age related pain sensation change

13
Agerelated changes in the primary afferent function in vitro Liang Huang, Ratan Banik New Jersey Neuroscience Institute Abstract The altered pain perception and the cutaneous nociception elicited by noxious stimuli to the skin during senescence are not well understood, and it is thought that this could in part be due to changes in peripheral pain sensing processes. We systematically examined cutaneous nociceptor responses and nociceptive behaviors in young (26 months) and in aged (1826 months) F334/N rats. Cfiber nociceptors in the skin were identified by mechanical stimulation, and extracellularly recorded from hind paw skinsaphenous nerve preparations in vitro. The aim of the present study was to investigate the activities of aged skin nociceptors systematically to mechanical, chemical stimuli, and to compare with the data from young animals. Mechanical threshold measured by a ramp mechanical stimulus in the aged skin was significantly higher than that in the younger skin. The latency to chemical stimulations tended to be longer. In addition, the magnitude of the chemical response during the 60s chemical stimulus was not significantly different. In contrast, the numbers of total net discharges induced by chemical (bradykinin, prostaglandin, serotonin, histamine) stimuli were not different with the different ages. After sensitization by chemicals, the young rats displayed a stronger and longer mechanosensitization. This showed for the first time that not only receptive properties of afferent terminals but also mechanical sensitizations by chemicals in axons are changed in aged rats. These results showed decreased mechanical and chemical responses in skin Cafferents in the aged rats. Introduction With advancing age, a decline in the sensation is well reported to occur. Ageing influences on morphological and functional features of cutaneous mechanical transducers and mechanosensitive ion channels, sensory innervation, neurotransmitters and even vascular system required to ensure efferent function of the afferent nerve fibres in the skin. This, in conjunction with effect of ageing on the skin per se and central nervous system, could significantly affect the skin sensation among the ageing population. However, little is known about the peripheral neural mechanisms of skin nociception in the aged. Ageing is associated with reductions of the principal functions of the skin, including protection, excretion, secretion, absorption, thermoregulation, pigmentogenesis, and regulation of immunological processes and wound repair. Ageing is also associated with a progressive decline in cutaneous thermal, vibratory and mechanical sensory perception (Guergova S., Thermal sensitivity in the elderly: a review Ageing Res. Rev., 10 (2011), Lin Y.H., Influence of aging on thermal and vibratory thresholds of quantitative sensory testing. J. Peripher. Nerv. Syst., 2005 and Taguchi, 2010). However, the change with age in pain perception in humans and the nociceptive behaviors in animals elicited by noxious stimuli to the skin are not well understood, and little is known about the peripheral neural mechanisms of cutaneous nociception in the aged and responses to mechanical stimulation and to inflammatory soup

Upload: liang-huang

Post on 15-Aug-2015

26 views

Category:

Documents


0 download

TRANSCRIPT

Age-­‐related  changes  in  the  primary  afferent  function  in  vitro  

Liang  Huang,  Ratan  Banik  

New  Jersey  Neuroscience  Institute  

Abstract  

The  altered  pain  perception  and  the  cutaneous  nociception  elicited  by  noxious  stimuli  to  the  skin  during  senescence  are  not  well  understood,  and  it  is  thought  that  this  could  in  part  be  due  to  changes  in  peripheral  pain  sensing  processes.  We  systematically  examined  cutaneous  nociceptor  responses  and  nociceptive  behaviors  in  young  (2-­‐6  months)  and  in  aged  (18-­‐26  months)  F334/N  rats.  C-­‐fiber  nociceptors  in  the  skin  were  identified  by  mechanical  stimulation,  and  extracellularly  recorded  from  hind  paw  skin-­‐saphenous  nerve  preparations  in  vitro.  The  aim  of  the  present  study  was  to  investigate  the  activities  of  aged  skin  nociceptors  systematically  to  mechanical,  chemical  stimuli,  and  to  compare  with  the  data  from  young  animals.  Mechanical  threshold  measured  by  a  ramp  mechanical  stimulus  in  the  aged  skin  was  significantly  higher  than  that  in  the  younger  skin.  The  latency  to  chemical  stimulations  tended  to  be  longer.    In  addition,  the  magnitude  of  the  chemical  response  during  the  60s  chemical  stimulus  was  not  significantly  different.  In  contrast,  the  numbers  of  total  net  discharges  induced  by  chemical  (bradykinin,  prostaglandin,  serotonin,  histamine)  stimuli  were  not  different  with  the  different  ages.  After  sensitization  by  chemicals,  the  young  rats  displayed  a  stronger  and  longer  mechanosensitization.  This  showed  for  the  first  time  that  not  only  receptive  properties  of  afferent  terminals  but  also  mechanical  sensitizations  by  chemicals  in  axons  are  changed  in  aged  rats.  These  results  showed  decreased  mechanical  and  chemical  responses  in  skin  C-­‐afferents  in  the  aged  rats.  

