advances in averaged switch modeling and...

169
1999 Power Electronics Specialists Conference Advances in Averaged Switch Modeling and Simulation Dragan Maksimovic * and Robert Erickson Colorado Power Electronics Center CoPEC http://ece-www.colorado.edu/~pwrelect * Acknowledgment: the work by Dragan Maksimovic was supported in part by the National Science Foundation CAREER Award, Grant No. ECS-9703449.

Upload: others

Post on 11-Apr-2020

7 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

1999 Power Electronics Specialists Conference

Advances in Averaged SwitchModeling and Simulation

Dragan Maksimovic * and Robert EricksonColorado Power Electronics Center

CoPEChttp://ece-www.colorado.edu/~pwrelect

* Acknowledgment: the work by Dragan Maksimovic was supported in part by the National Science FoundationCAREER Award, Grant No. ECS-9703449.

Page 2: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

1. Introduction: converter modeling approaches and objectives2. Averaged switch modeling of PWM converters operating in the

continuous conduction mode (CCM)• Basics of averaged switch modeling• Switch network steady-state and small-signal models

• Using averaged-switch model to predict converter steady-statecharacteristics and small-signal dynamics in CCM

• PSpice implementation of the averaged switch model• Application examples: small-signal dynamics,

conduction losses and efficiency of a Sepic converter• Averaged switch modeling exercise: include switching losses

Page 3: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

3. Averaged switch modeling of PWM converters operating indiscontinuous conduction mode (DCM)• Averaged switch model in DCM

• Switch network steady-state and small-signal models in DCM• Using averaged-switch model to predict converter steady-state

characteristics and small-signal dynamics in DCM

• Combined CCM/DCM averaged switch model

• PSpice implementation of combined CCM/DCM models• Application examples:

Large-signal transient response of a SEPIC

Flyback converter small-signal frequency responses in CCMand DCM

Page 4: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

4. Averaged modeling of PWM converters with current-programmedmode (CPM) control• Averaged switch model in CCM and DCM

• Steady-state and AC models in CCM and DCM• Large-signal averaged CCM/DCM model for CPM controller

• PSpice implementation of the CPM controller model

• Application example: buck converter with CPM controller

5. Single-phase low-harmonic rectifiers• The ideal rectifier

• Averaged models of rectifiers• Application examples:

DCM boost rectifier

SEPIC rectifier with nonlinear-carrier control

6. Summary7. Bibliography

Page 5: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• http://ece-www.colorado.edu/~pwrelect/publicationsseminar slides, collection of simulation examples, library of PSpice

models used in the examples, and many other CoPEC publicationsand presentation materials

• http://ece-www.colorado.edu/~pwrelect/ is the CoPEC home page• http://ece-www.colorado.edu/~pwrelect/book/bookdir.html

is the home page for the Textbook: R.W.Erickson, Fundamentals ofPower Electronics

• Power Electronics courses at the University of Colorado:• Power Electronics 1: http://ece-www.colorado.edu/~ecen5797• Power Electronics 2: http:// ece-www.colorado.edu/~ecen5807• Power Electronics Lab: http:// ece-www.colorado.edu/~ecen4517

• All simulation examples completed using free PSpice evaluationversion available from: http://www.orcad.com

Page 6: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Engineering design based on converter modeling:• Predict converter system behavior, validate models by experiments• Use the model to predict performance under worst-case conditions

• Improve design until worst-case behavior meets specifications

(or until reliability and production yield are acceptably high)

Models:• Circuit models that yield design-oriented, analytical results

• Models for computer simulation

Results of interest:• Steady-state characteristics

• Component stresses, losses, efficiency• Large and small-signal dynamic responses

Page 7: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• Describe basic averaged switch modeling approach

• Develop averaged models forConverters in continuous conduction mode (CCM)

Converters in discontinuous conduction mode (DCM)

Converters with Current-Programmed Mode (CPM) controllerSingle-phase power-factor correctors

• Summarize analytical results for steady-state and dynamic responses

• Demonstrate PSpice implementations of averaged-switch models andcontrollers

• Present application examplesLarge-signal transient responses and small-signal dynamics of DC-DC

converters and single-phase power-factor correctors

Page 8: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

!

• Switch network is replaced by averaged circuit model. Switchingharmonics are removed, and low-frequency components of waveformsare modeled in a simple way.

• A very general approach to modeling converter losses, efficiency, anddynamics.

• Yields an intuitive understanding of converter behavior in CCM, DCM,current-programmed mode, etc.

• Applicable to all types of converters: dc-dc converters, as well as dc-acinverters, ac-dc low-harmonic rectifiers, ac-ac matrix converters.

• Well-suited to simulation• Well developed and understood technique, easily taught to students.

• Main reference for the material in this seminar:

R.W.Erickson, Fundamentals of Power Electronics, Chapman andHall, 1997.

Bibliography has a large collection of other selected references

Page 9: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged switch modeling

+–

Switching converter circuit

Switchingnetwork +

–+–

Large-signal averaged circuit model

Averagedswitchmodel

d

+–

+–

DC and small-signal averaged circuit model

D+d

2)/(/)/1(1

/1)(

oo

scoc wswsQ

wsGsG

++−=

1D

2S

3K

4A

5

duty

ccm-dcm1+

-

DC, AC and Transient simulation

Model implementation for simulation

simulationmodel

linearization

Analytical results:steady-state characteristicsand small-signal dynamics

averaging

Page 10: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• Basics of averaged switch modeling• Switch network steady-state and small-signal models• Using averaged-switch model to predict converter steady-state

characteristics and small-signal dynamics in CCM• PSpice implementation of averaged switch models

- ideal switches (ccm1)

- switches with conduction losses (ccm2)- switches in converters with isolation transformer (ccm3)

- switch with conduction losses in converters with (possibly)isolation transformer (ccm4)

• Application example:- SEPIC small-signal frequency response, conduction losses and

efficiency

• Averaged switch modeling exercise: include switching losses

Page 11: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged switch modelingBasic approach

Given a PWM converter operating in continuous conduction mode:

+–

D1L1

C2

+

v

Q1

C1

L2RVg

SEPICexample

Separate the switching elements from the remainder of the converter...

Page 12: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Definition of switch network,SEPIC example

+

v1(t)

+–

D1

L1

C2

Q1

C1

L2 R

iL1(t)

vg(t)

Switch network

iL2(t)

+ vC1(t) –+

vC2(t)

v2(t)

+

i1(t) i2(t)

Dutycycle

d(t)

• Define a switchnetwork,containing all ofthe converterswitchingelements.

• The remainder ofthe converter islinear and time-invariant.

• The terminalvoltages andcurrents of theswitch networkcan be arbitrarilydefined.

Page 13: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Switching converter systemwith switch network explicitly defined

+–

Time-invariant networkcontaining converter reactive elements

C L

+ vC(t) –iL(t)

R

+

v(t)

vg(t)

Power input Load

Switch network

po

rt 1

po

rt 2

d(t)Controlinput

+

v1(t)

+

v2(t)

i1(t) i2(t)

Page 14: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Discussion

l The number of ports in the switch network is less than or equalto the number of SPST switches in the converter

l Simple dc-dc case, in which converter contains two SPSTswitches: switch network contains two portsThe switch network terminal waveforms are then the port voltages and

currents: v1(t), i1(t), v2(t), and i2(t).

Two of these waveforms can be taken as independent inputs to theswitch network; the remaining two waveforms are then viewed asdependent outputs of the switch network.

Switch network also includes control input d(t)

l Definition of the switch network terminal quantities is not unique.Different definitions lead equivalent results having differentforms

Page 15: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Several ways to define the PWM switch network,and the corresponding CCM models

+

v2(t)

i1(t) i2(t)

+

v1(t)

1 : D

D' : 1

+

v2(t)

i1(t) i2(t)

+

v1(t)

+

v2(t)

i1(t) i2(t)

+

v1(t)

D' : D

⟨ i1(t) ⟩Ts⟨ i2(t) ⟩Ts

+

⟨ v1(t) ⟩Ts

+

⟨ v2(t) ⟩Ts

⟨ i1(t) ⟩Ts⟨ i2(t) ⟩Ts

+

⟨ v1(t) ⟩Ts

+

⟨ v2(t) ⟩Ts

⟨ i1(t) ⟩Ts⟨ i2(t) ⟩Ts

+

⟨ v1(t) ⟩Ts

+

⟨ v2(t) ⟩Ts

Page 16: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

A few pointsregarding averaged switch modeling

• The switch network can be defined arbitrarily, as long as

its terminal voltages and currents are independent, and

the switch network contains no reactive elements.

• It is not necessary that some of the switch network terminal quantities

coincide with inductor currents or capacitor voltages of the converter, or

be nonpulsating.

• The object is simply to write the averaged equations of the switch network;i.e., to express the average values of half of the switch network terminalwaveforms as functions of

the average values of the remaining switch network terminal waveforms,and

the control input.

Page 17: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Terminal waveforms of the switch network

+

v1(t)

+–

D1

L1

C2

Q1

C1

L2 R

iL1(t)

vg(t)

Switch network

iL2(t)

+ vC1(t) –+

vC2(t)

v2(t)

+

i1(t) i2(t)

Dutycycle

d(t)

t

v2(t)

dTs Ts

00

v2(t) T2

0

vC1 + vC2

t

i1(t)

dTs Ts

00

i1(t) T2

0

iL1 + iL2

t

v1(t)

dTs Ts

00

v1(t) Ts

0

vC1 + vC2

t

i2(t)

dTs Ts

00

i2(t) Ts

0

iL1 + iL2

Page 18: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

The averaging step

Now average all waveforms over one switching period:

+–

Averaged time-invariant networkcontaining converter reactive elements

C L

+ ⟨vC(t)⟩Ts –

⟨iL(t)⟩Ts

R

+

⟨v(t)⟩Ts

⟨vg(t)⟩Ts

Power input Load

Averagedswitch network

po

rt 1

po

rt 2

d(t)Controlinput

+

⟨v2(t)⟩Ts

⟨i1(t)⟩Ts⟨i2(t)⟩Ts

+

⟨v1(t)⟩Ts

x(t)

Ts= 1

Tsx(t)dt

t

t + Ts

Page 19: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

The averaging step

The basic assumption is made that the natural time constants of theconverter are much longer than the switching period, so that theconverter contains low-pass filtering of the switching harmonics:

One may average the waveforms over an interval that is shortcompared to the system natural time constants, withoutsignificantly altering the system response.

In particular, averaging over the switching period Ts removes theswitching harmonics, while preserving the low-frequencycomponents of the waveforms.

This step removes the small but mathematically-complicatedswitching harmonics, leading to a relatively simple and tractableconverter model.

In practice, the only work needed for this step is to average the switchdependent waveforms.

