aerobic and anaerobic ammonia oxidizing bacteria ^

Upload: tmartins79

Post on 07-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Aerobic and Anaerobic Ammonia Oxidizing Bacteria ^

    1/7

    MiniReview

    Aerobic and anaerobic ammonia oxidizing bacteria ^

    competitors or natural partners?

    Ingo Schmidt a;*, Olav Sliekers b, Markus Schmid b, Irina Cirpus b, Marc Strous a,

    Eberhard Bock c, J. Gijs Kuenen b, Mike S.M. Jetten a

    a University of Nijmegen, Department of Microbiology, Toernooiveld 1, 6525 ED Nijmegen, The Netherlandsb Delft University of Technology, Kluyver Laboratory for Biotechnology, Department of Microbiology and Enzymology, Julianalaan 67,

    2628 BC Delft, The Netherlandsc University of Hamburg, Institute for Botany, Department of Microbiology, OhnhorststraMe 18, 22609 Hamburg, Germany

    Received 20 September 2001; received in revised form 16 November 2001; accepted 20 November 2001

    First published online 21 December 2001

    Abstract

    The biological nitrogen cycle is a complex interplay between many microorganisms catalyzing different reactions. For a long time,

    ammonia and nitrite oxidation by chemolithoautotrophic nitrifiers were thought to be restricted to oxic environments and the metabolic

    flexibility of these organisms seemed to be limited. The discovery of a novel pathway for anaerobic ammonia oxidation by Planctomyces

    (anammox) and the finding of an anoxic metabolism by classical Nitrosomonas-like organisms showed that this is no longer valid. The aim

    of this review is to summarize these novel findings in nitrogen conversion and to discuss the ecological importance of these

    processes. 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

    Keywords: Nitrication; Anammox; Candidatus Brocadia anammoxidans; NOx cycle; Nitrosomonas ; Aerobic ammonia oxidation; Anaerobic ammonia

    oxidation

    1. Introduction

    Nitrication is an important part of the biological nitro-

    gen cycle. Microorganisms involved in nitrication are

    characterized as lithotrophic ammonia and nitrite oxidiz-

    ing bacteria and heterotrophic nitriers (not discussed in

    this review). Lithotrophic nitriers are all placed in the

    family Nitrobacteraceae [1], although they are not neces-

    sarily related phylogenetically. Chemolithoautotrophic ni-

    trifying bacteria have been found in many ecosystems such

    as fresh water, salt water, sewage systems, soils, and on/inrocks as well as in masonry [2,3]. Growth under subopti-

    mal conditions might be possible by ureolytic activity, ag-

    gregate formation [4], or in biolms on the surfaces of

    substrata [5]. Nitriers can be found in extreme habitats

    at high temperatures [6] and in Antarctic soils [7,8].

    Although the pH optimum for cell growth is pH 7.6^7.8,

    they were frequently detected in environments with pH

    values of about 4 such as acid tea and forest soils [9,10]

    and pH values of about 10 such as soda lakes [11,12]. It is

    interesting to note that aerobic nitriers were also found in

    anoxic environments [13,14]. This is in good agreement

    with recent studies that show that these microorganisms

    have a more versatile metabolism than previously as-

    sumed. Ammonia oxidizers can denitrify with ammonia

    as electron donor under oxygen-limited conditions

    [15,16] or with hydrogen or organic compounds under

    anoxic conditions [17]. Finally they can use N2O4 as oxi-

    dant for ammonia oxidation under both oxic and anoxicconditions [18]. Furthermore, a new group of anaerobic

    nitrite-dependent ammonia oxidizers (anammox) were dis-

    covered [19,20]. This review will discuss the recent ndings

    and their ecological importance for the understanding of

    the biological nitrogen cycle.

    2. Anaerobic ammonium oxidation (anammox)

    2.1. Molecular identity

    Although Broda [21] predicted the existence of chemo-

    0168-6496 / 01 / $22.00 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

    PII: S 0 16 8 - 6 4 9 6 ( 0 1 ) 0 0 2 0 8 -2

    * Corresponding author.

    Tel.: +31 (24) 3652568; Fax: +31 (24) 3652830.

    E-mail address: [email protected] (I. Schmidt).

    FEMS Microbiology Ecology 39 (2002) 175^181

    www.fems-microbiology.org

  • 8/6/2019 Aerobic and Anaerobic Ammonia Oxidizing Bacteria ^

    2/7

    lithoautotrophic bacteria capable of anaerobic ammonium

    oxidation and Abeliovich [14] reported high cell concen-

    trations of nitriers under anoxic conditions, the rst ex-

    perimental conrmation of anaerobic ammonia oxidation

    (anammox) was obtained in the early 1990s [19]. During

    experiments on a denitrifying pilot plant it was noted that

    ammonia and nitrate disappeared from the reactor euentwith a concomitant increase of dinitrogen gas production.

    The microbial nature of the process was veried, and ni-

    trite was shown to be the preferred electron acceptor [22].

