    FR=Basesliding

    resistanceDr.PVSNPavanKumar

    StabilityofretainingwallsForceresistingsliding,FR=caB +Rtan+Pp

    c =unitadhesionB=Widthofbaseofretainingwall

    = =s

    c

    v =angleofwallfriction

    Factorofsafetyagainstsliding,

    IfF

  • 7/24/2019 Advanced Foundation Engineering (57011)

    283/535

    ThepassivepressurePpshouldnotberelied

    .Sliding

    Dr.PVSNPavanKumar

    Stabilityofretainingwalls

    ac oro sa e yaga ns s ng

  • 7/24/2019 Advanced Foundation Engineering (57011)

    284/535

    y g g y p

    baseofwall

    Dr.PVSNPavanKumar

    Stabilityof

    retaining

    walls

    Overturningandstabilizing

    aboutpointo.

    Factorofsafetyagainst

    overturning,

    Fo=o

    R

    M

    > 2 0

  • 7/24/2019 Advanced Foundation Engineering (57011)

    285/535

    >2.0

    OverturningDr.PVSNPavanKumar

    Stabilityofretainingwalls PRistheresultantofPaand

    Wt.PRmeetsthebaseatm.

    Ristheresultantofallthe

    verticalforcesactingatmwithwt

    aneccentricity

    e.

    Pressuredistributionattheaseo wa w amax mumqt

  • 7/24/2019 Advanced Foundation Engineering (57011)

    286/535

    t

    atthetoeandaminimumqhat

    theheel.

    BearingcapacityfailureDr.PVSNPavanKumar

    Stabilityofretainingwall

    Stressattoe,FS

    q

    b

    e

    b

    Vq ut

    += 6

    1

    quultimatebearingcapacityconsideringthe

    ,

    061 > = eV ,

  • 7/24/2019 Advanced Foundation Engineering (57011)

    287/535

    .

    BearingcapacityfailureDr.PVSNPavanKumar

    StabilityofretainingwallAretainingwall

    restingonmedium

    oso so w a

    byglobalfailure.

    Slopestabilityisanalyzedbymethod

    ofslices

  • 7/24/2019 Advanced Foundation Engineering (57011)

    288/535

    BasefailureDr.PVSNPavanKumar

    StabilityofretainingwallDraina e

    Saturation of backfill of a retaining wall is

    accompanied by a substantial pore water

    ressure on the back of the wall andincreases the earth pressure on wall.

    ItisessentialtoeliminateorreduceporeWee holepressurebyprovidingsuitabledrainage.

    Drainscollectthewaterthatentersthe

    backfillanddisposesofthroughoutletsin

    thewallcalledweepholes.

    t t l i b fi t i l

  • 7/24/2019 Advanced Foundation Engineering (57011)

    289/535

    Verticaldraintopreventcloggingbyfinematerials.

    Presentpracticeistousegeotextiles orgeogrids.

    Dr.PVSNPavanKumar

    StabilityofretainingwallDraina e

    weep holes are usually made by

    em e ing 100 mm iameter pipes in

    the wall

    Vertical spacing between horizontal

    rows of weep holes should not exceed.Weep hole

  • 7/24/2019 Advanced Foundation Engineering (57011)

    290/535

    Horizontal spacing in a given row

    Weephole

    Inclineddrain epen s upon t e prov s ons ma e todirect the seepage water towards the

    weep holes.Dr.PVSNPavanKumar

    StabilityofretainingwallDraina e

  • 7/24/2019 Advanced Foundation Engineering (57011)

    291/535

    Horizontaldrain CombinationofHorizontalandinclineddrain

    Dr.PVSNPavanKumar

    Reinforcedearth

    Soilcancarrycompressivestressbutitstensile

    .

    Reinforcedearthtechniqueisstrengtheningof

    soil

    by

    inclusion

    of

    rods,

    fibers,

    bars

    or

    nets,

    metalstrips,geogrids andgeotextiles.

    Thisisaoldtechniquebutstudiedsystematically

    byVidal(1969). Reinforced earth has several applications and

  • 7/24/2019 Advanced Foundation Engineering (57011)

    292/535

    Reinforcedearthhasseveralapplicationsand

    oneamon themisreinforcedearthretainin

    walls.Dr.PVSNPavanKumar

    MechanicallyStabilizedwalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    293/535

    Wallunderconstruction Wallafterconstruction

    Dr.PVSNPavanKumar

    Typeofreinforcements Metallic

    Metalstrip

  • 7/24/2019 Advanced Foundation Engineering (57011)

    294/535

    BarmatDr.PVSNPavanKumar

    Typeofreinforcements Ploymeric

    Geogrid

  • 7/24/2019 Advanced Foundation Engineering (57011)

    295/535

    GeogridDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    296/535

    ar san

    mens ons

    o

    e n orce

    so

    waDesign consists of verifying external and internal stability

    Dr.PVSNPavanKumar

    TutorialAtypicalsectionofwallwithgranularbackfill

    reinforcedwith

    metal

    stri s

    is

    ivenin

    Fi ure

    5.