Page 20: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged terminal equationsof the switch network

v1(t) Ts= d'(t) vC1(t) Ts

+ vC2(t) Ts

i1(t) Ts= d(t) iL1(t) Ts

+ iL2(t) Ts

v2(t) Ts= d(t) vC1(t) Ts

+ vC2(t) Ts

i2(t) Ts= d'(t) iL1(t) Ts

+ iL2(t) Ts

(small switching ripple is neglected)

t

v1(t)

dTs Ts

00

v1(t) Ts

0

vC1 + vC2

t

v2(t)

dTs Ts

00

v2(t) T2

0

vC1 + vC2

t

i1(t)

dTs Ts

00

i1(t) T2

0

iL1 + iL2

t

i2(t)

dTs Ts

00

i2(t) Ts

0

iL1 + iL2

Page 21: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Derivation of switch network equations(Algebra steps)

iL1(t) Ts+ iL2(t) Ts

=i1(t) Ts

d(t)

vC1(t) Ts+ vC2(t) Ts

=v2(t) Ts

d(t)

We can write

Hence

v1(t) Ts=

d'(t)d(t)

v2(t) Ts

i2(t) Ts=

d'(t)d(t)

i1(t) Ts

+–

⟨v2(t)⟩Ts

+

⟨i1(t)⟩Ts

Averaged switch network

+

⟨v1(t)⟩Ts

– ⟨i2(t)⟩Ts

d'(t)d(t)

v2(t) Ts

d'(t)d(t)

i1(t) Ts

Result

Modeling the switch network viaaveraged dependent sources

Page 22: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Steady-state switch model:Dc transformer model

D' : DI1

I2

+

V1

V2

+

+

v1(t)

– D1Q1

Switch network

v2(t)

+

i1(t) i2(t)

Dutycycle

d(t)

Original switch network

Averaged steady-state model:“DC transformer”

• Correctly represents therelationships between the dcand low-frequencycomponents of the terminalwaveforms of the switchnetwork

Page 23: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Steady-state CCM SEPIC model

Replace switch network with dc transformer model

+–

L1

C2

C1

L2 R

IL1

Vg

IL2

+ VC1 –+

VC2

D' : DI1

I2

+

V1

V2

+

• Can now let inductorsbecome short circuits,capacitors become opencircuits, and solve for dcconditions.

• Can simulate this modelusing PSPICE, to findtransient waveforms

Page 24: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Modeling converter dynamics:Small-signal linearization of model

Perturb and linearize the switchnetwork averaged waveformsabout a quiescent operatingpoint. Let:

d(t) = D + d(t)

v1(t) Ts= V1 + v1(t)

i1(t) Ts= I1 + i1(t)

v2(t) Ts= V2 + v2(t)

i2(t) Ts= I2 + i2(t)

Voltage equation becomes

D + d V1 + v1 = D' – d V2 + v2

Eliminate nonlinear termsand solve for v1 terms:

V1 + v1 = D'D V2 + v2 – d

V1 + V2

D

= D'D

V2 + v2 – dV1

DD'

Page 25: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Linearization, continued

D + d I2 + i2 = D' – d I1 + i1

Current equation becomes

Eliminate nonlinear termsand solve for i2 terms:

I2 + i2 = D'D I1 + i1 – d

I1 + I2

D

= D'D I1 + i1 – d

I2

DD'

Page 26: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Switch network:Small-signal ac model

+– D' : DI1 + i1

I2 + i2

I2

DD'dV1 + v1

V1

DD'd

V2 + v2

+

+

Reconstruct an equivalent circuit that corresponds to these small-signal equations:

A general small-signal ac model for the PWM switch networkoperating in CCM.

Transistor port Diode port

Page 27: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Small-signal ac modelof the CCM SEPIC

+–

L1

C2

C1

L2 R

+– D' : D

I2

DD'd

V1

DD'd

Vg + vg

IL1 + i L1

IL2 + i L2

VC1 + vC1

VC2 + vC2

+

Replace switch network with small-signal ac model:

Can now solve thismodel to determine actransfer functions

Page 28: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Small-signal modelsof several basic switch networks

+

v2(t)

i1(t) i2(t)

+

v1(t)

+–1 : DI1 + i1 I2 + i2

I2 dV1 + v1

V1 d

V2 + v2

+

+

+– D' : 1I1 + i1 I2 + i2

I1 dV1 + v1

V2 d

V2 + v2

+

+

+

v2(t)

i1(t) i2(t)

+

v1(t)

+

v2(t)

i1(t) i2(t)

+

v1(t)

+– D' : DI1 + i1 I2 + i2

I2

DD'dV1 + v1

V1

DD'd

V2 + v2

+

+

Page 29: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Table of resultsTransfer functions of the basic buck, boost, and buck-boost converters

Converter Gg0 Gd0 ω0 Q ωz

buck D VD

1LC

R CL ∞

boost 1D'

VD'

D'LC

D'R CL

D'2RL

buck-boost – DD'

VD D'2

D'LC

D'R CL

D'2 RD L

where the transfer functions are written in the standard forms

Gvd(s) = Gd0

1 – sωz

1 + sQω0

+ sω0

2

Gvg(s) = Gg01

1 + sQω0

+ sω0

2

Control-to-output and line-to-output transfer functions Gvd(s) and Gvg(s)

Page 30: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

ccm1

averagingswitch

network1

2

3

4

D

S

K

A

+

_

v1(t)

+

_

v2(t)

i1(t) i2(t)

+–

1

2

3

4

D

S

K

A

Et Gd

5

duty

averaged-switchmodel

(sub-circuit)

d

1-dd

v21-dd

i1

+

_

v2

+

_

v1

i2i1

• Controlled voltage source Et replaces the transistor, controlledcurrent source Gd replaces the diode

• Duty ratio d is input to the subcircuit

• Large-signal, nonlinear model suitable for DC, AC or Transientsimulation

• The same model can be applied in any two-switch PWM converter(the transistor and the diode need not have a common node)

• Limitations: ideal switches, CCM only, valid for two-switchconverters without isolation transformer

Page 31: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CCM Averaged-Switch ModelPSpice Implementation: ccm1

*********************************************************** MODEL: ccm1* Application: two-switch PWM converters* Limitations: ideal switches, CCM only, no transformer*********************************************************** Parameters: none*********************************************************** Nodes:* 1: transistor+ (D)* 2: transistor- (S)* 3: diode cathode (K)* 4: diode anode (A)* 5: duty ratio (duty)**********************************************************.subckt ccm1 1 2 3 4 5Et 1 2 value=(1-v(5))*v(3,4)/v(5)Gd 4 3 value=(1-v(5))*i(Et)/v(5).ends**********************************************************

+–

1

2

3

4

D

S

K

A

Et Gd

5

duty

averaged-switchnetwork

(sub-circuit)

1D

2S

3K

4A

5

duty

ccm1

U1

Page 32: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Sepic converter exampleusing ccm1 model

Objective: generate small-signal control-to-output frequency responses

800u

L1

0.1R2

100uL2

C1

100u

100u

C2

R1

0.5

+

-

ACMAG=1V VdDC=0.5V

50R3

1D

2S

3K

4A

5

duty

U1

ccm1

+

-50V

Vg

V

2x1

2 3 4

sepic-ccm1.sch

Page 33: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

ccm1

(A) sepic-ccm1.dat

10Hz 100Hz 1.0KHz 10KHz 100KHzFrequencyP(V(4))

0d

-100d

-200d

-270d

phase of vout/d

small-signal control-to-output responseVout=50V, R=50, D=0.5

DB(V(4))

80

40

0

-20

magnitude || vout/d ||

Page 34: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• Subcircuit ccm1 is implementation of a large-signal, nonlinearaveraged model of the switch network

• Averaged circuit model of the converter is obtained simply by replacingswitching devices with the averaged-switch subcircuit model

• Linearization and AC small-signal analysis are performed by thesimulator

• Small-signal dynamic responses can be easily generated for differentoperating points or different sets of parameter values

Page 35: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• MOS transistor model: on-resistance RON

• Diode model: constant forward voltage drop VD in series with Rd resistance

• Switch network switchnetwork

1

2

3

4

D

S

K

A

+

_

v1(t)

+

_

v2(t)

i1(t) i2(t)

• Waveforms

0 dTs Tst

v1(t)

0 dTs Tst

i1(t)

Ron i

iv+VD+Rd i

0 dTs Tst

v2(t)

0 dTs Tst

i2(t)

i

-VD-Rd i

v-Ron i

Page 36: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

ccm2

0 dTs Tst

v1(t)

0 dTs Tst

i1(t)

Ron i

iv+VD+Rd i

0 dTs Tst

v2(t)

0 dTs Tst

i2(t)

i

-VD-Rd i

v-Ron i

ss TTidi =1

ss TTidi )1(2 −=

ss TTi

d

di 12

1−=

( )( )iRVvdidRv dDTTonT sss++−+= 11

sss TTTvvv =+ 21

( ) ( )DT

TdTon

TVv

d

d

d

iRd

d

iRv

s

ss

s+−+

−+= 12

11

1

11

Page 37: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CCM Averaged-Switch ModelPSpice Implementation: ccm2

*********************************************************** MODEL: ccm2* Application: two-switch PWM converters, includes * conduction losses due to Ron, VD, Rd* Limitations: CCM only, no transformer*********************************************************** Parameters:* Ron=transistor on resistance* VD=diode forward voltage drop (constant)* Rd=diode on resistance*********************************************************** Nodes: (same as in ccm1)**********************************************************.subckt ccm2 1 2 3 4 5+params: Ron=0 VD=0 Rd=0Eron 1 1x value=i(Et)*(Ron+(1-v(5))*Rd/v(5))/v(5)Et 1x 2 value=(1-v(5))*(v(3,4)+VD)/v(5)Gd 4 3 value=(1-v(5))*i(Et)/v(5).ends**********************************************************

Subcircuit implementation

+–

1

2

3

4

D

S

K

A

Et

Gd

5

duty

averaged-switchsub-circuit

+–

Eron

1D

2S

3K

4A

5

duty

ccm2

U2

Page 38: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Sepic converter example using ccm2 model

Objective: find converter efficiency as a function of the transistoron-resistance, for a range of loads

800u

L1

0.1R2

100uL2

C1

100u

100u

C2

R1

0.5

+

-50V

Vg

+

-DC=0.5V Vd

+

-

Iload1A

10KR4

1D

2S

3K

4A

5du

ty VD=0.8V

ccm2

Rd=0.05

U1

Ron=RonPARAMETERS:Ron 0.0

V

2x1

32 4

Page 39: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

ccm2

(D) sepic-ccm2.dat

1.0A 1.5A 2.0A 2.5A 3.0A 3.5A 4.0A 4.5A 5.0AI_Iload

-100*V(4)* I(Iload)/ V(1)/ I(Vg)

100

95

90

85

80

Efficiency [%] (only conduction losses are included)

Ron=0

Ron=0.5

0.1

0.2

0.3

0.4

Page 40: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

ccm3 ! "

Switch network Waveforms

0 dTs Tst

v1(t)

0 dTs Tst

i1(t)

iv

0 dTs Tst

v2(t)

0 dTs Tst

i2(t)

i/nn v

switchnetwork

1

2

3

4

D

S

K

A

+

_

v1(t)

+

_

v2(t)

i1(t) i2(t)