Introduction    

With  advancing  age,  a  decline  in  the  sensation  is  well  reported  to  occur.  Ageing  influences  on  morphological  and  functional  features  of  cutaneous  mechanical  transducers  and  mechanosensitive  ion  channels,  sensory  innervation,  neurotransmitters  and  even  vascular  system  required  to  ensure  efferent  function  of  the  afferent  nerve  fibres  in  the  skin.  This,  in  conjunction  with  effect  of  ageing  on  the  skin  per  se  and  central  nervous  system,  could  significantly  affect  the  skin  sensation  among  the  ageing  population.  However,  little  is  known  about  the  peripheral  neural  mechanisms  of  skin  nociception  in  the  aged.  

Ageing  is  associated  with  reductions  of  the  principal  functions  of  the  skin,  including  protection,  excretion,  secretion,  absorption,  thermoregulation,  pigmentogenesis,  and  regulation  of  immunological  processes  and  wound  repair.  Ageing  is  also  associated  with  a  progressive  decline  in  cutaneous  thermal,  vibratory  and  mechanical  sensory  perception  (Guergova  S.,  Thermal  sensitivity  in  the  elderly:  a  review  Ageing  Res.  Rev.,  10  (2011),  Lin  Y.H.,  Influence  of  aging  on  thermal  and  vibratory  thresholds  of  quantitative  sensory  testing.  J.  Peripher.  Nerv.  Syst.,  2005  and  Taguchi,  2010).  However,  the  change  with  age  in  pain  perception  in  humans  and  the  nociceptive  behaviors  in  animals  elicited  by  noxious  stimuli  to  the  skin  are  not  well  understood,  and  little  is  known  about  the  peripheral  neural  mechanisms  of  cutaneous  nociception  in  the  aged  and  responses  to  mechanical  stimulation  and  to  inflammatory  soup  

were  not  recorded.  The  sensitizations  of  mechanical  response  by  inflammatory  soup  from  different  age  groups  remain  unclear.  To  date,  nearly  all  attempts  to  characterize  aged  afferent  fibers  have  utilized  structural,  biochemical,  or  molecular  measures1-­‐12.  Morphologic  studies  reported  several  abnormalities  after  aging  such  as  demyelination,  axonal  atrophy,  reduction  in  the  expression  of  cytoskeletal  proteins5,9,10.  Biochemical  studies  found  reduction  of  neuropeptide  expression13  and  molecular  studies  found  reduction  in  the  expression  of  the  molecules  necessary  for  transduction  of  natural  stimuli6,7,11.  Using  an  in  vitro  skin-­‐saphenous  nerve  preparation,  single-­‐fiber  recordings  were  made  from  mechano-­‐heat  sensitive  C-­‐fiber  nociceptors  innervating  rat  glabrous  hind  paw  skin,  and  their  responses  were  compared  with  those  obtained  from  different  age  groups.  Responses  to  mechanical  stimulation  and  to  inflammatory  soup  were  tested.  The  sensitizations  of  mechanical  response  by  inflammatory  soup  from  different  age  groups  were  also  investigated.  

Methods  

Animals  

 Experiments  were  performed  on  52  male  F344/N  rats  of  various  ages.  Two  months  (n=13),  6  months  (n=22),      18  months  (n=6),  and  26  month  (n=11)  old  rats  were  purchased  from  National  Institute  of  Aging,  Bethesda,  Maryland,  USA.    Two  to  four  animals  were  placed  in  plastic  cages  with  sawdust  bedding  and  housed  in  a  climate-­‐controlled  room  under  a  14/10  hr  light/dark  cycle.  The  Animal  Care  and  Use  Committee  at  The  Seton  Hall  University,  South  Orange,  New  Jersey,  USA  has  approved  experiments,  and  the  animals  were  treated  in  accordance  with  the  Ethical  Guidelines  for  Investigations  of  Experimental  Pain  in  Conscious  Animals.  