    Hydroxylamine and hydrazine were identied as impor-

    tant intermediates. Since the growth rate of the anammox

    biomass appeared to be very low (doubling time about

    11 days), reactor systems with very ecient biomass reten-

    tion were necessary for the enrichment. A sequencing

    batch reactor system was chosen for the ecophysiological

    study of the anammox community [23]. The biomass in

    the community was dominated for more than 70% by a

    morphologically conspicuous bacterium. Attempts to iso-late the microorganisms with classical methods failed.

    Therefore, the bacterium was physically puried from en-

    richment cultures by density gradient centrifugation [24].

    DNA extracted from the puried cells was used as a tem-

    plate for PCR amplication with a universal 16S rDNA

    primer set. The dominant 16S rDNA sequence obtained

    was planctomycete-like, and branching very deep within

    the planctomycete lineage of descent (Fig. 1). The anaer-

    obic ammonium oxidizing planctomycete-like bacterium

    was named Candidatus Brocadia anammoxidans. The

    16S rDNA sequence information was used to design spe-

    cic oligonucleotide probes for application in uorescence

    in situ hybridization (FISH) and to survey the presence ofB. anammoxidans and related anammox bacteria in several

    wastewater treatment systems [25]. Indeed, B. anammoxi-

    dans and the closely related Candidatus Kuenenia stutt-

    gartiensis could be detected in many of these systems

    throughout the world and seem to be dominating in these

    microbial biolm communities [25].

    2.2. Molecular diversity

    The order Planctomycetales, rst described in 1986 by

    Schlessner and Stackebrandt [26], so far includes only four

    genera (Planctomyces, Pirellula, Gemmata, and Isosphaera)

    with seven validly described species [27]. Various environ-

    mentally derived 16S rDNA sequences [20,28] strongly in-

    dicate further planctomycete lineages [29], including the

    anammox bacteria (Fig. 1). In fact, the newly found bac-

    terium K. stuttgartiensis forms a distinct branch within

    anammox bacteria and the sequence similarity of less

    than 90% to B. anammoxidans is indicative of a genus level

    diversity of these bacteria [25]. The application of FISHprobes showed the dominance of these bacteria in ecosys-

    tems with high nitrogen losses. Molecular techniques are

    important tools to monitor the presence and activity of

    microorganisms in ecosystems. For example the growth

    rate of many bacteria can be deduced from their ribosome

    content [30]. This method is, however, not applicable for

    slow-growing anammox- and Nitrosomonas-like bacteria

    [31] since inactive cells of both groups tend to keep their

    ribosome content at a high level. In such cases, the cellular

    concentrations of precursor rRNA might be a good indi-

    cator of physiological activity [32]. Therefore, the inter-

    genic spacer regions (ISR) between the 16S rRNA and

    23S rRNA, as part of the precursor rRNA, of B. anam-moxidans and K. stuttgartiensis were sequenced. Subse-

    Fig. 1. 16S rDNA-based phylogenetic dendrogram reecting the relationships of Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia anam-

    moxidans to organisms aliated to the order Planctomycetales. The tree is based on results of maximum likelihood analyses from dierent data sets.

    The black bars indicate phylogenetic groups. Environmentally derived sequences mainly originating from the Antarctic were pooled in the Antarctic

    clone cluster. GenBank accession numbers are given in parentheses. The bar represents 10% estimated sequence divergence.

    I. Schmidt et al./ FEMS Microbiology Ecology 39 (2001) 175^181176

  • 8/6/2019 Aerobic and Anaerobic Ammonia Oxidizing Bacteria ^

    3/7

    quently, ISR-targeted oligonucleotide probes were con-

    structed and applied by FISH. Inhibition experiments

    with B. anammoxidans revealed a good correlation be-

    tween the metabolic activity and the ISR concentrations,

    demonstrating the ISR targeting FISH to be a powerful

    method for the detection of activity changes in slow-grow-

    ing bacteria [31].

    2.3. Ecophysiology

    The ultrastructure of B. anammoxidans has many fea-

    tures in common with previously described planctomy-

    cetes. These microorganisms have a proteinaceous cell

    wall lacking peptidoglycan and are thus insensitive to

    ampicillin. The chromosome is separated from the sur-

    rounding cytoplasm by a single or double membrane. In

    B. anammoxidans an additional compartment bounded by

    a single membrane [33], free from ribosomes and chromo-

    some, was observed. This peculiar organelle made upmore than 30% of the cell volume and it may play an

    important role in the catabolism. Using the immunogold

    labeling technique with antibodies against the key enzyme

    hydroxylamine (hydrazine) oxidoreductase [34], the en-

    zyme was localized in this middle compartment, which

    was named anammoxosome [33]. Interestingly, B. anam-

    moxidans [33] as well as aerobic ammonia oxidizers such

    as Nitrosomonas [1] develop internal membrane systems.

    Whether such a membrane system is bioenergetically nec-

    essary for ammonia oxidation is still the subject of inves-

    tigation since both key enzymes of Nitrosomonas are ob-

    viously not localized in the intracytoplasmic membrane

    (ICM) system. According to the peptide structure theAMO was described as a membrane-bound enzyme [35],

    and recent studies [36] indicated a localization in the cy-

    toplasmic membrane. The HAO is localized in the peri-

    plasm [37].

