aerodynamics & flight mechanics research group · 2012. 3. 26. · aerodynamics & flight...

26
Aerodynamics & Flight Mechanics Research Group The Rotor in Axial Flight S. J. Newman Technical Report AFM-11/02 January 2011 CORE Metadata, citation and similar papers at core.ac.uk Provided by e-Prints Soton

Upload: others

Post on 03-Apr-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

Aerodynamics & Flight Mechanics Research Group

The Rotor in Axial Flight

S. J. Newman

Technical Report AFM-11/02

January 2011

CORE Metadata, citation and similar papers at core.ac.uk

Provided by e-Prints Soton

Page 2: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 UNIVERSITY OF SOUTHAMPTON

SCHOOL OF ENGINEERING SCIENCES

AERODYNAMICS AND FLIGHT MECHANICS RESEARCH GROUP

The Rotor in Axial Flight

by

S. J. Newman

AFM Report No. AFM 11/02

January 2011

© School of Engineering Sciences, Aerodynamics and Flight Mechanics Research Group

 

 

Page 3: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

 COPYRIGHT NOTICE

(c) SES University of Southampton All rights reserved.

SES authorises you to view and download this document for your personal, non-commercial use. This authorization is not a transfer of title in the document and copies of the document and is subject to the following restrictions: 1) you must retain, on all copies of the document downloaded, all copyright and other proprietary notices contained in the Materials; 2) you may not modify the document in any way or reproduce or publicly display, perform, or distribute or otherwise use it for any public or commercial purpose; and 3) you must not transfer the document to any other person unless you give them notice of, and they agree to accept, the obligations arising under these terms and conditions of use. This document, is protected by worldwide copyright laws and treaty provisions.

 

 

Page 4: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

Introduction The following analysis is an appraisal of Actuator Disc Theory and Blade Element Theory applied to a 

rotor in axial flight. The solutions to the methods require scrutiny to choose which is correct for the 

particular flight condition. The report discusses the manner in which the solutions interact and 

roposes a scheme to assemble them together in a unified whole. p

The analysis is then extended to Ann

 Nomenclature 

ulus Theory. 

 

T  Thrust 

R  Rotor Radius 

VT  Tip Speed 

VC  Climb Velocity 

VD  Descent Velocity 

Vi  Rotor Downwash Velocity 

N  No of Blades 

C  Blade Chord (Constant) 

Air Density 

a  Lift Curve Slope 

s  Rotor Solidity 

0  Collective Pitch 

Overall Blade Twist (Linear) 

x  Non‐ Dimensional Spanwise Variable 

z Vertical Advance Ratio 

i  Non Dimensional Rotor Downwash 

CT  Thrust Coefficient 

   

BET  Blade Element Theory 

ADT  Actuator Disc Theory 

AT  Annulus Theory 

 

 

 

Page 5: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

Diagrams 

 

 

Disc Plane

Blade Section

r

iC VV

 Diagram 1 ‐ BET for Climb  

Disc Plane

Blade Section

r

iD VV

Diagram 2 ‐ BET for Descent  

 

 

T

VC

VC+Vi

VC+2Vi 

Diagram 3 ‐ ADT for Climb  

T

VD

VD-Vi

VD-2Vi

 Diagram 4 ‐ ADT for Descent 

  

 

x

dx

 Diagram 5 ‐ Annulus Theory 

 

 

Page 6: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

Blade Element Theory with Momentum Theory 

 

Climb Root BET gives: 

 

 

dxx

xxaNcRVT izT

1

0

022

2

1

 (1.)

 

which on normalisation becomes: 

 

 

23

243

75

0

iz

izT

sa

C

 

(2.)

ADT gives the following expression for rotor thrust: 

 

  iizT

iiz

AV

VVVAT

22

2

 

(3.)

 

which on normalisation becomes: 

 

 

 

Page 7: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

  2

4

4

iizT

iizT

C

C

 

(4.)

Combining equations (2) & (4) results in the quadratic equation: 

 

02348

752

z

zii

sasa

 (5.)

 

i.e.: 

 

02 CBA ii  

(6.)

 

where the coefficients are defined as: 

 

 

234

8

1

75 z

z

saC

saB

A

 

(7.)