    Thefollowingdataareavailable.

    = = = = , , , y ,

    steel=1.75,FSonsoilfriction=1.5.Theother=

    andS=1m.Checkforexternalstability?(Nov

  • 7/24/2019 Advanced Foundation Engineering (57011)

    297/535

    Dr.PVSNPavanKumar

    Metalstripsb=75mm,t=5mm

    h=0.6mBackfill

    3

    S=1m

    =34,C=0

    6m wall

    =36,c=0,=24,=18kN/m3For=36N =37.75

    N=56.31

  • 7/24/2019 Advanced Foundation Engineering (57011)

    298/535

    FoundationSoil

    =36,=17kN/m3

    Figure.5Dr.PVSNPavanKumar

    Assignment4(Unit

    5)

    1. Aboveproblem

    . retainingwalls

    .

    sketch

    . r eas or no eson ou om ear pressure

    theoryalong

    with

    assumptions.

    5. ExplainhowtodetermineRankine Activeearth

  • 7/24/2019 Advanced Foundation Engineering (57011)

    299/535

    pressureforinclinedbackfill

    Dr.PVSNPavanKumar

    UNITVI

    Timberingoftrenches

  • 7/24/2019 Advanced Foundation Engineering (57011)

    300/535

    Dr.PVSNPavanKumar

    AnchoredSheetpiles

    Determinationo Dept o em e mentin

    sandsandclays

    Timberingoftrenches

    Earth ressuredia rams

    Forces in struts.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    301/535

    Forcesinstruts.

    Dr.PVSNPavanKumar

    SheetpilewallsIntroduction

    retainearth,wateroranyotherfillmaterial.

    masonrywalls. Uses of sheet ile wall

    Waterfrontstructures,forexample,inbuilding

    wharfs,quays,andpiers

    Buildingdiversiondams,suchascofferdams

  • 7/24/2019 Advanced Foundation Engineering (57011)

    302/535

    Riverbankprotection

    RetainingthesidesofcutsmadeinearthDr.PVSNPavanKumar

    Useofsheetpilewalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    303/535

    Earthretention

    Dr.PVSNPavanKumar

    Useo s eetpi ewa s

  • 7/24/2019 Advanced Foundation Engineering (57011)

    304/535

    Waterfrontstructures,forexample,inbuildingwharfs,quays,andpiersDr.PVSNPavanKumar

    Useo s eetpi ewa s

  • 7/24/2019 Advanced Foundation Engineering (57011)

    305/535

    u ng

    vers on

    ams,

    suchascofferdamsDr.PVSNPavanKumar

    Useofsheetpilewalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    306/535

    RiverBankprotectionDr.PVSNPavanKumar

    Useofsheetpilewalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    307/535

    RiverBankprotectionDr.PVSNPavanKumar

    Useofsheetpilewalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    308/535

    RetainingthesidesofcutsmadeinearthDr.PVSNPavanKumar

    Useofsheetpilewalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    309/535

    RetainingthesidesofcutsmadeinearthDr.PVSNPavanKumar

    Reinforcedconcrete

    Stee

  • 7/24/2019 Advanced Foundation Engineering (57011)

    310/535

    Dr.PVSNPavanKumar

    Timbersheetpilewalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    311/535

    .

    Usedfortemporarystructuressuchasbracedsheetingincuts.Dr.PVSNPavanKumar

    Timbersheetpilewalls

    Foruseinpermanentstructuresabovethewaterlevel,

    properpreservativetreatmentisnecessary.

    Theyhaveshortlife. m ers ee p esare o ne oeac o er y ongue

    andgroovejoints.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    312/535

    ofstonesastheydislodgethejoints.Dr.PVSNPavanKumar

    Concretesheetpilewalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    313/535

    FlatsheetpileDr.PVSNPavanKumar

    Concretesheetpilewalls

  • 7/24/2019 Advanced Foundation Engineering (57011)

    314/535

    CorrugatedsheetpileDr.PVSNPavanKumar

    Concretesheetpilewalls

    Tongueandgroovejoint

    Reinforced concrete sheet piles are precast concrete members

    Thesepilesarerelativelyheavyandbulkyandtheydisplacelarge

    volumesofsolidduringdriving.Increasesdrivingresistance.

