advanced power plants coal fired steam power plant

25
Technische Universität München Advanced Power Plants Coal Fired Steam Power Plant Prof. Dr.-Ing. H. Spliethoff Lehrstuhl für Energiesysteme

Upload: others

Post on 16-Nov-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

Advanced Power Plants

Coal Fired Steam Power Plant

Prof. Dr.-Ing. H. Spliethoff

Lehrstuhl für Energiesysteme

Page 2: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

Content

1. Situation today

2. Efficiency: achievements and outlook

3. Future – discussion of the energy concept

4. Flexibility of power plants

Page 3: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

1. Today

Requirements: today (Germany)

Today (2010): Share of renewables 16 %, Wind 26 GW, PV 17 GW

Source: Spliethoff: et. al, CIT 2011

Page 4: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

1. Today

Power Plant Capacity and Production (2010)

Economic and environmental motivation for an efficiency increase

13%

31%

14%

3%

3%

3%

33%

Capacity [%] Total: 168 GW

nuclear

coal

domestic gas

oil

pump storage

others*

renewables

23%

42%

14%

1%

1%

3% 16%

Production [%] Total: 621 TWh :

full load hours

(calculated)

Total:

1825 h/a (21%)

Coal

5000 h/a (58 %)

Source: Spliethoff: et. al, CIT 2011

Page 5: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Possibilities to increase efficiency

• Increasing the average temperature of heat

addition

• Decreasing the average temperature of heat

removal

• Reducing losses • Design

• Operation

• Part load

• Start-up, shut-down

Page 6: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Temperature of heat addition

• Live steam pressure and

temperature: 200 bar/540°C/540 °C

300 bar/ 600°C/620 °C

Δη =2,5 %

• Double RH

• Feed water preheating:

+30-40 k 0,7 %

0%

2%

4%

6%

8%

10%

12%

550 575 600 625 650 675 700

Live steam temperature =Reheat temperature [°C]

Re

lati

ve

ch

an

ge

in

eff

icie

nc

y [

%]

190 bar

250 bar300 bar350 bar

Source: Spliethoff: Power Generation from Solid Fuels, Springer 2010

Page 7: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Limitations by materials

MS-Pressure

MS-Temperature

RH-Temperature

Membrane wall Pipes Headers

Source: Alstom

Page 8: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Temp. heat extraction – Wet Cooling

2-8

• Reduction of condenser temperature by 10 K 1,2 %

• lowest possible condensation temperature: wet bulb or wet air temperature

• difference is caused by:

– terminal temperature difference of the condenser

– cooling range (= warm-up margin)

– approach

• Economic optimization

Kondensat-temperatur= 36 °C

Warmwasser-temperatur= 28 °C

Kaltwasser-temperatur= 20 °C

Feuchtluft-temperatur= 6,6 °C

Kondensator-grädigkeit

Kühlzonenbreite

Kühlgrenz-abstand

Trockenluft-temperatur= 8,5 °C

terminal temperature

difference of condenser

Condensate

temperature

= 36 °C

Warm water

temperature

= 34,5 °C

Cold water

temperature

= 20 °C

Wet-bulb

temperature

= 6.6 °C

cooling range

Approach

dry air

temperature

= 8.5 °C

Page 9: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

3. Efficiency

Losses

– Steam generator losses

– Turbine losses

– Pipe losses

– Generator losses

– Auxiliary power demand

Page 10: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Steam Generator Losses

Steam Generator Losses Old Plant (1980) Modern Plant

air ratio 1,3 1,15

exhaust temperature 130 C 110 C

exhaust losses 5,3 % 3,8 %

radiation losses steam generator 0,25 % 0,3 %

losses through unused fuel

flue ash 0,2 % < 0,3 %

coarse ash 0,1 % < 0,2 %

sensible heat

flue ash 0,02 % 0,03 %

coarse ash 0,04 % 0,04 %

total 5,9 % 4,6 %

Source: Spliethoff: Power Generation from Solid Fuels, Springer 2010

Page 11: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

82

84

86

88

90

92

94

96

1940 1960 1980 2000 2020

Ise

ntr

op

ic t

urb

ine

eff

icie

ncy

[%

]

Year

Werte aus Diagramm

Zusatzwerte

3. Efficiency

Isentropic turbine efficiency

Billotet 1995

Add.values

Page 12: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Brown coal – External Predrying

• External pre-drying leads to

efficiencies comparable to

hard coal, because

– Steam generator losses

are limited (seperated

vapors removal)

– The drying medium is used

at low temperatures

• Efficiency is higher than that of

hard coal, if the condensation

heat of vapors is used

• Improvement by 5 % is

possible

dryer flue

gas

mill coal dust and

carrier gas

superheated steam ~150°C

brown coal

condensation

heat

water

carrier gas

pre-drying at low

temperatures

Page 13: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Reference power plant

