aero dynamic - peopleaero dynamic optimisation r fo complex geometries michael giles rd oxfo y...

34

Upload: others

Post on 19-Aug-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Aerodynamic optimisationfor complex geometries

Michael GilesOxford University Computing LaboratoryApril 25th, 1997

Aerodynamic optimisation for complex geometries 1

Page 2: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Overview

� grid generation� sensitivity analysis� adjoint approach� applications

Aerodynamic optimisation for complex geometries 2

Page 3: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Grid Generation

For design purposes we need to be able tocreate� a base grid for given values of designparameters� perturbed grids for perturbed valuesThe linear/nonlinear perturbed grids have thesame topology as the base grid, so anyobjective function varies smoothly.

Aerodynamic optimisation for complex geometries 3

Page 4: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Grid Generation

Base grid generation:� parametric solids-based EPD systemde�nes solid surface as a collection ofsurface patches separated by linesterminated by points� surface is gridded in order ofincreasing dimensionality (point, line,surface patch)� interior grid nodes are then created byadvancing front or Delauneyalgorithms

Aerodynamic optimisation for complex geometries 4

Page 5: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Grid Generation

Perturbed grid generation:� parametric perturbation de�nesperturbation to solid surfaces andseparating lines� surface grid node perturbations arede�ned in order of increasingdimensionality (point, line, surfacepatch)� interior grid nodes are perturbed using`method of springs' or elliptic p.d.e.

Aerodynamic optimisation for complex geometries 5

Page 6: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Grid Generation

Method of springs:� edges of grid are modelled as springs� base grid is de�ned to be inequilibrium� perturbation to surface points disturbsequilibrium, leading to perturbation tointerior nodes to re-establish it� strength of springs is de�ned to ensureno cross-over in the boundary layer� (similar idea can be used to de�nesurface perturbations in the �rst place)

Aerodynamic optimisation for complex geometries 6

Page 7: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Grid Generation

In the elliptic p.d.e. approach, grid nodeperturbations ex(x) are de�ned byr � (k(x)rex) = 0;subject to speci�ed boundary conditions.k(x) is de�ned to ensure no cross-over inboundary layers.

Aerodynamic optimisation for complex geometries 7

Page 8: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Nonlinear SensitivityFor a single design variable �, discrete ow equations F (U ; �) = 0;de�ne ow �eld U as a function of �.Gradient of objective function I(U ; �) canbe approximated bydId� � I(U(�+�); �+�)� I(U(�); �)� :Easily generalised to multiple designvariables, at cost of extra calculations.Aerodynamic optimisation for complex geometries 8

Page 9: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Linear Sensitivity

Linearising discrete ow equations gives@F@U fU + @F@� = 0;where @F@� � @F@X @X@� :i.e. change in � perturbs grid coordinateswhich perturb ux residuals.fU represents ow perturbation as seen byperturbed grid point

Aerodynamic optimisation for complex geometries 9

Page 10: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Linear Sensitivity

Gradient of objective function is given bydId� = @I@U fU + @I@�:Generalisation to multiple designparameters requires separate calculationfor each, so no particular bene�tcompared to nonlinear sensitivities.

Aerodynamic optimisation for complex geometries 10

Page 11: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Discrete Adjoint

Substituting for fU givesdId� = � @I@U @F@U!�1 @F@� + @I@�;which can be written asdId� = V T @F@� + @I@�;where V satis�es the adjoint equation @F@U!T V + � @I@U�T = 0:

Aerodynamic optimisation for complex geometries 11

Page 12: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Discrete Adjoint

The advantage of the adjoint approach isthat the same adjoint solution V can beused for each design variable, since Vdepends on I but not �.The drawback is that because V dependson I a separate calculation must beperformed for each constraint function.Question: in real engineering applications,how many design variables and constraintsare there?Aerodynamic optimisation for complex geometries 12

Page 13: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Analytic Adjoint

The analytic adjoint is more complicated.Critical �rst step is formulation of linearperturbation equations.Simple linearisation of 2D Euler equations@@xFx(U) + @@yFy(U) = 0;yields @@x(Ax eU) + @@y(Ay eU) = 0;where eU is perturbation at a �xed point.

Aerodynamic optimisation for complex geometries 13

Page 14: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Analytic Adjoint

However, linearising the b.c.u�n= 0;gives eu�n+ (ex�ru) � n+ u� en= 0;which is hard to discretise accurately.This is similar to discrete adjointtreatment with no perturbation to interiorgrid points.