    To unravel the metabolic pathway for anaerobic ammo-

    nium oxidation in B. anammoxidans, series of 15N-labeling

    experiments were conducted. It could be shown that am-

    monium and nitrite are combined to yield dinitrogen gas

    [38] and radioactive bicarbonate is incorporated in the

    biomass. With an excess of hydroxylamine, a transient

    accumulation of hydrazine was observed, indicating that

    hydrazine is an intermediate of the anammox process. Ac-cording to the working hypothesis, the oxidation of hydra-

    zine to dinitrogen gas is supposed to generate four elec-

    trons for the initial reduction of nitrite to hydroxylamine

    (Fig. 2). The overall nitrogen balance shows a ratio of

    about 1:1.32:0.26 for the conversion of ammonia, nitrite,

    and nitrate (Eq. 1). The function of the formation of ni-

    trate is assumed to be the generation of reducing equiva-

    lents necessary for the reduction of CO2.

    NH4 1:32 NO3

    2 0:066 HCO3

    3 0:13 H ! 0:26 NO33

    1:02 N2 0:066 CH2O0:5N0:15 2:03 H2O 1

    A high anammox activity is detectable in a pH range

    between 6.4 and 8.3 and a temperature range between 20

    and 43C [39]. Under optimal conditions, the specic ac-tivity is about 3.6 mmol (g protein)31 h31, the biomass

    yield about 0.066 C-mol (mol ammonium)31, and the spe-

    cic growth rate about 0.0027 h31. Recent studies showed

    that K. stuttgartiensis is in many ways similar to B. anam-

    moxidans [40]. K. stuttgartiensis cells have the same overall

    cell structure and also produce hydrazine from exoge-

    nously supplied hydroxylamine. Energetically favorable

    mechanisms with Fe3, Mn4, or even sulfate as oxidant

    have not been reported yet [41].

    To assess the occurrence of the anammox reaction in

    natural environments and man-made ecosystems, further

    data about the eect of several chemical and physical pa-

    rameters are necessary. For example the anammox bacte-ria are very sensitive to oxygen and nitrite. Oxygen con-

    centrations as low as 2 WM and nitrite concentrations

    between 5 and 10 mM inhibit the anammox activity com-

    pletely, but reversibly [22].

    3. Ecology of anammox

    In various ecosystems B. anammoxidans will be depen-

    dent on the activity of aerobic ammonia oxidizing bacteria

    under oxygen-limited conditions, e.g., at the oxic/anoxic

    interface. Anammox biomass has already been detectedin wastewater treatment plants in The Netherlands, Ger-

    many, Switzerland, UK, Australia, and Japan [42]. Re-

    cently anammox cells were detected in a non-articial eco-

    system, a fresh water swamp in Uganda [42]. Oxic/anoxic

    interfaces are abundant in nature, for example in biolms

    and ocs. In these oxygen-limited environments the am-

    monia oxidizers would oxidize ammonium to nitrite and

    keep the oxygen concentration low, while B. anammoxi-

    dans would convert the produced nitrite and the remaining

    ammonium to dinitrogen gas. Such conditions have been

    established in many dierent reactor systems [16,43^45].

    FISH analysis and activity measurements showed that

    Fig. 2. Proposed model for the anaerobic ammonia oxidation (anam-

    mox) of Brocadia-like microorganisms. HH: hydrazine hydrolase; HZO:

    hydrazine oxidizing enzyme; NR: nitrite reducing enzyme.

    I. Schmidt et al./ FEMS Microbiology Ecology 39 (2001) 175^181 177

  • 8/6/2019 Aerobic and Anaerobic Ammonia Oxidizing Bacteria ^

    4/7

    aerobic as well as anaerobic ammonia oxidizers were

    present and active in these oxygen-limited reactors, but

    aerobic nitrite oxidizers (Nitrobacter or Nitrospira) were

    not detected. Apparently, the aerobic nitrite oxidizers are

    unable to compete for oxygen with the aerobic ammonia

    oxidizers and for nitrite with the anaerobic ammonia ox-

    idizers as has been documented before [46,47]. It seemslikely that under these conditions anaerobic and aerobic

    ammonia oxidizers form a quite stable community. The

    cooperation of aerobic and anaerobic ammonium oxidiz-

    ing bacteria is not only relevant for wastewater treatment

    [45,48], but might play an important role in natural envi-

    ronments at the oxic/anoxic interface. Further interactions

    under anoxic conditions between both groups of ammonia

    oxidizers seem to be likely since an anoxic, NO2-depen-

    dent metabolism of Nitrosomonas-like microorganisms was

    recently discovered [18].

    4. Aerobic and anaerobic NO2-dependent ammonia

    oxidation by Nitrosomonas (NOx cycle)

    4.1. Diversity

    Gram-negative ammonia oxidizers, e.g., members of the

    genera Nitrosomonas and Nitrosospira [1], are lithoauto-

    trophic organisms using carbon dioxide as the main car-

    bon source. Several species reveal extensive ICM systems.