    Designofpilesshalltakeintoaccountthelargedrivingstresses

    and suitable reinforcement has to be provided for this purpose

  • 7/24/2019 Advanced Foundation Engineering (57011)

    315/535

    andsuitablereinforcementhastobeprovidedforthispurpose.

    Dr.PVSNPavanKumar

    Steelsheetpilewalls

    Straightsheetpiling Shallowarchwebpiling

    Archwebpiling Zpile

  • 7/24/2019 Advanced Foundation Engineering (57011)

    316/535

    Dr.PVSNPavanKumar

    Stee s eetpi esArchweb iles

    Shallowarch

    piles

    .

    To resist large bending moments archweb and Zpiles are used.

    When bending moments are less, shallowarch piles with smaller section moduli

    can be used.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    317/535

    Ballandsocket type of joints offer less driving resistance than the thumbandfinger jointsDr.PVSNPavanKumar

    Steelsheetpilewalls

    a an soc e

    interlock

  • 7/24/2019 Advanced Foundation Engineering (57011)

    318/535

    HookandgripsheetinterlockDr.PVSNPavanKumar

    Steelsheetpilewalls

    sheet piles. They have several advantages over

    .Lighter in section

    hard or rocky materialCan be used several times

    Can be used either below or above water and

    possess longer life. Suitable joints which do not deform during driving

    can be provided to have a continuous wall.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    319/535

    boltingDr.PVSNPavanKumar

    Canti evers eetpi ewa

    eetp es xe at ottoman

    freetorotateattoparecalled

    cantileversheetpiles.

    Acquiresstabilitydueto

    embedmentintothesoilbelowthe

    .

    Thesepilesareeconomicalonlyformoderatewallheights,sincethe

    requiredsectionmodulusincreasesrapidlywithanincreaseinwall

    hei ht asthebendin momentincreases.

    Lateraldeflectionofthistypeofwallisbecauseofthecantilever

    action,willberelativelylarge.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    320/535

    , . ., ,

    shouldbecontrolledsincestabilityofthewalldependsonthepassive

    pressureinfrontofthewall. Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    321/535

    Dr.PVSNPavanKumar

    Sheetpilestructures

    held in place by anchors

    attached with anchor rods

    buried in the backfill at a

    considerable distance.

    Used for dock and harbor

    .

    Use of an anchor rod tends

    Anchoredsheetpilewallto reduce the lateral

    deflection, the bending

  • 7/24/2019 Advanced Foundation Engineering (57011)

    322/535

    moment and the depth of thepenetration of the pile. Dr.PVSNPavanKumar

    Freecantileversheetpilewall

    Pp Pa b

    Pa Pp

    c

    de=k D

    Sheetpile

    subjectedto Activeand assive

    ap

    K=kpka

  • 7/24/2019 Advanced Foundation Engineering (57011)

    323/535

    P pressureson

    sheetpileNet

    pressure

    Dr.PVSNPavanKumar

    Freecantileversheetpilewall

    b

    c

    de

  • 7/24/2019 Advanced Foundation Engineering (57011)

    324/535

    NetpressureNetpressuresimplified

    Areabcef iscommon

    Dr.PVSNPavanKumar

    Freecantileversheetpilewall

    =0H

    ,

    fromtwoequilibriumequations

    0211 2 =+ hDkDkP

    Determineh

    c

    =asea ouomen s

    1

    )( 2

    ++

    D

    DkDHP

    d

    ef0

    32

    2

    1=

    hhDk

  • 7/24/2019 Advanced Foundation Engineering (57011)

    325/535

    Substitutehinaboveeqn.Dr.PVSNPavanKumar

    Freecantileversheetpilewall

    0322

    14 =+++ CDCDCD

  • 7/24/2019 Advanced Foundation Engineering (57011)

    326/535

    Dr.PVSNPavanKumar

    FreecantileversheetpilewallBendingmomentismaximumatpointfat

    k

    PxxkP

    2

    2

    1 2 ==

    f

    x

    3

    61)( xkxHPmomentBendingMaximum +=

    b

    c

    de

  • 7/24/2019 Advanced Foundation Engineering (57011)

    327/535

    Dr.PVSNPavanKumar

    CantileversheetpilewallsinsandysoilWatertableisatgreatdepth

    Pa1

    Pp1

    EF

    Pp2Pa2

    ee p e wa

  • 7/24/2019 Advanced Foundation Engineering (57011)

    328/535

    ee p ewa

    supportingsandy

    soil

    pressureson

    sheetpileNet

    pressure

    AreaGOEFiscommonDr.PVSNPavanKumar

    CantileversheetpilewallsinsandysoilWatertableisatgreatdepth

    pa=kaH

    E

    EFpp = 0 p= p

  • 7/24/2019 Advanced Foundation Engineering (57011)