 

if we introduce the product sa as a basic normalisation variable, the above equations reduce to: 

 

 

Page 8: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

 

2375

2

7575

iz

TT

ii

zz

sa

CC

sa

sa

sa

 

(8.)

 

0234

1

8

1 752

z

zii   (9.)

 

 

 

 

02

CBA ii  (10.)

 

 

234

1

8

1

1

75 z

z

C

B

A

 

(11.)

 

It is now possible to solve this problem within a domain where rotor scale factors have been 

completely removed. 

 

 

 

Page 9: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

The solutions of (10) & (11) are: 

 

 

2

38

1

8

1

2

238

1

8

1

75

2

75

2

zz

zzz

i

 (12.) 

These are denoted C+ & C‐ 

 

In order for either solution to exist, the following condition must be met: 

 

 

042

CAB  (13.)

i.e.: 

 

038

1 75

2

z

 

(14.)

 

which is a parabolic region defined by: 

  2

75 8

13

z

 

(15.)

 

Provided that this region is avoided, the remaining part of the domain will give rise to a positive or 

negative solution. 

 

 

 

Page 10: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

For a positive solution we have from inspection of (12): 

 

C+  

 

 

8

1

08

1

z

z

 

(16.)

  

OR 

 

 

8

1

38

1 75

2

zz

 

(17.) 

 

which on squaring out gives: 

 

 

 

z2

375

 

(18.)

the domain now sub‐divides as shown in Figure 1: 

 

 

 

Page 11: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

75

z

C+

+ve solution

-ve solution

no solution

 

Figure 1 ‐ C+ Solution Space 

 

 

C­  

a positive root will be obtained if: 

 

 

8

1

08

1

z

z

 

(19.)

AND 

 

 

 

Page 12: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

8

1

38

1 75

2

zz (20.)

 

which on squaring out gives: 

 

 

 

z2

375  

(21.)

the domain now sub‐divides as shown in Figure 2: 

 

 

75

z

C-

+ve solution

-ve solution

no solution

 

Figure 2 – C‐ Solution Space 

 

 

Page 13: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

Descent Root  

BET gives: 

 

 

dxx

xxaNcRVT izT

1

0

022

2

1

 (22.)

 

which on normalisation becomes: 

 

 

23

243

75

0

iz

izT

sa

C

 

(23.)

ADT gives the following expression for rotor thrust: 

 

  iizT

iiz

AV

VVVAT

22

2(24.)

 

which on normalisation becomes: 

 

  2

4

4

iizT

iizT

C

C

 

(25.)

 

 

Page 14: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

Equations (23) & (25) combine to give: 

 

 

02348

752

z

zii

sasa  

(26.)

i.e. 

 

02 CBA ii  

(27.)

 

where the coefficients are defined by: 

 

 

234

8

1

75 z

z

saC

saB

A

 

(28.)

 

normalisation using sa gives: 

 

 

0234

1

8

1 752

z

zii

 (29.) 

 

i.e.: 

 

02

CBA ii  

(30.)

 

 

Page 15: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

where: 

 

 

234

1

8

1

1

75 z

z

C

B

A

 

(31.)

 

It is now possible to solve this problem within a domain where rotor scale factors have been 

completely removed. 

 

The solutions of (30) & (31) are: 

 

 

2

38

1

8

1

2

238

1

8

1

75

2

75

2

zz

zzz

i

 (32.) 

These are denoted D+ & D‐ 

In order for a solution, the following condition must be met: 

 

 

042

CAB  (33.)

 

 

 

Page 16: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

i.e.: 

 

038

1

0238

1

75

2

75

2

z

zz

 

(34.)

 

This is a parabolic region, but defined by: 

  2

75 8

13

z

 

(35.)

 

Provided that this region is avoided, the remaining part of the domain will give rise to a positive or 

negative solution. 

 

For a positive solution we have from inspection of (32): 

 

D+  

 

 

8

1

08

1

z

z

 

(36.)

  

OR 

 

 

 

Page 17: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

8

1

38

1 75

2

zz (37.)

 

which on squaring out gives: 

 

 

 

z2

375  

(38.)

the domain now sub‐divides as shown in Figure 3: 

 

75

z

D+

+ve solution

-ve solution

no solution

 

Figure 3 ‐ D+ Solution Space 

 

 

 

Page 18: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

D­ a positive root will be obtained if: 

 

 

8

1

08

1

z

z

 

(39.)