    Recently, molecular tools to detect the presence of ammo-

    nia oxidizing bacteria in the environment have been sup-

    plemented by PCR primers for specic amplication of the

    ammonia monooxygenase structural gene amoA [3]. Envi-ronmental 16S rRNA and amoA libraries have extended

    the knowledge on the natural diversity of ammonia oxidiz-

    ing bacteria [49]. Comparative 16S rRNA sequence anal-

    yses revealed that members of this physiological group are

    conned to two monophyletic lineages within the Proteo-

    bacteria. Nitrosococcus oceanus is aliated with the Q-sub-

    class of the Proteobacteria, while members of the genera

    Nitrosomonas and Nitrosospira form a closely related

    group within the L-subclass of Proteobacteria [50]. Using

    these molecular tools nitriers can be detected even in

    anoxic habitats.

    4.2. Anaerobic ammonia oxidation

    Recently published data gave rst evidence for anaero-

    bic ammonia oxidation by Nitrosomonas [51]. These results

    indicate a complex role of nitrogen oxides (NO and NO2)

    in the metabolism of aerobic ammonia oxidizers. Nitro-

    somonas eutropha can oxidize ammonia in the absence of

    dissolved oxygen [51,52], replacing molecular oxygen by

    nitrogen dioxide or nitrogen tetroxide (dimeric form of

    NO2). The overall nitrogen balance shows a ratio of about

    1:1:1:2 for the conversion of ammonia, nitrogen tetrox-

    ide, nitrite, and nitric oxide:

    NH3 N2O4 2 H 2 e3 ! NH2OH H2O 2 NO

    2

    NH2OH H2O ! HNO2 4 H 4 e3 3

    NH3

    N2

    O4

    ! HNO2

    2 NO 2 H 2 e3 4

    Hydroxylamine and nitric oxide are formed in this reac-

    tion. While nitric oxide is not further metabolized, hydrox-

    ylamine is oxidized to nitrite. The nitrite produced is

    partly used as electron acceptor leading to the formation

    of dinitrogen:

    HNO2 3 H 3 e3 ! 0:5 N2 2 H2O 5

    There are only a few dierences between the anaerobic,

    NO2-dependent and the aerobic, O2-dependent [53] am-

    monia oxidation by Nitrosomonas. Instead of O2 in the

    course of aerobic ammonia oxidation, N2O4 is used as

    electron acceptor and NO, an additional product, is re-leased in the anaerobic ammonia oxidation. NO2 is not

    available in natural environments under anoxic conditions.

    An anaerobic ammonia oxidation is therefore dependent

    on the transport of NO2 from oxic layers.

    Another important observation is that anaerobic ammo-

    nia oxidation with NO2 (N2O4) as oxidant was not af-

    fected by acetylene [18]. N. eutropha cells treated with

    acetylene oxidized ammonia even under oxic conditions

    if NO2 was available. Ammonia oxidation was not detect-

    able in the absence of NO2. One of the most signicant

    ndings is that the 27-kDa polypeptide of the AMO was

    not labeled with [14C]acetylene during anoxic NO2-depen-

    dent ammonia oxidation. When oxygen was added, thelabeling of this polypeptide with [14C]acetylene started im-

    mediately. An inuence of the ammonia concentration on

    the labeling reaction was not observed. These studies

    clearly demonstrate the necessity to distinguish between

    NO2-dependent and O2-dependent ammonia oxidation.

    The new hypothetical model of ammonia oxidation [18]

    including the role of nitrogen oxides is shown in Fig. 3.

    Anaerobic ammonia oxidation is dependent on the pres-

    Fig. 3. NOx cycle. Hypothetical model of the anaerobic NO2-dependent

    ammonia oxidation by Nitrosomonas. N2O4 is the oxidant for the am-

    monia oxidation.

    I. Schmidt et al./ FEMS Microbiology Ecology 39 (2001) 175^181178

  • 8/6/2019 Aerobic and Anaerobic Ammonia Oxidizing Bacteria ^

    5/7

    ence of the oxidizing agent N2O4. NO is produced in stoi-

    chiometric amounts (Fig. 3). Only when NO2 is available

    under anoxic conditions, ammonia is oxidized and hydrox-

    ylamine occurs as an intermediate while NO is formed as

    an end product. Hydroxylamine is further oxidized to ni-

    trite [52].

    Under anoxic conditions nitrite serves as a terminalelectron acceptor. In the absence of ammonia Nitrosomo-

    nas is capable of using dierent substrates as electron do-

    nor. During hydroxylamine oxidation by ammonia oxidiz-

    ers, small amounts of nitric and nitrous oxide are released

    [54]. Both gases are also produced in the course of aerobic

    denitrication by ammonia oxidizing bacteria [55,56]. Ad-

    ditionally, the formation of dinitrogen was observed

    [17,57]. Furthermore, Nitrosomonas is capable of anoxic

    denitrication with molecular hydrogen [17] or simple or-

    ganic compounds [14] serving as electron donors.

    4.3. Aerobic ammonia oxidation

    NOx also plays an important role in the aerobic metab-

    olism of nitrifying microorganisms. Nitrosomonas-like or-

    ganisms were distinctly inhibited when gaseous nitric oxide

    was removed from laboratory-scale cultures by means of

    intensive aeration. Nitrication in these cultures only

    started again when nitric oxide was added to the gas inlet

    of the culture vessels [18,58]. The lag phase during the

    recovery of ammonia oxidation in starved cells could be

    signicantly reduced when NOx was added. Evidence is

    given that the cells generate NO for the NOx cycle via

    denitrication when external NOx is not available [59].