    329/535

    Netpressure

    pp 0 p p

    AreaGOEFiscommon

    Dr.PVSNPavanKumar

    CantileversheetpilewallsinsandysoilWatertableisatgreatdepth

    1)Atpoint,OPassivepressure=

    Activepressure

    Determiney0

    Pay

    2)0=H

    11J

    PaareaofFig.BAOJ

    22 00 =++ pp ppa

    ExpresshintermsofD0

    3) 0= pileofbaseaboutMoment

    32

    1)( 0000 ++

    DDDkDyPa

  • 7/24/2019 Advanced Foundation Engineering (57011)

    330/535

    03

    )(21 =+ hhpp pp

    Substituteh obtainedinstep2instep3.DetermineD0,depthofembedment,D=D0+y0Dr.PVSNPavanKumar

    CantileversheetpilewallsinsandysoilWatertableisatgreatdepth

  • 7/24/2019 Advanced Foundation Engineering (57011)

    331/535

    Dr.PVSNPavanKumar

    CantileversheetpilewallsinsandysoilWatertableisatgreatdepth

    Equationissolvedbytrailand

    error.Obtaineddepth,Dmaybe

    increasedby20to40%.

    MaximumBendingMoment

    MaxB.Moccursatapointof

    zeroshearatdepthx,below

    .

    P

    xxkP

    a

    a

    21 2

    ==

    31)( kxxyPa +

    Maximumbendingmoment=Mmax

  • 7/24/2019 Advanced Foundation Engineering (57011)

    332/535

    bfMmaxSectionModulus,Zs= fb=allowableflexuralstressofsheetpile

    Dr.PVSNPavanKumar

    CantileversheetpilewallsinsandysoilWatertableisatgreatdepth

    Fourthorderdegreeequation

    isquitelaborious.Passiveearthpressure, is

    replacedbyconcentratedforce

    R.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    333/535

    Actualpressurediagram AssumedsimplifiedDr.PVSNPavanKumar

    CantileversheetpilewallsinsandysoilWatertableisatgreatdepth

    Takingmomentofforcesabout

    baseofsheetpilewall,

    where

    substituteandresultingeqn.is

  • 7/24/2019 Advanced Foundation Engineering (57011)

    334/535

    Assumedsimplified

    SolveforDandincreaseby20%Dr.PVSNPavanKumar

    Cantileversheetpilewallsinsandysoil

    Watertableisatshallowdepth

    11 hkp a=

    21 hkhkp baaa +=

    y0 isdepthbelowdredge

    eve w erene pressure=

    0Dkp pp =B

    Dkhhkp bpp ++= )( 21J

    Pa

    areaofFig.BAJO

    PointofapplicationofPay

    Take 0=H

  • 7/24/2019 Advanced Foundation Engineering (57011)

    335/535

    Dr.PVSNPavanKumar

    CantileversheetpilewallsinsandysoilWatertableisatshallowdepth

    Passivepressure atpointo

  • 7/24/2019 Advanced Foundation Engineering (57011)

    336/535

    bendingmomentiscalculated.DepthDcomputedshouldbeincreasedby20to40percent.Dr.PVSNPavanKumar

    FreeStandingCantileverSheetPileWall

    Penetratin

    Cla

    uqcp 24 == uqcp 24 ==

    quunconfinedcompressivestrength

    0=H

    1

    042

    2 =+ qqP uu

    shearzeroofpotoDepthq

    Pint

    2==

  • 7/24/2019 Advanced Foundation Engineering (57011)

    337/535

    Dr.PVSNPavanKumar

    FreeStandingCantileverSheetPileWall

    Penetratin

    Cla

  • 7/24/2019 Advanced Foundation Engineering (57011)

    338/535

    Dr.PVSNPavanKumar

    CantileverwallsincohesivesoilActiveearth ressure,

    paatadepthzis

    aaa kczkp 2=

    Passivepressure,ppat

    adepthyis

    app

    kczkp 2+=

    Activeearth ressure

    actingtoleftatdepthHis

    aaa kcHkp 2=

    ua

    a

    qHp

    cHp

    =

    ==

    2,0

    f

  • 7/24/2019 Advanced Foundation Engineering (57011)

    339/535

    qu=UnconfinedcompressivestrengthDr.PVSNPavanKumar

    Cantileverwallsincohesivesoil

    Pass vepressureact ng

    towardsrightsideatdredge

    level

    up qcp ==2

    atdredgelevel

    HqqHqq uuun == 2)(

    Netpressuretowardsrightat

    dredgelevelatdepthy

    )2)((2 cyHcyppq apn ++==

    = un

    P i

  • 7/24/2019 Advanced Foundation Engineering (57011)