1:n

PRIMARY SECONDARY

• Converters: Flyback, Cuk, Sepic, Inverse Sepic (Zeta), with isolation transformer

ss TTi

nd

di 12

1−=ss TT

vnd

dv 21

1−=

Page 41: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CCM Averaged-Switch ModelPSpice Implementation: ccm3

*********************************************************** MODEL: ccm3* Application: two-switch PWM converters, * with (possibly) transformer* Limitations: ideal switches, CCM only*********************************************************** Parameters:* n=transformer turns ratio 1:n (primary:secondary)*********************************************************** Nodes: (same as in ccm1)**********************************************************.subckt ccm3 1 2 3 4 5+params: n=1Et 1 2 value=(1-v(5))*v(3,4)/v(5)/nGd 4 3 value=(1-v(5))*i(Et)/v(5)/n.ends**********************************************************

+–

1

2

3

4

D

S

K

A

Et Gd

5

duty

averaged-switchnetwork

(sub-circuit)

1D

2S

3K

4A

5

duty

ccm3

U3

Page 42: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

ccm4

• Combined ccm2 and ccm3 averaged-switch models

• Parameters:

• Transistor on resistance Ron

• Diode forward voltage drop VD

• Diode on resistance Rd

• Transformer turns ratio n

• A general model implementation valid for all two-switch convertersoperating in CCM

Page 43: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CCM Averaged-Switch ModelPSpice Implementation: ccm4

* MODEL: ccm4* Application: two-switch PWM converters, includes * conduction losses due to Ron, VD, Rd* and (possibly) transformer* Limitations: CCM only*********************************************************** Parameters:* Ron=transistor on resistance* VD=diode forward voltage drop (constant)* Rd=diode on resistance* n=transformer turns ratio 1:n (primary:secondary)*********************************************************** Nodes: (same as in ccm1)**********************************************************.subckt ccm4 1 2 3 4 5+params: Ron=0 VD=0 Rd=0 n=1Eron 1 1x value=i(Et)*(Ron+(1-v(5))*Rd/n/n/v(5))/v(5)Et 1x 2 value=(1-v(5))*(v(3,4)+VD)/v(5)/nGd 4 3 value=(1-v(5))*i(Et)/v(5)/n.ends

Subcircuit implementation

+–

1

2

3

4

D

S

K

A

Et

Gd

5

duty

averaged-switchsub-circuit

+–

Eron

1D

2S

3K

4A

5

duty

U4

ccm4

Page 44: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

!"

• Use averaged-switch modeling approach to construct anaveraged model that includes switching losses

• Loss mechanism example: diode reverse recovery

Page 45: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Modeling switching loss

Example: diode storedcharge in boost converter

+

v2(t)

i1(t) i2(t)

+

v1(t)

+–

L

C Rvg(t)

iL(t)

+

v(t)

t

Ts

v1(t)

0

t r

dTs

t

0

i1

i2(t)

0

v2

v2

0

i1

Area –Qr

• Other switching loss mechanismsare ignored in this example; onecan include other losses ifdesired, using a similar procedure

• Determine averaged terminalwaveforms of switch network

• Construct averaged equivalentcircuit model

Waveforms:

Page 46: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Expressions for average terminal waveformsBoost converter, switching loss example

t

Ts

v1(t)

0

tr

dTs

t

0

i1

i 2(t)

0

v2 v2

0

i1

Area –Qr

tr = diode reverse recovery time

Qr = diode recovered charge

( ) ( )( ) ( )ss Trs

sT

tvtTdT

tv 21 11 +−=

( ) ( ) ( )s

rTT T

Qtidti

ss−−= 12 1

Page 47: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged equivalent circuitof switch network

• Diode reverse recovery time affects conversion ratio

• Stored charge leads to power loss, modeled by current sink

( ) ( )ss T

s

rT

tvT

tdtv 21 1

+−=

( ) ( )( )

+−

+−=

s

Trr

Ts

rT T

titQti

T

tdti s

ss

1

12 1

+

_

+

_

+

_

+

_

switch networkaveraged switch model

( )tv1

( )ti1 ( )ti2

( )tv2( )

sTtv1

( )sT

ti1 ( )sT

ti2

( )sT

tv2

1:1

+−

s

r

T

td

s

Trr

T

itQs

1+

Page 48: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Insert averaged switch model into converter circuit

Originalconverter

Averagedmodel

+

v2(t)

i1(t) i2(t)

+

v1(t)

+–

L

C Rvg(t)

iL(t)

+

v(t)

+–

L

C R

⟨ i1(t) ⟩Ts⟨ i2(t) ⟩Ts

+

⟨ v1(t) ⟩Ts

+

⟨ v2(t) ⟩Ts

tr

Ts+ (1 – d) : 1

Qr

Ts

+

⟨ v(t) ⟩Ts

⟨ iL(t) ⟩Ts

⟨ vg(t) ⟩Ts

Page 49: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Efficiency Analysis Boost converter, switching loss example

1

2

IV

VI

P

P

gin

out ==η

D

T

QI

I s

r

+=

1

2

1 DT

t

VV

s

r

g

−+=

1

( )

+

−+

=

+

+−

−==

sload

r

s

r

s

r

s

rg

TI

Q

TD

t

T

QI

I

T

tD

D

IV

VI

1

1

11

1

1

1

2

2

1

Efficiency due to diode reverse recovery. Other switching loss mechanismscan be included using a similar procedure.

Page 50: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

$%

• Basic idea of average-switch modeling:

Define a switch network, containing all of the converter switchingelements

Average terminal waveforms over a switching periodUse controlled sources with values equal to average of the switch

network terminal waveforms

The result is a large-signal, nonlinear, time-invariant model that can beinserted back into the converter network

• The choices of the switch network and the independent terminalwaveforms are not unique - there are many ways to construct averagedswitch models

• Averaged-switch model (suitable for circuit analysis or simulation)yields predictions of converter steady-state and low-frequency dynamicproperties

• Next: apply the averaged-switch modeling approach to other cases ofinterest.

Page 51: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• Averaged switch model in DCM• Using averaged-switch model to predict converter steady-state

characteristics and small-signal dynamics in DCM• Combined CCM/DCM averaged switch model• PSpice implementation of combined CCM/DCM models

- ideal switches (ccm-dcm1)

- ideal switches in converters with isolation transformer (ccm-dcm2)

• Application examples:- comparison of transient simulation results in a SEPIC example

using (1) switching circuit model and (2) averaged model

- small-signal dynamic responses of a flyback converter operating inCCM or DCM

- more converter examples using averaged-switch subcircuits

Page 52: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Change in characteristics at the CCM/DCM boundary

l Steady-state output voltage becomes strongly load-dependentl Simpler dynamics: one pole and the RHP zero are moved to very high

frequency, and can normally be ignored

l Traditionally, boost and buck-boost converters are designed to operatein DCM at full load

l All converters may operate in DCM at light load

So we need equivalent circuits that model the steady-state and small-signal ac models of converters operating in DCM

The averaged switch approach yields an intuitive result that is relativelyeasy to solve

Page 53: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Derivation of DCM averaged switch modelBuck-boost example

+–

L

C R

+

v

vg

iL

+vL–

Switch network

+

v1

v2

+

i1 i2• Define switch terminalquantities v1, i1, v2, i2, asshown

• Let us find the averagedquantities ⟨ v1 ⟩, ⟨ i1 ⟩ , ⟨ v2 ⟩, ⟨i2 ⟩, for operation in DCM,and determine therelations between them

Page 54: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

v1(t)

0

vg – v

v1(t) Tsvg

i2(t)ipk Area q2

v2(t)

0

vg – v

– v

i2(t) Ts

v2(t) Ts

d2Ts d3Ts

DCM waveforms

t

iL(t)

0

ipk

vg

L

vL

vL(t) vg

v

0

+–

L

C R

+

v

vg

iL

+vL–

Switch network

+

v1

v2

+

i1 i2

Page 55: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Basic DCM equations

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

v1(t)

0

vg – v

v1(t) Tsvg

i2(t)ipk Area q2

v2(t)

0

vg – v

– v

i2(t) Ts

v2(t) Ts

d2Ts d3Ts

ipk =vg

Ld1Ts

vL(t) Ts= d1 vg(t) Ts

+ d2 v(t)Ts

+ d3 ⋅ 0

Peak inductor current:

Average inductor voltage:

In DCM, the diode switches off when theinductor current reaches zero. Hence, i(0)= i(Ts) = 0, and the average inductorvoltage is zero. This is true even duringtransients.

vL(t) Ts= d1(t) vg(t) Ts

+ d2(t) v(t)Ts

= 0

Solve for d2:

d2(t) = – d1(t)vg(t) Ts

v(t)Ts

Page 56: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Average switch network terminal voltages

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

v1(t)

0

vg – v

v1(t) Tsvg

i2(t)ipk Area q2

v2(t)

0

vg – v

– v

i2(t) Ts

v2(t) Ts

d2Ts d3Ts

Average the v1(t) waveform:

v1(t) Ts= d1(t) ⋅ 0 + d2(t) vg(t) Ts

– v(t)Ts

+ d3(t) vg(t) Ts

Eliminate d2 and d3:

v1(t) Ts= vg(t) Ts

Similar analysis for v2(t) waveform leads to

v2(t) Ts= d1(t) vg(t) Ts

– v(t)Ts

+ d2(t) ⋅ 0 + d3(t) – v(t)Ts

= – v(t)Ts

Page 57: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Average switch network terminal currents

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

v1(t)

0

vg – v

v1(t) Tsvg

i2(t)ipk Area q2

v2(t)

0

vg – v

– v

i2(t) Ts

v2(t) Ts

d2Ts d3Ts

Average the i1(t) waveform:

Eliminate ipk:

Note ⟨ i1(t)⟩Ts is not equal to d ⟨ iL(t)⟩Ts !