    Nitrogenous oxides have a signicant promoting eecton pure cultures of N. eutropha [59,60]. Their addition

    resulted in a pronounced increase in nitrication rate, spe-

    cic activity of ammonia oxidation, growth rate, maxi-

    mum cell density, and aerobic denitrication capacity.

    Maximum cell numbers amounted to 2U1010 Nitrosomo-

    nas cells ml31. Furthermore, about 50% of the nitrite pro-

    duced was aerobically denitried to dinitrogen when nitro-

    gen oxides were present.

    In the presence of O2, the produced NO can be (re)oxi-

    dized to NO2 [18]. Therefore, only small amounts of NO

    are detectable in the gas phase of Nitrosomonas cell sus-

    pensions. According to the model (Fig. 4, Eq. 6), N2O4 isthe oxidizing agent under oxic conditions. Hydroxylamine

    and NO are produced as intermediates. While hydroxyl-

    amine is further oxidized to nitrite, NO is (re)oxidized to

    NO2 (N2O4) (Eq. 7):

    NH3 N2O4 2 H 2 e3 ! NH2OH 2 NO H2O

    6

    2NO O2 ! 2 NO2 N2O4 7

    NH3 O2 2 H 2 e3 ! NH2OH H2O 8

    The sum of Eqs. 6 and 7, given in Eq. 8, was already

    described earlier as the reaction of aerobic ammonia oxi-

    dation [53], but is in complete agreement with the new

    hypothetical model. The total consumption rates (ammo-

    nia, oxygen) and production rates (hydroxylamine as in-

    termediate) are the same, but the mechanism of the reac-

    tion is quite dierent. Since detectable NOx concentrations

    were small, nitrogen oxides seem to cycle in the cell (pos-

    sibly enzyme-bound). Therefore, the total amount of NOxper cells is expected to be low. This hypothetical model

    (Fig. 4) is in good accordance with the described mecha-

    nisms of the aerobic ammonia oxidation. According to the

    new model, O2 is used to oxidize NO. The product NO2 is

    then consumed during ammonia oxidation. The oxygen ofhydroxylamine still originates from molecular oxygen, but

    is incorporated via NO2 [18].

    In control experiments dierent species of ammonia oxi-

    dizers were tested (e.g., Nitrosomonas europaea, Nitrosolo-

    bus multiformis) [61]. All species were able to oxidize am-

    monia under anoxic conditions with NO2 as oxidant (Fig.

    3) and the aerobic ammonia oxidation activity was in-

    creased in the presence of NO or NO2 (Fig. 4).

    4.4. Ecological evidence of NOx

    The ecological evidence of nitrogen oxides (NOx) fornitrication is still object of speculations and there is no

    simple, uniform picture of the function of NOx in the

    ammonia oxidation. Further investigations are necessary

    to reveal the role of nitrogen oxides. First, NO2 has to be

    conrmed as the master regulating signal for the ammonia

    oxidation [59]. The recovery of ammonia oxidation activ-

    ity by denitrifying Nitrosomonas cells (hydrogen as elec-

    tron donor) is regulated via the availability of NO2. Sec-

    ond, in contrast to homoserine lactones, which function as

    signal molecules between many bacteria [62], nitrogen ox-

    ides seem to function as very specic signal molecules

    between ammonia oxidizers [59].

    Fig. 4. NOx cycle. Hypothetical model of the ammonia oxidation by

    Nitrosomonas. According to this model, N2O4 is the oxidant for the am-

    monia oxidation. Under oxic conditions oxygen is used to re-oxidize

    NO to NO2 (N2O4). Hydroxylamine is oxidized to nitrite.

    I. Schmidt et al./ FEMS Microbiology Ecology 39 (2001) 175^181 179

  • 8/6/2019 Aerobic and Anaerobic Ammonia Oxidizing Bacteria ^

    6/7

    5. Conclusion

    Several new microbial pathways in the nitrogen cycle

    have been discovered. The planctomycete-like anammox

    bacteria converting ammonia and nitrite under anoxic

    conditions and the information about the exibility of

    the metabolism of aerobic nitriers add new possibilitiesto the nitrogen cycle. These two groups might even be

    natural partners in ecosystems with limited oxygen supply.

    Under these conditions aerobic ammonia oxidizers are

    able to oxidize ammonia to nitrite which will be consumed

    by anammox bacteria together with ammonia. As prod-

    ucts of this cooperation mainly N2 and small amounts of

    nitrate are detectable [43]. When ammonia is the limiting

    substrate the anities of both groups of ammonia oxidiz-

    ers might be decisive for the outcome of the competition.

    However, we are far from understanding the complexity of

    nitrogen conversion in detail. To gain deeper insight future

    studies might focus on regulation of nitrier metabolism,on community interactions, and on phylogenetic diversity

    of nitrogen converting microorganisms.

    References

    [1] Watson, S.W., Bock, E., Harms, H., Koops, H.-P. and Hooper, A.B.