    340/535

    Pressureremainsconstant

    atalldepthDr.PVSNPavanKumar

    Cantileverwallsincohesivesoil

    onbackfillsidetowardsright

    Atbottomofwall

    cDHpp 2++=

    =a

    un qHcHp 24 +=+=

    =0H

    12

    uua

    au PDHqh )2(

    =

    u

  • 7/24/2019 Advanced Foundation Engineering (57011)

    341/535

    Dr.PVSNPavanKumar

    Cantileverwallsincohesivesoil

    Forequ r um,moments

    aboutbaseshouldbezero

    D

    03

    42

    1

    2

    =

    ++

    hhq

    qy

    u

    ua

    Substitutinghinaboveequation

  • 7/24/2019 Advanced Foundation Engineering (57011)

    342/535

    Dr.PVSNPavanKumar

    Cantileverwallsincohesivesoil

    equationisincreasedby20

    to40%

    Maximumbendingmoment

    occurswithinthedepthDh

    .

    Let bethedepthbelowdredgelevelwhereshearforce

    iszero

    P

    ypyP a

    a == 00 0

    p

    )( 000maxy

    ypyyPM a +=

    F rther section mod l s

  • 7/24/2019 Advanced Foundation Engineering (57011)

    343/535

    Furthersectionmodulus

    isdetermined.Dr.PVSNPavanKumar

    Cantileverwallsincohesivesoil

    Backfillis

    Sand

    with

    Water

    Table

    at

    Great

    De th

    Hkp aa =

    dredgelevelNetpressureatbaseofwall

    cHcppp ap == )2(2

    actingtowardsright

    qu =

    Thisremainsconstantalong

    Netpressureatbaseofwallacting

    towardsleft

    ap cDcDHppp )2(2)( ++

  • 7/24/2019 Advanced Foundation Engineering (57011)

    344/535

    u

    ap

    qHcDcDHppp

    2)2(2)(

    +=++==

    Dr.PVSNPavanKumar

    Cantileverwallsincohesivesoil

    11 hkp a=

    21p baaa +=

    HqcHcp u == 2)2(2

    Hq

    cDcDHp

    u

    +=

    ++=

    2

    )2()2(

  • 7/24/2019 Advanced Foundation Engineering (57011)

    345/535

    Dr.PVSNPavanKumar

    Thefigure4belowshowsacantileverwall. 1 , 2 ,=16kN/m3,sat=18kN/m

    3 andC=35kN/m2 and= .

    pilewall(Nov/Dec2012).

    ofthedredgelevelis9m.Thewaterlevelinthebackfillisat2mfromtop.Findthedepthofpenetrationrequiredforafactorofsafetyequalto1.Assumethatabovethewatertable,thesoil

    isdry.Theotherpropertiesofsoilare:sat=20kN/m3,Ka=0.33,Kp=3.0,Gs=2.6.(June2010,Set

  • 7/24/2019 Advanced Foundation Engineering (57011)

    346/535

    Dr.PVSNPavanKumar

    Fi 4

  • 7/24/2019 Advanced Foundation Engineering (57011)

    347/535

    Figure4Dr.PVSNPavanKumar

    Acantileversheetpileistobeconstructedto.weightofsandis16kN/m3 andthesaturated

    3 .resistanceofsandis32.Thewaterlevelis3mabovethedredgelinecomputethedepthofembedmentofthesheetpile(June2010Set3).

    ComputetheembedmentlengthDofthesheet

    pilewallinagranularsoiltoretaingranularsoilof6mhighononesidewithunitweightof20 N m an ang eo s earingresistanceo 30 .Watertableisatadepthof3mfromthetopof

    .

  • 7/24/2019 Advanced Foundation Engineering (57011)

    348/535

    Dr.PVSNPavanKumar

    7 a) Fig.7 shows a cantilever sheet pile wall penetrating a granular

    soil. What is the theoretical depth of embedment?

    b) What should be the minimum section modulus of the sheet piles

    for the Fig.7 shown below. Assumeall = 172 MN/m2.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    349/535

    Dr.PVSNPavanKumar

    AnchoredSheetpilewall eses ee p esares a e ue opass ve orce

    andanchorforce.

    Depthofembedmentisless.