Similar analysis for i2(t) waveform leads to

i1(t) Ts= 1

Tsi1(t)dt

t

t + Ts

=q1

Ts

The integral q1 is the area under the i1(t)waveform during first subinterval. Use trianglearea formula:

q1 = i1(t)dtt

t + Ts

= 12

d1Ts ipk

i1(t) Ts=

d 12(t) Ts

2Lv1(t) Ts

i2(t) Ts=

d 12(t) Ts

2L

v1(t) Ts

2

v2(t) Ts

Page 58: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Input port: Averaged equivalent circuit

i1(t) Ts=

d 12(t) Ts

2Lv1(t) Ts

i1(t) Ts=

v1(t) Ts

Re(d1)

Re(d1) = 2Ld 1

2 Ts

v1(t) Ts

i1(t) Ts

Re(d1)

+

Low-frequency components of input port waveformsobey Ohm’s law

Page 59: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Output port: Averaged equivalent circuit

i2(t) Ts=

d 12(t) Ts

2L

v1(t) Ts

2

v2(t) Ts

i2(t) Tsv2(t) Ts

=v1(t) Ts

2

Re(d1)= p(t)

Ts

p(t)

+

v(t)

i(t)

• Output port is a source of power p(t)

• Power p(t) is independent of load characteristics

• Power p(t) is dependent on (equal to) the power apparentlyconsumed by the switch network input port

Page 60: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

The dependent power source

p(t)

+

v(t)

i(t)

v(t)i(t) = p(t)

v(t)

i(t)

• Must avoid open- and short-circuitconnections of power sources

• Power sink: negative p(t)

Page 61: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

How the power source arisesin lossless two-port networks

In a lossless two-port network without internal energy storage:instantaneous input power is equal to instantaneous output power

In all but a small number of special cases, the instantaneous powerthroughput is dependent on the applied external source and load

If the instantaneous power depends only on the external elementsconnected to one port, then the power is not dependent on thecharacteristics of the elements connected to the other port. The otherport becomes a source of power, equal to the power flowing throughthe first port

A power source (or power sink) element is obtained

Page 62: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Properties of power sources

P1

P2 P3

P1 + P2 + P3

P1P1

n1 : n2

Series and parallelconnection of powersources

Reflection of powersource through atransformer

Page 63: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

The loss-free resistor (LFR)

i2(t) Ts

+

v2(t) Tsv1(t) Ts

i1(t) Ts

Re(d1)

+

p(t)Ts

A two-port lossless network

Input port obeys Ohm’s Law

Power entering input port is transferred to output port

Page 64: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged switch model: buck-boost example

+–

L

C R

+

v

vg

iL

+vL–

Switch network

+

v1

v2

+

i1 i2

i2(t) Ts

v2(t) Tsv1(t) Ts

i1(t) Ts

Re(d)

+–

L

C R

+

+

+ v(t)Ts

vg(t) Ts

p(t)Ts

Original circuit

Averaged model

Page 65: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Solution of averaged model: steady state

P

Re(D)+– R

+

V

Vg

I1Let

L → short circuit

C → open circuit

Converter input power:

Converter output power:

Equate and solve:P =

V g2

Re

P = V 2

R

P =V g

2

Re= V 2

R

VVg

= ± RRe

Page 66: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Steady-state LFR solution

VVg

= ± RRe

is a general result, for any system that canbe modeled as an LFR.

For the buck-boost converter, we have

Re(D) = 2LD2Ts

Eliminate Re:

VVg

= –D2TsR

2L= – D

K

which agrees with the results of previous steady-state analyses.

Page 67: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged models of other DCM converters

• Determine averaged terminal waveforms of switch network

• In each case, averaged transistor waveforms obey Ohm’s law, whileaveraged diode waveforms behave as dependent power source

• Can simply replace transistor and diode with the averagedmodel as follows:

i2(t) Ts

+

v2(t) Tsv1(t) Ts

i1(t) Ts

Re(d1)

+

+

v2(t)

+

v1(t)

i1(t) i2(t)p(t)

Ts

Page 68: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

DCM buck, boost

Re(d)

+–

L

C R

+

v(t)Ts

vg(t) Ts

Re(d)+–

L

C R

+

v(t)Ts

vg(t) Ts

Buck

Boost

p(t)Ts

p(t)Ts

Re = 2Ld 2Ts

Page 69: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

DCM Cuk, SEPIC

Cuk

+–

L1

C2 R

C1 L2

vg(t) Ts

+

v(t)TsRe(d)

+–

L1

C2 R

C1

L2vg(t) Ts

+

v(t)TsRe(d)

SEPIC

p(t)Ts

p(t)Ts

Re =2 L1||L2

d 2Ts

Page 70: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Steady-state solution: DCM buck, boost

P

Re(D)

+– R

+

V

Vg

PRe(D)+– R

+

V

Vg

Let L → short circuit

C → open circuit

Buck

Boost

Page 71: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Steady-state solution of DCM/LFR models

Converter M, CCM M, DCM

Buck D 21 + 1 + 4Re/R

Boost 11 – D 1 + 1 + 4R/Re

2

Buck-boost, Cuk – D1 – D

– RRe

SEPIC D1 – D

RRe

I > Icrit for CCMI < Icrit for DCM

Icrit = 1 – DD

Vg

Re(D)

Page 72: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Small-signal ac modeling of the DCM switch network

d(t) = D + d(t)

v1(t) Ts= V1 + v1(t)

i1(t) Ts= I1 + i1(t)

v2(t) Ts= V2 + v2(t)

i2(t) Ts= I2 + i2(t)

i2(t) Ts

+

v2(t) Tsv1(t) Ts

i1(t) Ts

Re(d)

+

p(t)Ts

d(t)

Large-signal averaged model Perturb and linearize: let

i1(t) Ts=

d 12(t) Ts

2Lv1(t) Ts

i2(t) Ts=

d 12(t) Ts

2L

v1(t) Ts

2

v2(t) Ts

i1 =v1r1

+ j1d + g1v2

i2 = –v2r2

+ j2d + g2v1

Page 73: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

A more convenient way to model the buck and boostsmall-signal DCM switch networks

+

v2(t)

i1(t) i2(t)

+

v1(t)

+

v2(t)

i1(t) i2(t)

+

v1(t)

+

+

v1 r1 j1d g1v2

i1

g2v1 j2d r2

i2

v2

In any event, a small-signal two-port model is used, of the form

Page 74: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Small-signal DCM switch model parameters

+

+–v1 r1 j1d g1v2

i1

g2v1 j2d r2

i2

v2

Switch type g1 j1 r1 g2 j2 r2

Buck,Fig. 10.16(a)

1Re 2(1 – M)V1

DRe

Re 2 – MMRe

2(1 – M)V1

DMRe M 2Re

Boost,Fig. 10.16(b)

1(M – 1)2 Re

2MV1

D(M – 1)Re

(M – 1)2

MRe

2M – 1(M – 1)2 Re

2V1

D(M – 1)Re

(M – 1)2Re

Buck-boost,Fig. 10.7(b)

0 2V1

DRe

Re 2M

Re 2V1

DMRe

M 2Re

Page 75: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

DCM small-signal transfer functions

l When expressed in terms of R, L, C, and M (not D), the small-signal transfer functions are the same in DCM as in CCM

l Hence, DCM boost and buck-boost converters exhibit two polesand one RHP zero in control-to-output transfer functions

l But , value of L is small in DCM. Hence

RHP zero appears at high frequency, usually greater thanswitching frequency

Pole due to inductor dynamics appears at high frequency, nearto or greater than switching frequency

So DCM buck, boost, and buck-boost converters exhibitessentially a single-pole response

l A simple approximation: let L → 0

Page 76: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

The simple approximation L → 0

Buck, boost, and buck-boost converter models all reduce to

+

+– r1 j1d g1v2 g2v1 j2d r2 C R

DCM switch network small-signal ac model

vg v

Transfer functions

Gvd(s) =v

dvg = 0

=Gd0

1 + sωp

Gd0 = j2 R || r2

ωp = 1R || r2 C

Gvg(s) =v

vg d = 0

=Gg0

1 + sωp

Gg0 = g2 R || r2 = M

withcontrol-to-output

line-to-output

Page 77: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Transfer function salient features

Converter Gd0 Gg0 ωp

Buck 2VD

1 – M2 – M M 2 – M

(1 – M)RC

Boost 2VD

M – 12M – 1 M 2M – 1

(M– 1)RC

Buck-boost VD M 2

RC

Page 78: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

R = 12 Ω

L = 5 µH

C = 470 µF

fs = 100 kHz

The output voltage is regulated to be V = 36 V. It is desired to determine Gvd(s) at the

operating point where the load current is I = 3 A and the dc input voltage is Vg = 24 V.

DCM boost exampleControl-to-output transfer function Gvd(s)

+– Q1

L

C R

+

v(t)

D1

Vg

i(t)

+ vL(t) –

iD(t)

iC(t)

Page 79: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Evaluate simple model parameters

P = I V – Vg = 3 A 36 V – 24 V = 36 W

Re =V g

2

P=

(24 V)2

36 W= 16 Ω

D = 2LReTs

=2(5 µH)

(16 Ω)(10 µs)= 0.25

Gd0 = 2VD

M – 12M – 1

=2(36 V)(0.25)

(36 V)(24 V)

– 1

2(36 V)(24 V)

– 1

= 72 V ⇒ 37 dBV

fp =ωp

2π = 2M – 12π (M– 1)RC

=

2(36 V)(24 V)

– 1

2π (36 V)(24 V)

– 1 (12 Ω)(470 µF)= 112 Hz

Page 80: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Control-to-output transfer function, boost example

–20 dB/decade

fp112 Hz

Gd0 ⇒ 37 dBV

f

0˚0˚

–90˚

–180˚

–270˚

|| Gvd ||

|| Gvd || ∠ Gvd

0 dBV

–20 dBV

–40 dBV

20 dBV

40 dBV

60 dBV

∠ Gvd

10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

Page 81: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

!"

• Observed high-frequency response due to inductor dynamics

• Averaged-switch model derivation used:

0=sTLv

which is consistent with the fact that in DCM the inductor current startsfrom zero and ends at zero in each switching cycle, even in transients

• However, high-frequency dynamics due to the inductor indicates thatthe AC voltage across the inductor in the small-signal model is not zero

• Model predictions at high frequencies are not quite correct• Corrected averaged models that include the inductor in the averaged

switch model have recently been describedSee References: [Sun et. al. PESC’99], [Ben-Yaakov et.al. PESC’94]

Page 82: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Objective: a general large-signal averaged-switch model

• Valid in CCM and DCM

• 5 terminals:

transistor port (2 terminals)

diode port (2 terminals)

duty ratio input (1 terminal)

• DCM/CCM boundary resolved within the model, based only on theterminal voltages/currents of the model

• Spice compatible

Page 83: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

v1(t)

d

+

v1

1

2

3

45

dutyd

+

_

v2

_

i2i1

Re(d)p(t)

switchnetwork

1

2

3

4

+

_

+

_

v2(t)

i1(t) i2(t)

1

2

3

45

dutyd

+

_

v2

_

i2i1

averaged-switchmodel

CCM

+–

1

2

3

4

Et Gd

5

duty

1-dd

v21-dd

i1

+

_

v2

+

_

v1

i2i1

?

averaged-switchmodel

DCM

averaged-switchmodel

CCM/DCM

Page 84: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

3

4

K

A

Et Gd

5

duty

averaged-switchmodel

CCM/DCM

d

1-uu

i1

+

_

v2

i2

+–

1

2

D

S

1-uu

v2

+

_

v1

i1

+

=DCM

v

iLfd

d

CCMd

u

s

,2

,

2

12

2

CCM/DCM boundary:

+=

2

12

2

2,

vi

Lfd

ddMAXu

s

u = equivalent switch duty ratio

Page 85: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CCM/DCM Averaged-Switch ModelPSpice Implementation: ccm-dcm1

*************************************************************************************** MODEL: ccm-dcm1* Application: two-switch PWM converters, CCM or DCM* Limitations: ideal switches, no transformer*************************************************************************************** Parameters:* L=equivalent inductance (relevant for DCM)* fs=switching frequency*************************************************************************************** Nodes: (same as in ccm1)**************************************************************************************.subckt ccm-dcm1 1 2 3 4 5 params: L=1 fs=1E6Et 1 2 value=(1-v(u))*v(3,4)/v(u)Gd 4 3 value=(1-v(u))*i(Et)/v(u)Ga 0 a value=MAX(i(Et),0)Va a bRdummy b 0 10Eu u 0 table MAX(v(5), v(5)*v(5)/(v(5)*v(5)+2*L*fs*i(Va)/v(3,4))) (0 0) (1 1).ends**************************************************************************************