    (1989) In: Bergeys Manual of Systematic Bacteriology (Staley, J.T.,

    Bryant, M.P., Pfennig, N. and Holt, J.G., Eds.), pp. 1822^1834. Wil-

    liams and Wilkins, Baltimore, MD.

    [2] Mansch, R. and Bock, E. (1998) Biodeterioration of natural stone

    with special reference to nitrifying bacteria. Biodegradation 9, 47^64.

    [3] Bothe, H., Jost, G., Schloter, M., Ward, B.B. and Witzel, K. (2000)

    Molecular analysis of ammonia oxidation and denitrication in nat-ural environments. FEMS Microbiol. Rev. 24, 673^690.

    [4] De Boer, W., Klein Gunnewiek, P.J.A., Veenhuis, M., Bock, E. and

    Laanbroek, H.J. (1991) Nitrication at low pH by aggregated chemo-

    lithotrophic bacteria. Appl. Environ. Microbiol. 57, 3600^3604.

    [5] Allison, S.M. and Prosser, J.I. (1993) Survival of ammonia oxidizing

    bacteria in air-dried soil. FEMS Microbiol. Lett. 79, 65^68.

    [6] Egorova, L.A. and Loginova, I.G. (1975) Distribution of highly ther-

    mophilic, nonsporulating bacteria in the hot springs of Tadzhikistan.

    Mikrobiologiia 44, 938^942.

    [7] Wilson, K., Sprent, J.I. and Hopkins, D.W. (1997) Nitrication in

    aquatic soils. Nature 385, 404.

    [8] Arrigo, K.R., Dieckmann, G., Gosselin, M., Robinson, D.H., Frit-

    sen, C.H. and Sullivan, C.W. (1995) High resolution study of the

    platelet ice ecosystem in McMurdo Sound. Antarctica biomass, nu-

    trient, and production proles within a dense microalgal bloom. Mar.Ecol. Prog. Ser. 127, 1^3.

    [9] De Boer, W. and Kowalchuk, G.A. (2001) Nitrication in acid soils:

    micro-organisms and mechanisms. Soil Biol. Biochem. 33, 853

    866.

    [10] Burton, S.A.Q. and Prosser, J.I. (2001) Autotrophic ammonia oxida-

    tion at low pH through urea hydrolysis. Appl. Environ. Microbiol.

    67, 2952^2957.

    [11] Sorokin, D., Muyzer, G., Brinkho, T., Kuenen, J.G. and Jetten,

    M.S.M. (1998) Isolation and characterization of a novel facultatively

    alkaliphilic Nitrobacter species, N. alkalicus sp. nov.. Arch. Micro-

    biol. 170, 345^352.

    [12] Sorokin, D., Tourova, T., Schmid, M., Wagner, M., Koops, H.-P.,

    Kuenen, J.G. and Jetten, M.S.M. (2001) Isolation and properties of

    obligately chemolithotrophic and extremely alkali-tolerant ammonia-

    oxidizing bacteria from Mongolian soda lakes. Arch. Microbiol. 176,

    170^177.

    [13] Weber, S., Stubner, S. and Conrad, R. (2001) Bacterial populations

    colonizing and degrading rice straw in anoxic paddy soil. Appl. En-

    viron. Microbiol. 67, 1318^1327.

    [14] Abeliovich, A. and Vonhak, A. (1992) Anaerobic metabolism of

    Nitrosomonas europaea. Arch. Microbiol. 158, 267^270.

    [15] Goreau, T.J., Kaplan, W.A., Wofsy, S.C., McElroy, M.B., Valois,F.W. and Watson, S.W. (1980) Production of NO32 and N2O by

    nitrifying bacteria at reduced concentration of oxygen. Appl. Envi-

    ron. Microbiol. 40, 526^532.

    [16] Kuai, L. and Verstraete, W. (1998) Ammonium removal by the oxy-

    gen-limited autotrophic nitrication-denitrication system. Appl. En-

    viron. Microbiol. 64 (11), 4500^4506.

    [17] Bock, E., Schmidt, I., Stu ven, R. and Zart, D. (1995) Nitrogen loss

    caused by denitrifying Nitrosomonas cells using ammonia or hydro-

    gen as electron donors and nitrite as electron acceptor. Arch. Micro-

    biol. 163, 16^20.

    [18] Schmidt, I., Bock, E. and Jetten, M.S.M. (2001) Ammonia oxidation

    by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by

    acetylene. Microbiology 147, 2247^2253.

    [19] Mulder, A., van de Graaf, A.A., Robertson, L.A. and Kuenen, J.G.

    (1995) Anaerobic ammonium oxidation discovered in a denitrifyinguidized bed reactor. FEMS Microbiol. Ecol. 16, 177^184.

    [20] Jetten, M.S.M. (2001) New pathways for ammonia conversion in soil

    and aquatic systems. Plant Soil 230, 9^19.

    [21] Broda, E. (1977) Two kinds of lithotrophs missing in nature. Z. Allg.

    Mikrobiol. 17, 491^493.

    [22] Jetten, M.S.M., Strous, M., van de Pas-Schoonen, K.T., Schalk, J.,

    van Dongen, L., van de Graaf, A.A., Logemann, S., Muyzer, G., van

    Loosdrecht, M.C.M. and Kuenen, J.G. (1999) The anaerobic oxida-

    tion of ammonium. FEMS Microbiol. Rev. 22, 421^437.