  • 7/24/2019 Advanced Foundation Engineering (57011)

    350/535

    Dr.PVSNPavanKumar

    Anchoredsheetpile

    changesitscurvatureat

    point,I

    Freeearthsu ortmethod Fixedearthsupportmethod

    FixedendFreeend

    Lower end B is simply supported and

    soil into which sheet pile is driven

    Soil into which sheet pile is driven

    exerts a large restraint on lower part of

  • 7/24/2019 Advanced Foundation Engineering (57011)

    351/535

    soil into which sheet pile is driven

    does not produce effective restraint

    exerts a large restraint on lower part of

    sheet pile causes change of curvatureDr.PVSNPavanKumar

    AnchoredSheetpilewall

    FreeearthsupportmethodCohesionlesssoil

    1) p1=kah

    2) Atpoint0pn=0

    ka (h+a) k a=0

    a

    a

    kk

    hka

    =

    3) At point A p = k (a+b) k (h+a+b) p = k b

  • 7/24/2019 Advanced Foundation Engineering (57011)

    352/535

    3)AtpointA,pn kp(a+b) ka(h+a+b)pn kbDr.PVSNPavanKumar

    AnchoredSheetpilewall

    FreeearthsupportmethodCohesionlesssoil

    4)H=0,P1 P2 T=0 2

    22

    1bkP =

    5)Momentaboutanchorrod=0

    P1(h+aeZ1) P2(h+ae+2b/3)=0x

    Fromstep4and5determinedepthof

    ,

    6 Maximumbendingmomentoccursbetweenpoint

    Manddredgelevel,whereshearforceiszero

    ,wherexisdistanceofpointfromtopof02

    2

    = Txka

  • 7/24/2019 Advanced Foundation Engineering (57011)

    353/535

    , p pbackfillwhereshearforceiszero

    Dr.PVSNPavanKumar

    AnchoredSheetpilewall

    FreeearthsupportmethodCohesivesoil

    Atdredgelevel,infrontofsheetpile

    pn=pp pa=2c (h 2c)=4c h

    At ointA

    pn=pp pa=(2c+d)

    H=0P1 P2 T=0

    Momentaboutanchorrod=0

    P1xf P2x(h+d/2e)=0

    SolvefordandT

  • 7/24/2019 Advanced Foundation Engineering (57011)

    354/535

    Dr.PVSNPavanKumar

    Tutorial

    depth of embedment of

    sheet pileshown in Figure.Determ ne orce

    in anchor permeter of wall.Assume freeearth support

  • 7/24/2019 Advanced Foundation Engineering (57011)

    355/535

    Dr.PVSNPavanKumar

    AnchoredSheetpilewall

    Fixedearthsu ortmethod

    h

    h

    Deflectioncurvechangesits

    curvatureatpoint,I

    d

    Fixedend

    NetPressure

    diagram

    D PVSN P K

  • 7/24/2019 Advanced Foundation Engineering (57011)

    356/535

    Dr.PVSNPavanKumar

    AnchoredSheetpilewall

    Fixedearthsu ortmethod

    h h

    Equivalent Bending

    Net

    Pressure

    diagram

    diagram

    L ti f di i l d b t t d f R t i t k

    eam

    method

    Diagram

    Dr PVSN Pavan Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    357/535

    Lowerportionofpressurediagramisreplacedbyconcentratedforce,RkatpointkDr.PVSNPavanKumar

    AnchoredSheetpilewall

    Fixedearthsu ortmethod Exactanalysisofanchoredsheetpilebyfixedearth

    .

    Equivalentbeammethodisused Sheetpileissimply

    Depthofpointofinflexion,i isdeterminedfromfollowingchart.

    Dr PVSN Pavan Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    358/535

    Dr.PVSNPavanKumar

    AnchoredSheetpilewall

    Fixedearthsu ortmethodUpperBeamBI

    Determinepressurep atdredge

    level

    Determineifromchart

    Determineapointofzeronet

    pressure= =n p a ,

    determinea

    Determinepressureatpointof

    inflexionfromrelation

    ForbeamIBtakemomentsabout

    reactionRIDr PVSN Pavan Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    359/535

    Dr.PVSNPavanKumar

    AnchoredSheetpilewall

    Fixedearthsu ortmethodBeam IK

    Determine pressure p2 from

    p2=(kp ka) (da)

    I ,equal and opposite to that acting

    on beam BI.

    Consider moment of forcesacting on beam IK about k anddetermine da and d.

    Determine tension T in anchorby considering equilibrium ofbeam IB.

    I= 1

    P1total force due to pressure on IBDr. PVSN Pavan Kumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    360/535

    1 p Dr.PVSNPavanKumar

    Tutorial

    Determine the

    depth of

    the anchored

    sheet ile

    shown in

    Figure. Also

    determine

    force per meter

    .fixed end

    conditions.Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    361/535

    Anchoragesforbulkheads

    knownasdeadmen oranchorsaretiedtosheetpile.