Page 86: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

+

=DCM

v

inLfd

d

CCMd

u

s

,2

,

2

12

2

CCM/DCM boundary:

+=

2

12

2

2,

vi

nLfd

ddMAXu

s

u = equivalent switch duty ratio

3

4

K

A

Et Gd

5

duty

averaged-switchmodel

CCM/DCM

d

1-u i1

+

_

v2

i2

+–

1

2

D

S

1-u v2

+

_

v1

i1

n u n u

Page 87: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CCM/DCM Averaged-Switch ModelPSpice Implementation: ccm-dcm2

* MODEL: ccm-dcm2* Application: two-switch PWM converters, CCM or DCM with (possibly) transformer* Limitations: ideal switches, no transformer***************************************************************************************** Parameters:* L=equivalent inductance (relevant for DCM), referred to primary* fs=switching frequency* n=transformer turns ratio 1:n (primary:secondary)***************************************************************************************** Nodes: (same as in ccm1)****************************************************************************************.subckt ccm-dcm2 1 2 3 4 5 params: L=1 fs=1E6 n=1Et 1 2 value=(1-v(u))*v(3,4)/v(u)/nGd 4 3 value=(1-v(u))*i(Et)/v(u)/nGa 0 a value=MAX(i(Et),0)Va a bRdummy b 0 10Eu u 0 table MAX(v(5), v(5)*v(5)/(v(5)*v(5)+2*L*n*fs*i(Va)/v(3,4))) (0 0) (1 1).ends****************************************************************************************

Page 88: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• ccm-dcm1 (for non-isolated converters) and ccm-dcm2 (for convertersthat may include isolation transformer) are general, large-signalaveraged-switch models (PSpice subcircuits) valid for both CCM andDCM

• Can be applied to DC, AC, or Transient simulation of any two-switchPWM converter

• Limitations: ideal switches, no losses are modeled, but the model canbe refined further to include conduction losses

• Application examples:• Comparison of Transient simulation results in a Sepic converter

example using:

– (1) switching circuit model– (2) ccm-dcm2 averaged switch model

• AC simulation results for a flyback converter operating in CCM orDCM

Page 89: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Sepic converter example:switching circuit model

Switching frequency 100kHz, duty ratio D=0.5

100uL4

100u

C4

0.5

R6

800u

L3

MUR820

D1IRF640

M1

100R5

100u

C3

0.1R4Resr3

0.2

+-

+

-

S2

switch

R1120

R710

+

-

V4

+

-

V3

+

-

Vg2

50V

V

242322

21

22x

Page 90: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Sepic converter example:averaged model using ccm-dcm2

Exactly the same PSpice circuit, except the MOSFET M1 and thediode D1 replaced by the ccm-dcm2 subcircuit, and pulsatinggate drive V3 replaced by a duty-ratio voltage source Vd

800u

L1

100uL2

+

-

ACMAG=1V VdDC=0.5V

100u

C2

0.5

R1

100R3

C1

100u0.1R2Resr1

0.2

1D

2S

3K

4A

5

duty

ccm-dcm2

U6

R10

20

+

-

V4+-

+

-

S1

switch

+

-

Vg

50V

V

2x1

2 3 4

Page 91: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

(B) sepic-switch.dat

0s 5ms 10ms 15ms 20msTimeV(24) V(4)

80V

60V

40V

20V

0V

Averaged model

Switching model

Vout

start-up transient load transient

Start-up and load transient response

Page 92: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

(B) sepic-switch.dat

10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4msTimeI(D1) I(X_U6.Gd)

10A

8A

6A

4A

2A

0A

-2A

Diode current during load transient

switching model

averaged model

Details of the diode current waveform around the load transient

Page 93: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Flyback converter exampleusing ccm-dcm2 averaged-switch model

CCM for Rload=1 Ohm, DCM for Rload=2 Ohm

+

-0.25 VdAC=1

500uFC1

+

-48VVg

0.2R2

* *1:n

Lm

2

3

4

1Lm=50u

n=0.25

transformer

T1

1D

2S

3K

4A

5du

tyn=0.25

ccm-dcm2

U1

L=50ufs=100K

PARAMETERS:Rload 2

R1

Rload

V

1

2

34

Page 94: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

ccm-dcm2

(C) flyback-ccm-dcm2.dat

10Hz 100Hz 1.0KHz 10KHz 100KHzFrequencyP(V(4))

0d

-100d

-200d

DB(V(4))

50

0

-50

Magnitude response, control-to-output v/d

Phase response, control-to-output v/d

Rload = 1, CCM

Rload = 2, DCM

Rload = 2, DCM

Rload = 1, CCM

Frequency responses generated by PSpice AC analyses

Page 95: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Other Converter Examples

Watkins-Johnson converter

Pspice averaged circuit model using ccm-dcm2 averaged-switch subcircuit

+

-

Vg

**

1:n

Lm

2

34

1

transformer

+

- Vd

1D

2S

3K

4A

5

duty

ccm-dcm2

**

1:n

Lm

2

34

1

transformer

+

-

Vg

Page 96: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Other Converter Examples

Cuk converter withisolation transformer

PSpice averaged circuit model using ccm-dcm2 averaged-switch subcircuit

+

-

Vg * *1:n

Lm

2

3

4

1

transformer

+

-

Vg * *1:n

Lm

2

3

4

1

transformer

1D

2S

3K

4A

5

duty

ccm-dcm2

U2

Page 97: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• Averaged switch model for current-programmed mode (CPM) inCCM

• Steady-state and simple AC model in CCM• Averaged switch model for CPM in DCM• Steady-state and small-signal AC model in DCM• Large-signal averaged CCM/DCM model for current-mode

controller• PSpice implementation of the averaged CPM controller model• Application examples

- Buck converter with current-programmed mode controller

Page 98: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Current-programmed control

+–

Buck converter

Current-programmed controller

Rvg(t)

is(t)

+

v(t)

iL(t)

Q1

L

CD1

+

Analogcomparator

Latch

Ts0

S

R

Q

Clock

is(t)

Rf

Measureswitch

current

is(t)Rf

Controlinput

ic(t)Rf

–+

vref

v(t)Compensator

Conventional output voltage controller

Switchcurrentis(t)

Control signalic(t)

m1

t0 dTs Ts

on offTransistor

status:

Clock turnstransistor on

Comparator turnstransistor off

The peak transistor currentreplaces the duty cycle as theconverter control input.

Page 99: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

A simple approximation

iL(t) Ts= ic(t)

• Neglects switching ripple and artificial ramp (slope compensation)

• Yields physical insight and simple first-order model

• Accurate when converter operates well into CCM (so that switchingripple is small) and when the magnitude of the artificial ramp is nottoo large

• Well-accepted by practicing engineers

• Resulting small-signal relation:

iL(s) ≈ ic(s)

Page 100: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged switch modelingwith the simple approximation

+–

L

C R

+

v(t)

vg(t)

iL(t)

+

v2(t)

i1(t) i2(t)

Switch network

+

v1(t)

v2(t) Ts= d(t) v1(t) Ts

i1(t) Ts= d(t) i2(t) Ts

Averaged terminal waveforms,CCM:

The simple approximation:

i2(t) Ts≈ ic(t) Ts

Buck converter example

Page 101: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CPM averaged switch equations

v2(t) Ts= d(t) v1(t) Ts

i1(t) Ts= d(t) i2(t) Ts

i2(t) Ts≈ ic(t) Ts

Eliminate duty cycle:

i1(t) Ts= d(t) ic(t) Ts

=v2(t) Ts

v1(t) Ts

ic(t) Ts

i1(t) Tsv1(t) Ts

= ic(t) Tsv2(t) Ts

= p(t)Ts

So:

• Output port is a current source

• Input port is a dependent power sink

Page 102: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CPM averaged switch model

+–

L

C R

+

⟨v(t)⟩Ts

⟨vg(t)⟩Ts

⟨iL(t)⟩Ts

+

⟨v2(t)⟩Ts

⟨i1(t)⟩Ts⟨i2(t)⟩Ts

Averaged switch network

+

⟨v1(t)⟩Ts

⟨ic(t)⟩Ts

⟨ p(t)⟩Ts

Page 103: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Results for other converters

+–

L

C R

+

⟨v(t)⟩Ts

⟨vg(t)⟩Ts

⟨iL(t)⟩Ts

Averaged switch network

⟨ic(t)⟩Ts

⟨ p(t)⟩Ts

+–

L

C R

+

⟨v(t)⟩Ts

⟨vg(t)⟩Ts

⟨iL(t)⟩Ts

Averaged switch network

⟨ic(t)⟩Ts

⟨ p(t)⟩Ts

Boost

Buck-boost

Page 104: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Perturbation and linearizationto construct small-signal model, CCM

v1(t) Ts= V1 + v1(t)

i1(t) Ts= I1 + i1(t)

v2(t) Ts= V2 + v2(t)

i2(t) Ts= I2 + i2(t)

ic(t) Ts= Ic + ic(t)

Let

V1 + v1(t) I1 + i1(t) = Ic + ic(t) V2 + v2(t)

Resulting input port equation:

Small-signal result:

i1(t) = ic(t)V2

V1

+ v2(t)Ic

V1

– v1(t)I1

V1

Output port equation:

î2 = îc

Page 105: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Resulting small-signal modelBuck example

+–

L

C R

+

+

Switch network small-signal ac model

+

vg –V1

I1

i1 i2

i cV2

V1i c

v1 v2Ic

V1

v2 v

i1(t) = ic(t)V2

V1

+ v2(t)Ic

V1

– v1(t)I1

V1

Page 106: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Predicted transfer functions of the CPM buck converter

+–

L

C R

+

vg ic v– D2

RDR

vic D 1 + sLR

ig iL

Gvc(s) =v(s)ic(s)

vg = 0

= R || 1sC

Gvg(s) =v(s)vg(s)

i c = 0

= 0

Page 107: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Table of resultsbasic converters

+–

ig

vg RCr1f1(s) i c g1 v g2 vg f2(s) i c r2 v

+

Converter g1 f1 r1 g2 f2 r2

Buck DR

D 1 + sLR

– RD2 0 1 ∞

Boost 0 1 ∞ 1D'R

D' 1 – sLD'2R R

Buck-boost – DR

D 1 + sLD'R

– D'RD2 – D2

D'R – D' 1 – sDL

D'2R R

D

Page 108: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Discontinuous conduction modein current-programmed converters

• Again, use averaged switch modeling approach

• Result: simply replace

Transistor by power sink

Diode by power source

• Inductor dynamics appear at high frequency, near to or greaterthan the switching frequency

• Small-signal transfer functions contain a single low frequency pole

• DCM CPM boost and buck-boost are stable without artificial ramp

• DCM CPM buck without artificial ramp is stable for D < 2/3. Asmall artificial ramp ma ≥ 0.086m2 leads to stability for all D.