    [23] Strous, M., Heijnen, J.J., Kuenen, J.G. and Jetten, M.S.M. (1998)

    The sequencing batch reactor as a powerful tool to study very slowly

    growing micro-organisms. Appl. Microbiol. Biotechnol. 50, 589^596.

    [24] Strous, M., Fuerst, J., Kramer, E., Logemann, S., Muyzer, G., van de

    Pas, K., Webb, R., Kuenen, J.G. and Jetten, M.S.M. (1999) Missing

    lithotroph identied as new planctomycete. Nature 400, 446^449.[25] Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S.,

    Jetten, M., Metzger, J., Schleifer, K.H. and Wagner, M. (2000) Mo-

    lecular evidence for genus level diversity of bacteria capable of cata-

    lyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23,

    93^106.

    [26] Schlesner, H. and Stackebrandt, E. (1986) Assignment of the genera

    Planctomyces and Pirella to a new family Planctomycetaceae fam.

    nov. and description of the order Planctomycetales ord. nov. Syst.

    Appl. Microbiol. 8, 174^176.

    [27] Fuerst, J.A. (1995) The planctomycetes: emerging models for micro-

    bial ecology, evolution and cell biology. Microbiology 141, 1493^

    1506.

    [28] Griepenburg, U., Ward-Rainey, N., Mohamed, S., Schlesner, H.,

    Marxen, H., Rainey, F.A., Stackebrandt, E. and Auling, G. (1999)

    Phylogenetic diversity, polyamine pattern and DNA base composi-tion of members of the order Planctomycetales. Int. J. Syst. Bacteriol.

    49, 689^696.

    [29] Kuenen, J.G. and Jetten, M.S.M. (2001) Extraordinary anaerobic

    ammonium-oxidizing bacteria. ASM News 67, 456^463.

    [30] Poulsen, L.K., Ballard, G. and Stahl, D.A. (1993) Use of rRNA

    uorescence in situ hybridization for measuring the activity of single

    cells in young and established biolms. Appl. Environ. Microbiol. 59,

    1354^1360.

    [31] Schmid, M., Schmitz-Esser, S., Jetten, M. and Wagner, M. (2001)

    16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammo-

    nium oxidizing bacteria: implications for phylogeny and in situ de-

    tection. Environ. Microbiol. 3, 450^459.

    [32] Oerther, D.B., Pernthaler, J., Schramm, A., Amann, R. and Raskin,

    L. (2000) Monitoring precursor 16S rRNAs of Acinetobacter spp. in

    I. Schmidt et al./ FEMS Microbiology Ecology 39 (2001) 175^181180

  • 8/6/2019 Aerobic and Anaerobic Ammonia Oxidizing Bacteria ^

    7/7

    activated sludge wastewater treatment systems. Appl. Environ. Mi-

    crobiol. 66, 2154^2165.

    [33] Lindsay, M.R., Webb, R.I., Strous, M., Jetten, M.S.M., Butler, M.K,

    Forde, R.J. and Fuerst, J.A. (2001) Cell compartmentalization in

    planctomycetes: novel types of structural organization for the bacte-

    rial cell. Arch. Microbiol. 175, 413^429.

    [34] Schalk, J., Devries, S., Kuenen, J.G. and Jetten, M.S.M. (2000) A

    novel hydroxylamine oxidoreductase involved in the Anammox pro-cess. Biochemistry 39, 5405^5412.

    [35] Suzuki, I., Kwok, S.-C., Dular, U. and Tsang, D.C.Y. (1981) Cell-

    free ammonia-oxidizing system of Nitrosomonas europaea : general

    conditions and properties. Can. J. Biochem. 59, 477 483.

    [36] Pinck, C. (2001) Immunologische Untersuchung am Schlu sselenzym

    der Ammoniakoxidanten. Doctoral Thesis, University of Hamburg.

    [37] Olson, T.C. and Hooper, A.B. (1983) Energy coupling in the bacterial

    oxidation of small molecules: an extracytoplasmic dehydrogenase in

    Nitrosomonas. FEMS Microbiol. Lett. 19, 47^50.

    [38] Van de Graaf, A.A., De Bruijn, P., Robertson, L.A., Jetten, M.S.M.

    and Kuenen, J.G. (1997) Metabolic pathway of anaerobic ammonium

    oxidation on the basis of N-15 studies in a uidized bed reactor.

    Microbiology 143, 2415^2421.

    [39] Strous, M., Kuenen, J.G. and Jetten, M.S.M. (1999) Key physiology

    of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 65,3248^3250.

    [40] Egli, K., Franger, U., Alvarez, P.J.J., Siegrist, H., Vandermeer, J.R.

    and Zehnder, A.J.B. (2001) Enrichment and characterization of an

    anammox bacterium from a rotating biological contactor treating

    ammonium-rich leachate. Arch. Microbiol. 175, 198^207.

    [41] Thamdrup, B. and Dalsgaard, T. (2000) The fate of ammonium in

    anoxic manganese oxide-rich marine sediment. Geochim. Cosmo-

    chim. Acta 64, 4157^4164.