    Anchorsoffer assiveresistance.

    Waleisabeamplacedatfrontorback

    sideofsheetpileattachedtothe

    anchoredbeamorblockwithanchor

    rod.Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    362/535

    Anchoragesforbulkheads

    Anchorblocksmaybesupportedbybatteredpiles.Theseareemployedwhenthesoilbelowisfirmat

    .

    Shortsheetpilesaredriventoformacontinuous

    pressureDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    363/535

    Anc orages or u ea s

    Sheetpileistiedtoalargestructure

    oca ono anc or

    NoresistancefromanchorDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    364/535

    Locationofanchor

    Two sliding wedges interfere with each other.

    Efficiency of anchor decreases

    Full capacity of anchor will be available

    if the active wedge of backfill do not interfere

    with passive sliding wedge of anchor.

    ea man s ocate e ow ne ae ma ng an

    angle with the horizontal.Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    365/535

    Capacityof

    anchor

    Anchornear Anchoratlarge

    B>5h,Long

    anchor

    B5h,Long B

  • 7/24/2019 Advanced Foundation Engineering (57011)

    366/535

    soil soil soil soil soil

    CapacityofanchorTen 1962 avethefollowin e uationsforcalculatin ultimate

    resistanceofanchorlocatedatorneargroundsurface.

    Assumedthatanchorextendstogroundsurface

    B=Lengthofanchor,h=heightofanchor,H=depthofbottomofanchorfromground

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    367/535

    Capacityofanchor a esor eamsw

  • 7/24/2019 Advanced Foundation Engineering (57011)

    368/535

    Capacityofanchor

    surfaceisequaltobearingcapacityoffootingatdepth

    Ultimatehorizontalresistanceofanchoris 2

    hh +

    A . , . , .

    =Unitweightofsand

    A=Areaofanchorplate=bh,h=heightofplate,b=widthofplate

    H=Depthfromgroundsurfacetobottom

    =Angleoffrictionofsoil ,

    . , . , . plate

    Horizontaldisplacement,uatanyloadlevelTis

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    369/535

    BracedCuts

    orcons ruc onexcava onsare

    necessary.TheseexcavationsSheeting

    s a econs ruc e a sa eslopeangleifsufficientspaceis

    Wale Struts

    ava a e.

    Fordeepexcavationsinbuiltup

    areasadequatespacemaynot

    beavailableandthecostof

    earthworkwillbehuge.

    Excavationslaterallysupported

    arecalledbracedcuts.Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    370/535

    Typesofsheetingandbracingsystems

    sheeting consisting of

    timber planks of about 8

    to 10 cm thick are

    driven around theboundary of excavation

    to some depth below

    Soil between the sheeting is excavated. Sheeting is held in place by a system of

    excavation.Verticaltimbersheeting

    .

    Wales are horizontal beams running parallel to the excavation wall. Wales are

    supported by horizontal struts extended from side to side of excavation.

    known as rakers.

    If soil can stand unsupported to a limited depth, sheeting can be installed in open

    .

    Vertical timber sheeting are economical to a depth of 4 to 6m.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    371/535

    Typesofsheetingandbracingsystems

    Inthismethodsteelsheet

    pilesaredrivenalongthe

    excavation.

    Asthesoilisexcavated

    andstrutsareinserted.

    Walesaremadeofsteel

    Steelsheetpiles

    Strutsmaybesteelor

    timber

    sexcava onprocee sano erse o wa es an s ru sare nser e .

    Processiscontinuedtillexcavationiscompleted.

    Topreventlocalheavessheetpilesaredrivenseveralmetersbelowthe

    excavation

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    372/535

    Typesofsheetingandbracingsystems

    SoldierBeams

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    373/535

    Typesofsheetingandbracingsystems

    SoldiersbeamsareH

    pilesdrivenata

    spacingof1.5mto2.5maroundthe

    boundar of

    excavation.

    Asexcavation

    procee s or zonta

    timber plankscalled

    laggingsareplaced

    betweensoldier

    beams.

    SoldierBeams

    sexcava ona vanceswa es an s ru sarep ace .

    LaggingisproperlywedgedbetweenpileflangesDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    374/535

    Typesofsheetingandbracingsystems

    Steps involved in construction of tieback

    a Inclined Holes are drilled into soil or rockb) Tensile reinforcement cable, Bar or tendon is inserted in the hole

    c) Concrete poured for anchor

    d) wall connection made

    Tieback

    This method does not have struts or inclined rakers and no hindrance to

    construction activity inside excavationDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    375/535

    Slurrywall

    Slurry trench or wall is

    Trench surrounding an open

    of bentonite and water

    They are useful in areas where

    so t soi is existing at groun

    surface with high water table.