Page 14: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Data Hard Coal Steam Power Plants

Circuit Zolling Staudinger Rostock NRW

R&D

Thermie

R&D

Thermie

initial Operation 1985 1992 1994 Projekt Projekt Projekt

net Output [MW] 450 510 510 556 556 556

LS-pressure [bar] 247 250 262 285 350 375

LS-temperature [°C] 536 540 545 600 700 700

RH-temperature [°C] 538 560 562 620 720 720 / 720

RH-pressure [bar] 49 53 54 60 60 120 / 23,5

condensation

pressure [bar] 0,04 0,038/0,052 0,027/0,033 0,045 0,045 0,045

cooling

cooling

tower/river

cooling

tower

cooling

tower/ocean

cooling

tower

cooling

tower

cooling

tower

feed water

temperature [°C] 270 270 270 304 304 335

number of preheaters 8 7 7 8 8 8

efficiency [%] 41,3 42,7 43,8 45,9 48,7 50,1

Page 15: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

2. Efficiency

Average operational efficiency

0 100 200 300 400 500 600

30

32

34

36

38

40

42

44

46

48

50

> 2004

< 1990

1990 - 2004

best point <2004

full load 6000 >2004

best point 1990-2004

full load 5000 1990-2004

best point <1990

full load 5000 <1990

Eff

icie

ncy

Capacity (MWe netto))data from Theis 2005

Page 16: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

3. Future

Goals of the energy concept

-100

0

100

200

300

400

500

600

700

2008 2020 2030 2040 2050

ele

ctr

icity [T

Wh

]

year

import/export conventional renewable energies consumption of electricity

Source: Spliethoff et. al, CIT 2011

Page 17: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

3. Future

Goals Energy Concept

2008 2020 2030 2040 2050

Power generation D 637

TWh

- 8-10

%

-20-27

%

-30 -38 -45-48

Share of coal 43 % 37 % 30 % 20 % 18 %

Full load operation

hours Bit. C.

Brown C.

4500

6800

3300

6300

3400

4000

3700

3000

4800

5200

Page 18: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

4. Flexibility

Requirements: tomorrow (Germany)

Morgen

Tomorrow (2020)

• Installed capacity:

Wind 46 GW

PV 50 GW

• Constant consumption

Tomorrow (xxxx)

• Installed capacity:

Wind 75 GW

50 GW PV

Requirement for low minimum load

Source: Spliethoff: et. al, CIT 2011

Page 19: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

3. Flexibility

Change of power from Renewables 2020

0

10.000

20.000

30.000

40.000

50.000

0 6 12 18 24

ca

pa

city [M

W]

time [h]

-3.000

-1.500

0

1.500

3.000

0 6 12 18 24gra

die

nt [M

W/1

5m

in]

time [h]

Forcast of a winter

day (27.1.2010):

• 46 GW Wind

• 50 GW PV

Requirement for fast load change and start-up

Source: Spliethoff: et. al, CIT 2011

Page 20: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

4. Flexibility

Load change capability

Data from Lambertz, RWE

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

load [

%]

time [min]

dry lignite technology hard coal CCP nuclear power plant

Page 21: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

4. Flexibility

Load range – Minimum load – Coal

• Load range 30/40 % -100 %

• Firing stability determines minimum load

– Requirement: safe operation in case of a mill failure

• Minimim load

– Pure coal firing: 35-40 % 25 %

– oil/ ng support: 25 %

• Change of once-through to circulation results in limitations

• Brown coal appr.50 %,

• Dried brown coal comparible to hard coal

Page 22: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

4. Flexibiliy

Load Change Capability

• Secondary Control

– Only by fuel mass flow

• Delay of the mill (Storage of the mill)

• Pressure increase of boiler (Gliding pressure)

– Big load changes > 20 % 3-6 % / min

• Limit by turbine inlet temp. 1-2 k/min

– Small load changes < 20 % 1-2 % / min

Page 23: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

4. Flexibility

Start-up, Shut-down

Old Coal

Plant

New

Coal

Plant

CC new

Hot start up (8h) 2 h 1-2 h 0,5-1 h

Warm start-up (48 h) 4-5 h 3 h 1-1,5 h

Cold start-up (72 h) 4 h 2-3 h

Page 24: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

Conclusions for coal fired power plants

- Substantial efficiency increase in the past

- Flexibility requirements

- Minimum load and load change capability comparable to CC

- Start-up slower

- Full load operation hours of coal fired pp will decrease

Economic conflict: efficiency

- Coal: Gasification concepts become more attractive

Page 25: Advanced Power Plants Coal Fired Steam Power Plant

Technische Universität München

Thank You

for Your Attention