AND 

 

 

8

1

38

1 75

2

zz (40.)

 

which on squaring out gives: 

 

 

 

z2

375  

(41.)

the domain now sub‐divides as shown in Figure 4: 

 

 

 

Page 19: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

75

z

D-

+ve solution

-ve solution

no solution

 

Figure 4 – D‐ Solution Space 

 

 

 

 

 

 

Page 20: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

Combined Solution 

 

 

It is now possible to determine a calculation strategy permitting climb and descent with positive & 

negative pitch angles. 

 

The following procedure is proposed: 

 

The C+ & D‐ solutions form the basis. (The C‐ & D+ solutions are not appropriate.) These are shown 

together in Figure 5: 

 

75

z

C+

+ve solution

-ve solution

no solution

 

75

z

D-

+ve solution

-ve solution

no solution

Figure 5 – Comparison of C+ & D‐ Solution Spaces 

 

for any point in the domain of  z  &  75 75 a choice of C+ or D‐ solution is required. 

 

The tables show the choice order. 

 

Select 1st Choice if it exists  

Otherwise  

Select 2nd Choice

 

 

 

Page 21: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

The choices are as follows: 

 

75  z  1st Choice  2nd Choice 

=>0  C+  C+ 

=>0 

<0  D‐  C+ 

=>0  C+  D‐ 

<0 

<0  D‐  D‐ 

 

This can be simplified to: 

 

 

z  1st Choice  2nd Choice 

=>0  C+  D‐ 

<0  D‐  C+ 

 

 

 

 

 

 

Extension to Annulus Theory  

The thrust over an elemental annulus is given by BET: 

 

 

x

aNcdrrdT iz 2

2

(42.)

 

 

 

Page 22: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

 

 

Momentum Theory ­ Climb  

from momentum theory over the annulus: 

 

 

Equating (42) & (43) gives: 

 

 

From which we have: 

 

Hence: 

 

 

Normalizing on sa gives finally: 

 

  iiC VrdrVVdT 22 (43.)

 

xa

R

xVNcVVV izT

iiC

2

8

(44.)

 

iziiz xsa 8

 

(45.)

 

088

2

zzii x

sasa  

(46.)

Page 23: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

08

1

8

12

zzii x

 

(47.)

 

 

Momentum Theory ­ Descent  

The thrust over an elemental annulus is given by BET: 

 

  iiD VrdrVVdT 22 (48.)

 

Noting that: 

 

CD VV  (49.)

 

from momentum theory over the annulus: 

  iiC VrdrVVdT 22 (50.)

 

 

Equating gives: 

 

 

xa

R

xVNcVVV izT

iiC

2

8

(51.)

 

From which we have: 

 

 

 

Page 24: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

 

 

Hence: 

 

 

Normalizing on sa gives finally: 

 

 

Comparison of Actuator Disc Theory (ADT) & Annulus Theory (AT)  

The quadratic equations for ADT & AT are presented below: 

Climb 

ADT 

AT  

 

iziiz xsa 8

 

(52.)

 

088

2

zzii x

sasa  

(53.)

 

08

1

8

12

zzii x

 

(54.)

 

0234

1

8

1 752

z

zii

 (55.)

Page 25: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

08

1

8

12

zzii x

 

(56.)

 

 

Descent  

ADT  

 

0234

1

8

1 752

z

zii

 (57.)

 

 

AT  

 

08

1

8

12

zzii x

 

(58.)

 

Inspection of these equation pairs shows the following equivalence between the local pitch angle 

(AT) and the pitch at 75% radius (ADT): 

 

 

753

2 x 

(59.)

In other words, the AT solution can be achieved using the same choice of solution developed for the 

ADT. 

 

The thrust variation can then be evaluated by: 

 

 

 

Page 26: Aerodynamics & Flight Mechanics Research Group · 2012. 3. 26. · Aerodynamics & Flight Mechanics . Research Group . The Rotor in Axial Flight . S. J. Newman . Technical Report AFM-11/02

 

 

 

dxx

xaNcRVT izT

1

0

22

2

1  

(60.)

 

whence: 

 

dxx

xsa

C izT

1

0

2  

(61.)

 

where finally: 

 

 

 

 

dxx

x

sa

CC

iz

TT

1

0

2

2

 

(62.)