    Slurry produces a pressure that

    counteracts the hydraulic pressure

    from surrounding soil that would

    inconvenience to construction

    process.Slurrywall/trench

    Concretewallsareconstructedaroundtheexcavationbyplacing

    reinforcementinbentonite andconcreting.Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    376/535

    Lateralearthpressureonsheeting

    Rankine andcoulombtheory

    lateralpressureonsheetpileas

    retainingwallsrotatingabout

    Sheetingandbracingsystemis

    ofwall.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    377/535

    Lateralearthpressureonsheeting o ow ngapparenteart pressure agramson

    sheetingbasedonfieldstudiesispresentedby, .

    HomogenoussoilDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    378/535

    Lateralearthpressureonsheeting,

    Equivalentcohesionofsandandclaylayers

    '2

    Hc usssss

    e 2

    =

    Kslateralearthpressurecoefficient

    quuncon ine compressivestrengt

    ncoefficientofprogressivefailure

    HHH +

    Equivalentunitweight,e

    He =

    Anyofthediagramshownaboveisusedtodetermineearthpressure

    Nonuniform

    soilDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    379/535

    Lateralearthpressureonsheeting

    Bracedcutpassesthrough

    anumberofcla la ers

    Equivalentvaluesare

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    380/535

    Designofstruts

    trutss ou avem n mumvert ca spac ngo .5m.Dept o

    firststrutinclaysoilshouldbebelowthedepthoftensioncrack.

    sheetpilesarehingedatstrutlevelexceptattopandbottom.

    Spanad

    Md=0,DetermineR1H=0,DetermineR2

    Spandf

    Mf=0,DetermineR2

    H=0,DetermineR3

    = 2 2 2

    Strutload,P1=R1xS,P2=R2xSwhereSishorizontalspacingSuitablesectionsofstrutsaredesignedtocarryloadP1,P2.Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    381/535

    Designofwales

    Walesarehorizontalbeamspinnedatstrutlevel.

    Maximumbendingmomentwilldependonstrut

    loadandspan,S. 21SR=

    Forsecondwale

    8max

    2

    1max SRM =

    Sectionmodulus,z=all

    M

    max

    Sheetpiledesign:Anappropriatesectionis

    identifiedforthesheet ilebasedonthe

    maximumbendingmomet andallowablebendin stress.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    382/535

    Otheraspectsofdesignofbracedcuts

    Incaseofclaythebottomofthecutmayheave

    andisat eofbearin ca acit roblem.

    Insandheavingfailuremaynotoccur.Butthereis

    levelssurroundingarelarger.

    settlementinthesurroundingarea.Thisshould

    adopted.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    383/535

    ASSIGNMENTQUESTIONS1. How do ou desi n the bulkheads b free earth su ort

    method?

    2. What are the different types of sheetings and bracing

    systems for braced cuts and describe them?3. The height of a cantilever sheet pile from the top of the

    dredge level is 9m. The water level in the backfill is at

    2m from top. Find the depth of penetration required fora ac or o sa e y equa o . ssume a a ove e

    water table, the soil is dry. The other properties of soil

    sat , a . , p . , s . .4. Discuss the procedure for checking the stability of a

    .

    5. Discuss various methods for providing anchors for asheet ile wall.

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    384/535

    UnitVII

    CaissonsWellFoundations

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    385/535

    Syllabus

    Caissonsandwellfoundations:

    Wellfoundations

    Differentshapesofwellfoundation

    Componentsofwellfoundations

    Functionsanddesign

    Sinkingofwells

    LateralstabilitybyTerzaghi analysisDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    386/535

    Caissonsorwellfoundations

    Pier

    Well

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    387/535

    Caissonsorwellfoundations

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    388/535

    Bridge

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    389/535

    Bridge

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    390/535

    Bridge

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    391/535

    Bridge

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    392/535

    Bridge

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    393/535

    Bridge

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    394/535

    Bridge

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    395/535

    Cofferdamcofferdamisdefinedasatemporarystructurewhichisconstructedsoas

    toremovewateran orsoi romenc ose areaan ma eitpossi eto

    carryontheconstructionworkunderreasonablydrycondition.

    T esofcofferdam

    SinglesheetpilewallcofferdamEarthembankmentcofferdamDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    396/535

    Embankmenttype

    cofferdamfor

    construction

    ofearthdamDr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    397/535

    Cofferdam

    Water

    body

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    398/535

    Cofferdam

    Dr.PVSNPavanKumar

  • 7/24/2019 Advanced Foundation Engineering (57011)

    399/535

    CellularCofferdam

    Dr.P