Organ  bath    

Electrophysiological  recordings  were  performed  in  animals.  Animals  were  killed  using  CO2  inhalation;  then  hairy  skin  of  the  rat  hind  paw  and  its  intact  saphenous  nerve  were  dissected  free  from  muscles  and  tendons.  The  preparation  was  then  placed  in  an  organ  bath  and  was  continuously  super  fused  with  a  modified  Krebs-­‐Henseleit  solution  (in  mM:  110.9  NaCl,  4.8  KCl,  2.5  CaCl2,  1.2  MgSO4,  1.2  KH2So4,  24.4  NaHCO3,  and  20  glucose),  which  was  saturated  with  a  gas  mixture  of  95%  O2  and  5%  CO2.  The  temperature  of  the  bath  solution  was  maintained  at  34  ±  1°C.  After  dissection,  the  preparation  was  placed  with  ‘epidermal  side  down’.  The  nerves  attached  to  the  skin  were  drawn  through  one  small  hole  to  the  second  chamber,  which  was  filled  with  liquid  paraffin.  The  nerves  were  placed  on  a  fixed  mirror,  their  sheaths  removed  and  nerve  filaments  repeatedly  teased  to  allow  single  fiber  recording  to  be  made  by  using  double-­‐platinum  electrodes  (one  for  recording  and  another  for  reference).  Single  nociceptive  afferent  fibers  were  recorded  extracellularly  with  a  differential  amplifier  (DAM50,  Harvard  Apparatus,  Holliston,  MA).  Neural  activity  was  amplified  and  filtered  using  standard  techniques.  Amplified  signals  were  led  to  a  digital  oscilloscope  and  an  audio  monitor  and  fed  into  PC  computer  via  a  data  acquisition  system  (spike2/CED1401  program).  Action  potentials  collected  on  a  computer  were  analyzed  off-­‐line  with  a  template  matching  function  of  spike  2  software.  

Identification  of  afferents  

The  search  strategy  was  mechanical  stimulation  by  a  fire-­‐polished  glass  rod;  thus,  mechanosensitive  afferents  were  characterized.  Only  units  with  a  clearly  distinguished  signal  to  noise  ratio  were  further  studied.  Rapidly  adapting,  low  threshold  A-­‐β  and  D-­‐hair  fibers  were  not  studied.  After  the  initial  assessment,  fibers  were  evaluated  for  their  responsiveness  to  controlled  mechanical  stimuli  and  a  cocktail  of  chemicals,  previously  termed  as  ‘inflammatory  soup’.  In  this  study,  ingredients  of  this  soup  and  concentrations  were  different  from  other  studies  and  the  pH  was  normal  (7.4).  Aliquots  (20  µl)  of  chemical  cocktail  were  prepared  by  combining  bradykinin,  serotonin,  and  histamine  dissolved  in  distilled  water  with  prostaglandin  E2  dissolved  in  dimethyl  sulfoxide  (DMSO)  and  stored  at  -­‐20°C.  The  aliquots  were  diluted  to  final  concentration  (10  µM)  in  neutral  (7.4)  Krebs’  solution  on  the  day  of  the  experiment.  All  chemicals  were  obtained  from  Sigma-­‐Aldrich  (St.  Louis,  MO).  The  decision  to  use  10  µM  concentration  of  the  soup  was  based  on  the  results  of  published  studies  (14,15).    

Conduction  Velocity  and  Fiber  Categorization  

 In this study we concentrated on the C-fiber nociceptors. The  conduction  velocity  was  always  measured  at  the  end  of  the  experiment  to  avoid  damage  to  the  receptive  field  or  alteration  of  fiber  properties.  The  conduction  velocity  of  the  axon  was  determined  by  monopolar  electrical  stimulation  through  an  epoxy-­‐coated  electrode.  The  electrical  stimulation  (1-­‐20  V  at  0.2-­‐1  Hz  for  0.5-­‐2  ms)  was  delivered  at  the  sensitive  spot  of  a  receptive  field.  The  intensity  of  the  stimulus  started  form  0.1  V  and  gradually  increased  until  the  similar  shape  spike  appeared.  The  distance  between  receptive  field  and  the  recording  electrode  (conduction  distance)  was  divided  by  the  latency  of  the  action  potential  (stimulus  artifact  to  the  appearance  to  spike).  