Page 109: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

DCM CPM buck-boost example

+–

L

C R

+

v(t)

vg(t)

iL(t)

Switch network

+

v1(t)

v2(t)

+

i1(t) i2(t)

m1

=v1 Ts

L

m2 =v2 Ts

L

t

iL(t)

0

ipk

vL(t)

0

v1(t) Ts

v2(t) Ts

ic – ma

Page 110: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Analysis

m1

=v1 Ts

L

m2 =v2 Ts

L

t

iL(t)

0

ipk

vL(t)

0

v1(t) Ts

v2(t) Ts

ic – ma

ipk = m1d1Ts

m1 =v1(t) Ts

L

ic = ipk + mad1Ts

= m1 + ma d1Ts

d1(t) =ic(t)

m1 + ma Ts

Page 111: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged switch input port equation

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

d2Ts d3Ts

i2(t)ipk Area q2

i2(t) Ts

i1(t) Ts=

1

Ts

i1(τ)dτt

t + Ts

=q1

Ts

i1(t) Ts=

12

ipk(t)d1(t)

i1(t) Ts=

12

m1d 12(t)Ts

i1(t) Ts=

12

Lic2 fs

v1(t) Ts1 +

ma

m1

2

i1(t) Tsv1(t) Ts

=

12

Lic2 fs

1 +ma

m1

2 = p(t)Ts

Page 112: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Discussion: switch network input port

• Averaged transistor waveforms obey a power sink characteristic

• During first subinterval, energy is transferred from input voltagesource, through transistor, to inductor, equal to

W =12

Li pk2

This energy transfer process accounts for power flow equal to

p(t)Ts

= W fs =12

Li pk2 fs

which is equal to the power sink expression of the previous slide.

Page 113: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged switch output port equation

d1Ts

Ts

t

i1(t)ipkArea q1

i1(t) Ts

d2Ts d3Ts

i2(t)ipk Area q2

i2(t) Ts

i2(t) Ts=

1

Ts

i2(τ)dτt

t + Ts

=q2

Ts

q2 = 12 ipkd2Ts

d2(t) = d1(t)v1(t) Ts

v2(t) Ts

i2(t) Ts=

p(t)Ts

v2(t) Ts

i2(t) Tsv2(t) Ts

=

12

Lic2(t) fs

1 +mam1

2 = p(t)Ts

Page 114: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Discussion: switch network output port

• Averaged diode waveforms obey a power sink characteristic

• During second subinterval, all stored energy in inductor istransferred, through diode, to load

• Hence, in averaged model, diode becomes a power source,having value equal to the power consumed by the transistorpower sink element

Page 115: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Averaged equivalent circuit

i2(t) Ts

v2(t) Tsv1(t) Ts

i1(t) Ts

+–

L

C R

+

+

+ v(t)Ts

vg(t) Ts

p(t)Ts

Page 116: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Steady state model: DCM CPM buck-boost

+– R

+

V

Vg

P

V 2

R = P

Solution

P =

12

LI c2(t) fs

1 +Ma

M 1

2

V= PR = Ic

RL fs

2 1 +Ma

M 1

2

for a resistive load

Page 117: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Models of buck and boost

+–

L

C R

+

v(t)Ts

vg(t) Ts

p(t)Ts

+–

L

C R

+

v(t)Ts

vg(t) Ts p(t)Ts

Buck

Boost

Page 118: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Summary of steady-stateDCM CPM characteristics

Converter M IcritStability rangewhen ma = 0

Buck Pload – P

Pload

12

Ic – M ma Ts 0 ≤ M < 2

3

Boost Pload

Pload – P Ic – M – 1

Mma Ts

2 M

0 ≤ D ≤ 1

Buck-boost Depends on load characteristic:

Pload = P

Ic – MM – 1

ma Ts

2 M – 1

0 ≤ D ≤ 1

I > Icrit for CCM

I < Icrit for DCM

Page 119: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Linearized small-signal models

+

+– v1 r1 f1i c g1v2

i1

g2v1 f2i c r2

i2

v2

+

L

C R

+

vg v

iL

Buck

+

+– v1 r1 f1i c g1v2

i1

g2v1 f2i c r2

i2

v2

+

L

C R

+

vg v

iL

Boost

Page 120: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Linearized small-signal models: Buck-boost

+

+–

v1 r1 f1i c g1v2

i1

g2v1 f2i c r2

i2

v2

+

L

C R

+

–vg v

iL

Page 121: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

DCM CPM small-signal parameters: input port

Converter g1 f1 r1

Buck 1R

M 2

1 – M

1 –mam1

1 +mam1

2I1

Ic

– R 1 – MM 2

1 +mam1

1 –mam1

Boost – 1R

MM – 1

2 IIc

R

M 2 2 – MM – 1

+2

mam1

1 +mam1

Buck-boost 0 2I1

Ic

– RM 2

1 +mam1

1 –mam1

Page 122: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

DCM CPM small-signal parameters: output port

Converter g2 f2 r2

Buck

1R

M1 – M

mam1

2 – M – M

1 +mam1

2 IIc

R1 – M 1 +

mam1

1 – 2M +mam1

Boost 1R

MM – 1

2I2

Ic

R M – 1M

Buck-boost 2MR

mam1

1 +mam1

2I2

IcR

Page 123: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Simplified DCM CPM model, with L = 0

+

+– r1 f1i c g1v g2vg f2i c r2 C Rvg v

Buck, boost, buck-boost all become

Gvc(s) =v

ic vg = 0

=Gc0

1 + sωp

Gc0 = f2 R || r2

ωp = 1R || r2 C

Gvg(s) =v

vg ic = 0

=Gg0

1 + sωp

Gg0 = g2 R || r2

Page 124: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

! "#

t

0 dTs Ts

ic-ma

m1-m2

ipk

iL(t)

d2Ts=(1-d)Ts

t

0 dTs Ts

ic-ma

m1 -m2

ipk

(d+d2)Ts

iL(t)

d2Ts

sacpk dTmii −=

−+

−=

2222

21 s

pks

pkTL

Tdmid

dTmidi

s

=DCM

Tm

i

CCMd

d

s

pk

2

2

1

−=

s

pk

Tm

idMINd

22 ,1CCM/DCM:

Page 125: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

! "#

( )( ) sas

sTLc

TddmdTm

Tdmiddid s

21

2222

2

22

++

−−+=

−−=s

sac

Tm

dTmidMINd

22 ,1

ci 1m 2m

d

sTLiInputs:

Model:

Output: duty ratio

2d

Page 126: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

CPM Large-Signal Averaged Model:PSpice Implementation

*********************************************************** MODEL: CPM* Current-Programmed-Mode CCM/DCM controller model.* All parameters and inputs are referred to * the primary side.*********************************************************** Parameters:* L=equivalent inductance, referred to primary* fs=switching frequency* va=amplitude of the artificial ramp, va=Rf*ma/fs* Rf=equivalent current-sense resistance*********************************************************** Nodes:* ctr: control input, v(ctr)=Rf*ic* current: sensed average inductor current v(current)=Rf*iL* 1: voltage across L in interval 1, slope m1=v(1)/L* 2: (-) voltage across L in interval 2, slope m2=v(2)/L* d: duty ratio (output of the controller)**********************************************************.subckt CPM ctr current 1 2 d+params: L=100e-6 fs=1e5 va=0.5 Rf=0.1*

* generate d2 for CCM/DCMEd2 d2 0 table + MIN(+ L*fs*(v(ctr)-va*v(d))/Rf/(v(2)),+ 1-v(d)+ ) (0,0) (1,1)* Em1 m1 0 value=Rf*v(1)/L/fsEm2 m2 0 value=Rf*v(2)/L/fs** generate duty-ratio d (valid CCM and DCM operation)*Eduty d 0 table + + 2*(v(ctr)*(v(d)+v(d2))+ -v(current)-v(m2)*v(d2)*v(d2)/2)+ /(v(m1)*v(d)+2*va*(v(d)+v(d2)))+ (0.01,0.01) (0.99,0.99)*.ends ; end of subcircuit CPM **********************************************************

Page 127: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• Demonstrate how CCM/DCM averaged-switch model can be usedtogether with CCM/DCM averaged model of the current-mode controller

• Use DC sweep simulation to show steady-state characteristicsincluding operation in DCM or CCM

• Use AC simulation to show control-to-output responses compared forduty-ratio control and current-mode control, in DCM or CCM

• Use parametric sweep simulation to find the amplitude of the artificialramp to minimize input-to-output audio-susceptibility

• Specifications:• Input Vg = 28V, output V = 5-20V, 0.5-2A

• Switching frequency fs=100kHz, inductance L = 35uH

• Equivalent current-sense resistance Rf = 1• Artificial-ramp amplitude Va = 0-3V

Page 128: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Buck Converter with Current-Mode Control

Example: Cpm-buck

10R2C1

100u

0.05

R1L1

35uH1

D

2S

3K

4A

5

duty

fs=100K

ccm-dcm1

U2

L=35uH

CTRVc

CURRENTRf iL

1V

1

2V

2

Dduty

va=VaRf=1

CPMU1

L=35uHfs=100kHz

OU

T+

OU

T-

IN+

IN-

V(2x)

E4

EVALUE

OUT+

OUT-

IN+

IN-

i(L1)

E2

EVALUE

OU

T+

OU

T-

IN+

IN-

V(1)-V(2x)EVALUE

E3

PARAMETERS:Va 1+

-

VcDC=2V

+

-

DC=28V Vg

VDB

2x

d

ctr

1

3

531.52mV

177.09mV

5.315V

Page 129: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

(E) cpm-buck.dat

0.5V 1.0V 1.5V 2.0V 2.5V 3.0VVcV(d) 1-V(d) V(Xs.u) V(Xcpm.d2)

1.0V

0.8V

0.6V

0.4V

0.2V

0V

DCM CCM

u

d

d2

1-d

Duty ratio d, equivalent duty ratio u, and diode conductioninterval d2 as functions of the control input Vc

Page 130: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

(F) cpm-buck.dat

0.5V 1.0V 1.5V 2.0V 2.5V 3.0VVcI(L1) v(ctr)

3.0

2.5

2.0

1.5

1.0

0.5

0

iL

Vc=Rf*Ic

Average inductor current iL as a function of the control input Vc

Page 131: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

(H) cpm-buck.dat

10Hz 100Hz 1.0KHz 10KHz 100KHzFrequencyDB(V(3)) DB(V(3)/v(d)) P(V(3)) P(V(3)/v(d))

100

50

0

-50

-100

-150

-200

Vc=2.0, CCM

v/d

v/vc

v/d

v/vc

MAGNITUDE

PHASE

Control-to-output frequency responses for duty-ratio control (v/d)and current-mode control (v/vc). The converter operates in CCM.

Page 132: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

(H) cpm-buck.dat

10Hz 100Hz 1.0KHz 10KHz 100KHzFrequencyDB(V(3)) DB(V(3)/v(d)) P(V(3)) P(V(3)/v(d))

50

0

-50

-100

-150

Vc=1.5, DCM

PHASE

MAGNITUDE

v/vc

v/d

v/vc

v/d

Control-to-output frequency responses for duty-ratio control (v/d)and current-mode control (v/vc). The converter operates in DCM.