    [42] Jetten, M.S.M. (2001) Adembenemende en Ademloze Microbiologie.

    University of Nijmegen.

    [43] Sliekers, A.O., Derwort, N., Campos Gomez, J.L., Strous, M., Kue-

    nen, J.G. and Jetten, M.S.M. (2001) Completely autotrophic nitrogen

    removal over nitrite in one single reactor. Water Res. (in press).

    [44] Third, K.A., Sliekers, A.O., Kuenen, J.G. and Jetten, M.S.M. (2001)

    The CANON system (completely autotrophic nitrogen-removal overnitrite) under ammonia limitation: Interaction and competition be-

    tween three groups of bacteria. Syst. Appl. Microbiol. 24, 588^596.

    [45] Helmer, C., Tromm, C., Hippen, A., Rosenwinkel, K.H., Seyfried,

    C.F. and Kunst, S. (2001) Single stage biological nitrogen removal by

    nitritation and anaerobic ammonium oxidation in biolm systems.

    Water Sci. Technol. 43, 311^320.

    [46] Helder, M.N. and de Vries, E.G. (1983) Estuarine nitrite maxima and

    nitrifying bacteria (Ems-Dollard estuary). Neth. J. Sea Res. 17, 1^18.

    [47] Hanaki, K., Wantawin, C. and Ogaki, S. (1990) Nitrication at low

    levels of dissolved oxygen with and without organic loading in a

    suspended-growth reactor. Water Res. 24, 297^302.

    [48] Jetten, M.S.M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kue-

    nen, G. and Strous, M. (2001) Microbiology and application of the

    anaerobic ammonium oxidation (anammox) process. Cur. Opin.

    Biotechnol. 12, 283^288.

    [49] Head, I.M., Hiorns, W.D., Embley, T.M. and McCarthy, A.J. (1993)

    The phylogeny of autotrophic ammonia-oxidizing bacteria as deter-

    mined by analysis of 16S ribosomal RNA gene sequences. J. Gen.

    Microbiol. 139, 1147^1153.[50] Purkhold, U., Pommering-Ro ser, A., Juretschko, S., Schmid, M.C.,

    Koops, H.-P. and Wagner, M. (2000) Phylogeny of all recognized

    species of ammonia oxidizers based on comparative 16S rRNA and

    amoA sequence analysis: Implications for molecular diversity sur-

    veys. Appl. Environ. Microbiol. 66, 5368^5382.

    [51] Schmidt, I. and Bock, E. (1997) Anaerobic ammonia oxidation with

    nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol. 167,

    106^111.

    [52] Schmidt, I. and Bock, E. (1998) Anaerobic ammonia oxidation by

    cell free extracts of Nitrosomonas eutropha. Antonie van Leeuwen-

    hoek 73, 271^278.

    [53] Hooper, A.B., Vannelli, T., Bergmann, D.J. and Arciero, D.M.

    (1997) Enzymology of the oxidation of ammonia to nitrite by bac-

    teria. Antonie van Leeuwenhoek 71, 59^67.

    [54] Hooper, A.B. and Terry, K.R. (1979) Hydroxylamine oxidoreductaseof Nitrosomonas production of nitric oxide from hydroxylamine. Bio-

    chim. Biophys. Acta 571, 12^20.

    [55] Remde, A. and Conrad, R. (1990) Production of nitric oxide in Nitro-

    somonas europaea by reduction of nitrite. Arch. Microbiol. 154, 187^

    191.

    [56] Stu ven, R., Vollmer, M. and Bock, E. (1992) The impact of organic

    matter on nitric oxide formation by Nitrosomonas europaea. Arch.

    Microbiol. 158, 439^443.

    [57] Poth, M. (1986) Dinitrogen production from nitrite by a Nitrosomo-

    nas isolate. Appl. Environ. Microbiol. 52, 957^959.

    [58] Zart, D., Schmidt, I. and Bock, E. (2000) Signicance of gaseous NO

    for ammonia oxidation by Nitrosomonas eutropha. Antonie van Leeu-

    wenhoek 77, 49^55.

    [59] Schmidt, I., Zart, D. and Bock, E. (2001) Eects of gaseous NO2 on

    cells of Nitrosomonas eutropha previously incapable of using ammo-nia as an energy source. Antonie van Leeuwenhoek 79, 39^47.

    [60] Zart, D. and Bock, E. (1998) High rate of aerobic nitrication and

    denitrication by Nitrosomonas eutropha grown in a fermentor with

    complete biomass retention in the presence of gaseous NO2 or NO.

    Arch. Microbiol. 169, 282^286.

    [61] Schmidt, I. (1997) Anaerobe Ammoniakoxidation von Nitrosomonas

    eutropha. Doctoral Thesis, University of Hamburg.

    [62] Batchelor, S.E., Cooper, M., Chhabra, S.R., Glover, L.A., Stewart,

    G.S.A.B., Williams, P. and Prosser, J.I. (1997) Cell density-regulated

    recovery of starved biolm populations of ammonia-oxidizing bacte-

    ria. Appl. Environ. Microbiol. 63, 2281^2286.

    I. Schmidt et al./ FEMS Microbiology Ecology 39 (2001) 175^181 181