Aerodynamic optimisation for complex geometries 14

Page 15: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Analytic Adjoint

Start instead with generalised coordinates,@@� Fx@y@� � Fy@x@�!+ @@� Fy@x@� � Fx@y@�! = 0:

Now de�ne perturbed coordinates asx = �+ �X(�; �); y = �+ �Y (�; �);where X(�; �) and Y (�; �) are smoothfunctions which match the surfaceperturbations due to the design variable �.

Aerodynamic optimisation for complex geometries 15

Page 16: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Analytic Adjoint

Linearising with respect to � yields@@�(Ax eU) + @@�(Ay eU) = � @@� Fx@Y@� � Fy@X@� !� @@� Fy@X@� � Fx@Y@� ! ;where eU is now the perturbation in the ow variables for �xed (�; �) rather than�xed (x; y).The linearisation of the b.c.'s is simple,and the overall accuracy is much better.

Aerodynamic optimisation for complex geometries 16

Page 17: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV DesignG.N. ShrinivasP.I. CrumptonM.B. GilesOxford, 1996Aerodynamic optimisation for complex geometries 17

Page 18: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV Design

Aerodynamic optimisation for complex geometries 18

Page 19: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV Design

Aerodynamic optimisation for complex geometries 19

Page 20: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV DesignPylonFan

Outlet guide vanes

Aerodynamic optimisation for complex geometries 20

Page 21: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV Design

Objective is to minimise circumferentialpressure variation upstream of the OGV'sby changing their camber.Optimisation uses� unstructured grid with 560k tetrahedra� Euler equations� multigrid and parallel computing� elliptic p.d.e. for grid perturbation� nonlinear sensitivities andquasi-Newton optimisation

Aerodynamic optimisation for complex geometries 21

Page 22: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV Design

Leading edge of each OGV is leftunchanged due to uniform ow incidence;camber change varies linearly withdistance from leading edge to change theout ow angle.First design exercise uses a camberchange which varies sinusoidally withcircumferential angle.Only 2 design variables: maximum changeat hub and tip

Aerodynamic optimisation for complex geometries 22

Page 23: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV DesignOptimisation using sinusoidal variation-1000 -500 0 500 1000

Y

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0*10 -2

(p -

p_m

ean)

Aerodynamic optimisation for complex geometries 23

Page 24: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV DesignOptimisation using sinusoidal variation0 1 2

Itn Number

0.0

0.2

0.4

0.6

0.8

1.0

Inde

x of

Pre

ssur

e V

aria

tion

Aerodynamic optimisation for complex geometries 24

Page 25: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV Design

Drawback of this design is that all OGV'sare di�erent.Second design exercise uses just 3 bladetypes, the original, one with overturningand one with an equal amount ofunderturning.Still only 2 design variables: maximumchange at hub and tip

Aerodynamic optimisation for complex geometries 25

Page 26: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV Design

DatumUnderturned

DatumOverturned

Datum

Aerodynamic optimisation for complex geometries 26

Page 27: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV DesignOptimisation using 3 blade types-1000 -500 0 500 1000

Y

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0*10 -2

(p -

p_m

ean)

Aerodynamic optimisation for complex geometries 27

Page 28: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

OGV DesignOptimisation using 3 blade types0 1 2 3

Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Inde

x of

Pre

ssur

e V

aria

tion

Aerodynamic optimisation for complex geometries 28

Page 29: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Business JetJ. Elliott and J. Peraire, MIT, 1996

Aerodynamic optimisation for complex geometries 29

Page 30: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Business Jet

Objective function is mean-squaredeviation from a target pressuredistribution for a `clean' wing in theabsence of the rear nacelle.6 design variables are used to de�nesmooth perturbations to the wing.

Aerodynamic optimisation for complex geometries 30

Page 31: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Business Jet

Optimisation uses� unstructured grid with 860k tetrahedra� Euler equations� multigrid and parallel computing� method of springs for gridperturbation� BFGS optimisation method withdiscrete adjoint formulation forgradients

Aerodynamic optimisation for complex geometries 31

Page 32: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Business Jet

Aerodynamic optimisation for complex geometries 32

Page 33: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Business Jet

Aerodynamic optimisation for complex geometries 33

Page 34: Aero dynamic - PeopleAero dynamic optimisation r fo complex geometries Michael Giles rd Oxfo y Universit Computing ry Labrato o ril Ap 25th, 1997 Aero dynamic optimisation r fo complex

'&

$%

Conclusions/Future

� aerodynamic optimisation for complexgeometries is becoming a reality� with multigrid and parallel computing,costs are now acceptable for inviscidmodelling; viscous modelling is underdevelopment but will cost up to 5times as much� grid generation for base grids andperturbed grids is a critical component� pros and cons of di�erent optimisationmethods has yet to be properlyinvestigatedAerodynamic optimisation for complex geometries 34