Page 133: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Va=0.8, v/vg(0) = -62.848dB

(A) cpm-buck.dat

0 0.5 1.0 1.5 2.0VaVDB(3)

-20

-30

-40

-50

-60

-70

Audio-susceptibility v/vg as a function of the artificial-ramp amplitude Va

Parametric sweep used to determine amplitude of the artificial rampVa to minimize input-to-output response (audio-susceptibility) v/vg.

Page 134: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• Ideal rectifier• Averaged model obtained by averaging over switching period• Averaged model obtained by averaging over line period• Application examples:

- Power factor corrector based on boost converter operating in DCM- Power factor corrector based on SEPIC with nonlinear-carrier control

Page 135: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Properties of the Ideal Rectifier

It is desired that the rectifier present a resistive load to the ac powersystem. This leads to

• unity power factor

• ac line current has same waveshape as voltage

iac(t) =vac(t)

Re

Re is called the emulated resistance Re

+

vac(t)

iac(t)

Page 136: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Control of power throughput

Re(vcontrol)

+

vac(t)

iac(t)

vcontrol

Pav =V ac,rms

2

Re(vcontrol)

Power apparently “consumed” by Re

is actually transferred to rectifier dcoutput port. To control the amountof output power, it must be possibleto adjust the value of Re.

Page 137: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Output port model

Re(vcontrol)

+

vac(t)

iac(t)

vcontrol

v(t)

i(t)

+

p(t) = vac2/Re

Ideal rectifier (LFR)

acinput

dcoutput

The ideal rectifier islossless and contains nointernal energy storage.Hence, theinstantaneous inputpower equals theinstantaneous outputpower. Since theinstantaneous power isindependent of the dcload characteristics, theoutput port obeys apower sourcecharacteristic.

p(t) =vac

2 (t)Re(vcontrol(t))

v(t)i(t) = p(t) =vac

2 (t)Re

Page 138: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Equations of the ideal rectifier / LFR

iac(t) =vac(t)

Re(vcontrol)

v(t)i(t) = p(t)

p(t) =vac

2 (t)Re(vcontrol(t))

Vrms

Vac,rms= R

Re

Iac,rms

Irms= R

Re

Defining equations of theideal rectifier:

When connected to aresistive load of value R, theinput and output rms voltagesand currents are related asfollows:

A switch network that is capable of satisfying the above (averaged)equations can be employed in low-harmonic rectifier applications

Page 139: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Single-phase system with internal energy storage

vac(t)

iac(t)

Re

+

Ideal rectifier (LFR)

C

i2(t)ig(t)

⟨ pac(t)⟩Ts

vg(t)

i(t)

load

+

v(t)

pload(t) = VI = Pload

Energy storagecapacitor

vC(t)

+

Dc–dcconverter

Energy storage capacitorvoltage vC(t) must beindependent of input andoutput voltage waveforms, sothat it can vary according to

=d 1

2 CvC2 (t)

dt= pac(t) – pload(t)

This system is capable of

• Wide-bandwidth control ofoutput voltage

• Wide-bandwidth control ofinput current waveform

• Internal independent energystorage

Page 140: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Large signal modelaveraged over switching period Ts

Re(vcontrol)⟨ vg(t)⟩Ts

vcontrol

+

Ideal rectifier (LFR)

acinput

dcoutput

+–

⟨ ig(t)⟩Ts

⟨ p(t)⟩Ts

⟨ i2(t)⟩Ts

⟨ v(t)⟩TsC Load

Ideal rectifier model, assuming that inner wide-bandwidth loopoperates ideally

High-frequency switching harmonics are removed via averaging

Ac line-frequency harmonics are included in model

Nonlinear and time-varying

Page 141: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Predictions of large-signal model

Re(vcontrol)⟨ vg(t)⟩Ts

vcontrol

+

Ideal rectifier (LFR)

acinput

dcoutput

+–

⟨ ig(t)⟩Ts

⟨ p(t)⟩Ts

⟨ i2(t)⟩Ts

⟨ v(t)⟩TsC Load

vg(t) = 2 vg,rms sin ωt

If the input voltage is

Then theinstantaneous poweris:

p(t)Ts

=vg(t) Ts

2

Re(vcontrol(t))=

vg,rms2

Re(vcontrol(t))1 – cos 2ωt

which contains a constant term plus a second-harmonic term

Page 142: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Separation of power source into its constant andtime-varying components

+

⟨ i2(t)⟩Ts

⟨ v(t)⟩TsC Load

V g,rms2

Re–

V g,rms2

Recos2 2ωt

Rectifier output port

The second-harmonic variation in power leads to second-harmonicvariations in the output voltage and current

Page 143: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Removal of even harmonics via averaging

t

v(t)

⟨ v(t)⟩T2L

⟨ v(t)⟩Ts

T2L = 12

2πω = π

ω

Page 144: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Resulting averaged model

+

⟨ i2(t)⟩T2L

⟨ v(t)⟩T2LC Load

V g,rms2

Re

Rectifier output port

Time invariant model

Power source is nonlinear

Page 145: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Perturbation and linearization

v(t)T2L

= V + v(t)

i2(t) T2L= I2 + i2(t)

vg,rms = Vg,rms + vg,rms(t)

vcontrol(t) = Vcontrol + vcontrol(t)

V >> v(t)

I2 >> i2(t)

Vg,rms >> vg,rms(t)

Vcontrol >> vcontrol(t)

Let with

The averaged model predicts that the rectifier output current is

i2(t) T2L=

p(t)T2L

v(t)T2L

=vg,rms

2 (t)

Re(vcontrol(t)) v(t)T2L

= f vg,rms(t), v(t)T2L

, vcontrol(t))

Page 146: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Linearized result

I2 + i2(t) = g2vg,rms(t) + j2v(t) –vcontrol(t)

r2

g2 =df vg,rms, V, Vcontrol)

dvg,rmsvg,rms = Vg,rms

= 2Re(Vcontrol)

Vg,rms

V

where

– 1r2

=df Vg,rms, v

T2L, Vcontrol)

d vT2L

v T2L= V

= –I2

V

j2 =df Vg,rms, V, vcontrol)

dvcontrolvcontrol = Vcontrol

= –V g,rms

2

VRe2(Vcontrol)

dRe(vcontrol)

dvcontrolvcontrol = Vcontrol

Page 147: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Small-signal equivalent circuit

C

Rectifier output port

r2g2 vg,rms j2 vcontrol R

i2

+

v

v(s)vcontrol(s)

= j2 R||r21

1 + sC R||r2

v(s)vg,rms(s)

= g2 R||r21

1 + sC R||r2

Predicted transfer functions

Control-to-output

Line-to-output

Page 148: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Constant power load

vac(t)

iac(t)

Re

+

Ideal rectifier (LFR)

C

i2(t)ig(t)

vg(t)

i(t)

load

+

v(t)

pload(t) = VI = Pload

Energy storagecapacitor

vC(t)

+

Dc-dcconverter

+–Pload V

⟨ pac(t)⟩Ts

Rectifier and dc-dc converter operate with same average power

Incremental resistance R of constant power load is negative, and is

R = – V 2

Pav

which is equal in magnitude and opposite in polarity to rectifierincremental output resistance r2 for all controllers except NLC

Page 149: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Transfer functions with constant power load

v(s)vcontrol(s)

=j2

sC

v(s)vg,rms(s)

=g2

sC

When r2 = –R, the parallel combination r2 || R becomes equal to zero.The small-signal transfer functions then reduce to

Page 150: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

!

Objectives:• Example of how large-signal averaged-switch model can be used for

analysis and simulation of a power-factor corrector

• Show examples of averaged pulse-width modulator model, andimplementation of closed-loop control

• Use transient simulation to study start-up transient response of the PFCand harmonic distortion of the AC line current in steady state

Specifications:• Input: 120Vrms, 50Hz. Output: 300VDC, 100W

• Switching frequency: 100kHz

Page 151: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

!

L

vline

i line +

_

vg

+

_

VCo

+

_

vco

ig = <i L>

L

vline

i lineis

+

_

vg

+

_

VoCo

+

_

vco

ig = <i L>id

Re p(t)

<i s>

<i d>

Switching circuit model Averaged circuit model (in DCM)

)(

2

ge

g

e

g

ge

g

TdTsg vVR

v

R

v

vV

p

R

viii

ss −+=

−+=+=

−=

V

vR

vi

ge

gg

1

1

se TD

LR

2

2=

Line current distrortion dueto this term

Boost converter operates in DCM at constant duty ratio, constant frequency

Page 152: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

DCM Boost PFC

Averagedmodel ofthe boostrectifier

Averaged PWM model: d=vm/VM=0.5vm,Dmin=0.1, Dmax=0.9 limits

Closed-loop outputvoltage control

VAMPL=170

diodeD3

diodeD4

L1

200uH0.2

R2

+

-VCC

12V10KR6

+

-Vref5V

10KR4

R3600K

C2 1u

0.9

0.1

0.5 +-

Voffset

2V

diode

D2

diode

D1

1

+ 3

- 2

V+

4

V-

11

U2A

LM324

+

-

Vac

FREQ=50

R5 3.3K

C1150uF

RloadR1

1D

2S

3K

4A

5

duty

L=200uH

U1

ccm-dcm1fs=100KHz

PARAMETERS:Rload 900

V

m

d

output

PWM

Page 153: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

(A) dcm-boost-rectifier-closed-loop.dat

0s 50ms 100ms 150ms 200msTimeV(output)

400V

200V

0V

V(d)

0.8

0.4

0

100W load

50W load

Duty ratio d

100W load

50W load

Start-up transient response for full load and 50% load

Page 154: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

(A) dcm-boost-rectifier-closed-loop.dat

180ms 185ms 190ms 195ms 200msTimeI(Vac)

1.5A

1.0A

0.5A

0A

-0.5A

-1.0A

-1.5A

100W load1st harmonic: 0.87A3rd harmonic: 0.14A (16.4%)THD: 16.4%

50W load1st harmonic: 0.48A3rd harmonic: 0.08A (16.2%)THD: 16.2%

AC line current waveforms at full load and 50% load

Page 155: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

AC line current waveforms at full load (100W),50% load, and 150% load

(A) dcm-boost-rectifier-closed-loop.dat

500ms 505ms 510ms 515ms 520msTimeI(Vac)

2.0A

0A

-2.0A

-4.0A

-6.0A

-8.0A

Converter operates in CCM

150W load

100W load

50W load

Page 156: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Nonlinear-CarrierController

Rsis

is

+

–vm

voltage-looperror amplifier

Vref

AC linevoltage

120V, 60Hz

Magnetics 1F19 UU

53 turns 53 turns#18 #18

136 turns #18

IRF840

1uF

2400uF

• Active current shaping using Nonlinear Carrier Control method

• Sepic converter has integrated magnetics designed for zero switchingripple in the AC line current

• Specifications:

• Input: 90-120Vrms, 60Hz. Output: 48VDC, 200W

• Switching frequency: 90kHz

Page 157: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Objectives:• Show application of the CCM/DCM averaged-switch model in power-

factor correctors with active current shaping and closed-loop outputvoltage control

• Show average model implementation of a nonlinear pulse-widthmodulator (NLC controller)

• Compare average model predictions to experimental results:• AC line current waveshapes

• Start-up and load transient responses

Page 158: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

+– NLC generator

vc(t) = vm f(t/Ts)

switchcurrent sensor

switchdrive

Q R

SQ

vmvc(t)

vq(t) = Rs < i s >

clock

d

is [5A/div]

vc

vq

c(t)

−=

s

sms T

t

t

TvTtf 1)/(

d

dviR mTss

s

−= 1

mTss

m

viR

vd

s+

=

sTsg ii =g

s

mg v

VR

vi

=V

v

d

d g=−1

Ideal current shaping

NLC Controller Model

Page 159: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Sepic PFC with NLC Control:Simulation Model

Coupled-inductormodel

NLC controller model Closed-loop outputvoltage control

diodeD2

diodeD3

diodeD4

diodeD1

+

- Vsense

* *1:n

Lm

2

3

4

1

n=1

transformer

T1 Lm=180uH

1D

2S

3K

4A

5

duty

L=180uH ccm-dcm1

U1

fs=90kHz

OUT+

OUT-

IN+

IN-V(m)/(Rs*I(Vsense)+V(m))

E1EVALUE

L-13-23950uH

**

1:n

12

34

TX1n=0.942400uF

C3

Rload

17

+

-

VAMPL=170

Vac

1

+ 3

- 2

V+

4

V-

11

LM324

U2A

R3

18K

R2

68K

R4 15k C4 1uF

+ -

Vref

10.4V

+ -

Vcc12V

C1

1uF

0

0

00

00

0

0

0

0

0 0

0

m

NLC controller

Page 160: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

i line [2A/div]

Line current harmonics [1.6%/div]

3 5 7 9 11 13 15 17

0

2A

0A

-2A

i line

Experiment

Simulation

i line [1A/div]

Line current harmonics [2.4%/div]

Experiment

Simulation

1A

0.5A

0 A

-0.5A

-1A

0

3 5 7 9 11 13 15 17

i line

AC line current waveform and spectrum at 50W load (left) and170W load (right)

Page 161: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

-3A

vo

vm

i line

50V

30V

10V

0V

3A

0A

vm

vo

i line [2A/div]

Experiment

Simulation

50W to 125W load transient in the Sepic PFC

Page 162: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

vg

vm

i line

200V

0V

3A

-3A

10V

0V

100V

0V

0A

vo

vo

vm

vg

i line [2A/div]

Experiment Simulation

Start-up transient in the Sepic PFC at 50W load

Page 163: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

• The averaged switch modeling approach: replace switch network withan equivalent circuit that correctly predicts the low-frequencycomponents of the switch network terminal waveforms

• Seminar addressed:

- PWM converters in continuous and discontinuous conduction modes- PWM converters with current-programmed mode (CPM) control

- Single-phase low-harmonic rectifiers (power-factor correctors)

• In each case, the large-signal averaged switch model can be used:- to develop steady-state and (by linearization) small-signal circuit

models suitable for analysis- to construct Spice-compatible model implementations suitable for

DC, Transient and AC simulations• A number of PSpice model implementation examples and converter

application examples were presented

Page 164: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Selected bo oks:

R.W. Erickson, Fundamentals of Power Electronics, Chpman & Hal, 1997.Web page: http://ece-www.colorado.edu/~pwrelect/book/bookdir.html

J.G.Kassakian, M.F.Schlecht, G.C.Verghese, Principles of Power Electronics, Addison-Wesley, 1991.

A.Kislovski, R.Redl, N.Sokal, Dynamic Analysis of Switched-Mode DC/DC Converters, New York: VanNostrand Reinhold, 1994.

P.T. Krein, Elements of Power Electronics, Oxford University Press, 1998.

Daniel M. Mitchel, DC-DC Switching Regulator Analysis, New York: McGraw-Hill, 1988.

N.Mohan, T.Undeland, W.Robbins, Power Electronics: Converters, Applications and Design, Second Edition,John Wiley & Sons, 1995.

S.M. Sandler, SMPS Simulation with Spice 3, McGraw Hill, 199.

Page 165: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Selected papers on averaged modeling of switching power converters

R. M. Bass, J. Sun, “Averaging under large-signal conditions,” IEEE PESC 1998, pp. 630-632.

R.Erickson, M.Madigan, S.Singer, “Design of a simple high power factor rectifier based on the flybackconverter,” IEEE APEC, 1990, pp.792-801.

P. Krein, et al, "On the Use of Averaging for the Analysis of Power Electronic Systems," IEEE Transactions onPower Electronics, Vol. 5, No. 2, pp 182-190, April1990.

K.Mahabir, G.Verghese, J.Thottuvelil, A.Heyman, “Linear averaged and sampled data models for large signalcontrol of high power factor AC-DC converters,” IEEE PESC, 1990, pp. 372-381.

D.Maksimovic, S.Cuk, ``A unified analysis of PWM converters in discontinuous modes,'' IEEE Trans. on PowerElectronics, Vol.6, No.3, July 1991.

D.~Maksimovic, Y.Jang and R.Erickson, ``Nonlinear-carrier control for high power factor boost rectifiers,'' IEEETransactions on Power Electronics, Vol.11, No.4, July 1996, pp.578-584.

R.D.Middlebrook and Slobodan Cuk, “A general unified approach to modeling switching-converter powerstages, International Journal of Electronics, Vol.42, No.6, pp.521-550, June 1977.

R.D.Middlebrook, “Topics in multiple-loop regulators and current-mode programming,” IEEE PESC, 1985, pp.716-732.

Page 166: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Selected papers on averaged modeling of switching power converter (continued)

R.D.Middlebrook, “Modeling current programmed buck and boost regulators,” IEEE Trans. On PowerElectronics, Vol.4, No.1, January 1989, pp.36-52.

S.R.Sanders, G.C.Verghese, “Synthesis of averaged circuit models for switched power converters,” IEEETransactions on Circuits and Systems, Vol.38, No.8, pp.905-915, August 1991.

S.Singer, R.W. Erickson, “Power source element and its properties,” IEE Proceedings - Circuits DevicesSystems, Vol.141, Np.3, pp.220-226, June 1994.

J.Sun, D.M.Mitchel, M.Greuel, P.T.Krain, R.M.Bass, “Averaged modeling of PWM converters in discontinuousconduction mode: a reexamination,” IEEE PESC 1998, pp.615-622.

J.Sun, D.M.Mitchel, M.Greuel, P.T.Krain, R.M.Bass, “Averaged models for PWM converters in discontinuousconduction mode,” HFPC 1998.

J.Sun, R.M.Bass, “Modeling and practical design issues for average current control,” IEEE APEC 1999.

R. Tymerski and V. Vorperian, “Generation, classification and analysis of switched-mode DC-to-Dcconvertersby the use of converter cells,” INTELEC 1986, pp.181-195.

E. Van Dijk, H.J.N.Spruijt, D.M.O’Sullivan, J.B.Klaassens, “PWM switch modeling of DC/DC converters,” IEEETransactions on Power Electronics, Vol.10, No.6, November 1995, pp. 659-665.

Page 167: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Selected papers on averaged modeling of switching power converter (continued)

G. Verghese, C. Bruzos, K. Mahabir, “Averaged and sampled-data models for current mode control: areexamination,” IEEE PESC, 1989, pp.484-491.

V.Vorperian, R.Tymerski, F.C.Lee, “Equivalent circuit models for resonant and PWM switches,” IEEETransactions on Power Electronics, Vol.4, No.2, pp.205-214.

V.Vorperian, “Simplified analysis of PWM converters using the model of the PWM switch: Parts I and II,” IEEETransactions on Aerospace and Electronic Systems, Vol.AES-26, pp.490-505, May 1990.

G.W.Wester and R.D.Middlebrook, “Low-frequency characterization of switched Dc-Dc converters,” IEEETransactions on Aerospace and Electronic Systems, Vol.AES-9, pp.376-385, May 1973.

R.~Zane, D.~Maksimovic, ``Nonlinear-carrier control for high-power-factor rectifiers based on flyback, Cuk orSepic converters,'’ Proc. IEEE APEC, March 3-7, 1996, San Jose, CA, pp.814-820.

Page 168: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Selected papers on averaged model implementation for computer simulation

V. Bello, "Computer Aided Analysis of Switching Regulators Using SPICE2," IEEE PESC, 1980 Record, pp 3-11.

V. Bello, "Using The SPICE2 CAD Package for Easy Simulation of Switching Regulators in Both Continuousand Discontinuous Conduction Modes," Powercon 8, April, 1981, pp H3-1-14.

V. Bello, "Using the SPICE2 CAD Package to Simulate and Design the Current Mode Converter," Powercon11, April 1984.

Y. Amran, F. Huliehel, S. Ben-Yaakov, “A unified SPICE compatible average model of PWM converters,” IEEETransactions on Power Electronics, Vol. 6, No. 4, pp. 585-594, 1991.

S. Ben-Yaakov, “Average simulation of PWM converters by direct implementation of behavioral relationships,”IEEE APEC, pp.510-516, 1993.

S.Ben-Yaakov, D.Adar, “Average models as tools for studying dynamics of switch mode DC-DC converters,”IEEE PESC 1994, pp.1369-1376

S. Ben-Yaakov, Z. Gaaton, “Generic SPICE compatible model of current feedback in switch mode converters,Electronics Letters, Vol. 28, No. 14, 2nd July 1992.

V.M.Canalli, J.A.Cobos, J.A.Oliver, J.Uceda, “Bihavioral large signal averaged model for DC/DC switchingpower converters,” IEEE PESC 1996.

Page 169: Advances in Averaged Switch Modeling and Simulationecee.colorado.edu/~rwe/references/pesc99-seminar.pdf · 3. Averaged switch modeling of PWM converters operating in discontinuous

Selected papers on averaged model implementation for computer simulation

D. Edry, M. Hadar, O. Mor, S. Ben-Yaakov, “A SPICE compatible model of tapped inductor PWM converter,”IEEE APEC 1994, pp.1035-1041.

S. Hageman, "Behavioral Modeling and PSPICE Simulate SMPS Control Loops,” PCIM, April 1990, pp 13-24and May 1990, pp 47-50.

N. Jayaram, D. Maksimovic, “Power factor correctors based on coupled-inductor Sepic and Cuk converterswith nonlinear-carrier control,” IEEE APEC 1998.

D. Kimhi, S. Ben-Yaakov, “A SPICE model for current mode PWM converters operating under continuousinductor current conditions,” IEEE Transactions on Power Electronics, Vol.6, No.2, pp.281-286, 1991.

R. Michelet and W. Roehr, "Evaluating Power Supply Designs with CAE Models” APEC 89, pp 323-334.

D. Monteith and D. Salcedo, "Modeling Feedforward PWM Circuits Using the Nonlinear Function Capabilities

of SPICE II," Powercon 10,March 1983.