The  fibers  were  classified  using  criteria  from  Leem  et  al.16  Afferent  fibers  conducting  slower  than  2.5  m/s  were  classified  as  C-­‐fibers,  those  conducting  between  2.5  m/s  and  24  m/s  as  Aδ-­‐fibers,  and  those  conducting  faster  than  24  m/s  as  Aβ-­‐fibers.  Units  were  classified  as  mechanosensitive  nociceptors  on  the  basis  of  their  graded  response  throughout  the  innocuous  and  noxious  range  of  mechanical  force  stimuli.  Rapidly  adapting  fibers  were  not  studied.  

Feedback  –controlled  mechanical  stimulation  

To  measure  quantitative  mechanosensitivity,  a  servo  force-­‐controlled  mechanical  stimulator(Series  300B  Dual  Mode  Servo  System;  Aurora  Scientific,  Aurora,  Ontario,  Canada)17were  used.        A  flat  and  cylindrical  metal  probe  (tip  diameter,  0.7  mm)  attached  to  the  tip  of  the  stimulator  arm  was  placed  just  close  to  the  receptive  field  so  that  no  force  was  generated.  Servo-­‐controlled  mechanical  stimulation  (Series  300B  dual  mode  servo  system,  Aurora  Scientific,  Canada)  was  used  to  measure  mechanosensitivity.    The  computer  controlled  ascending  series  of  square-­‐shaped  force  stimuli  was  applied  to  the  most  sensitive  spot  of  the  receptive  field  at  60-­‐s  intervals.  Since  the  neural  responses  of  cutaneous  mechanosensitive  nociceptors  to  mechanical  stimuli  are  highly  correlated  with  compressive  stress  (force)  than  compressive  strain  (  displacement),17  sustained  force-­‐controlled  stimuli  (  rise  time,  100ms;  duration  of  sustained  force  plateau,  1.9s)  were  applied.  Each  force  stimulus  was  2s  in  duration  and  started  from  zero  to  12,  32,  52,  72,  92,112,132,151,171,191,210mN.  When  an  afferent  produced  a  response  to  a  particular  force  controlled  ramp,  it  received  additional  ascending  series  of  stimuli  to  construct  stimulus  response  curve  (as  shown  in  Fig.  1).  The  total  number  of  spikes  generated  during  ascending  series  of  force  pulses  before  

112mN  is  compared  between  different  age  groups  (see  Fig.  1).  The  mechanical  threshold  of  units  was  determined  when  an  afferent  produced  a  response  to  a  particular  force  controlled  ramp.  

Chemical  Stimulation    

After  mechanical  stimulation,  chemosensitivity  was  assessed  using  modified  Krebs-­‐Henseleit  solution.  To  restrict  the  chemical  stimuli  to  the  isolated  receptive  field,  a  small  metal  ring  (  internal  diameter,  5  mm;  height,  6  mm;  volume,  0.4  ml),  which  could  seal  by  its  own  weight,  was  used.  In  some  cases,  inert  silicone  grease  was  added  to  ensure  a  waterproof  seal.    

After  recording  baseline  for  5  min,  the  metal  ring  was  placed  and  the  Krebs-­‐Henseleit  solution  inside  the  ring  chamber  was  removed  and  a  chemical  cocktail,  commonly  present  in  an  inflammatory  milieu,  was  applied  to  the  receptive  field  for  60  s  with  a  temperature  of  32  °C.  The  RF  was  continuously  superfused  with  Krebs  solution  (32  °C)  before  and  after  application  of  chemical  soup.    

We  compared  the  latencies  for  a  response  which  was  calculated  with  time  from  onset  of  chemical  application  to  appearance  of  two  or  more  consecutive  discharges  exceeding  the  mean  frequency  +  2  SD  of  the  background  discharge  rate  during  the  control  period  (60  s).  We  also  compared  the  mean  frequency  or  total  spikes  during  a  response  between  different  groups  (see  Fig.  2).    

Following  chemicals  were  used  to  prepare  this  chemical  cocktail:  bradykinin,  histamine,  serotonin,  and  prostaglandin  E2.  The  pH  of  this  cocktail  was  normal  (7.4).  The  concentrations  are  10-­‐6M,  these  concentrations  were  determined  according  to  past  literature  (Kessler  W  1992)  and  our  pilot  study.  Ten  min  after  chemical  application,  computer  controlled  ascending  series  of  square-­‐shaped  force  stimuli  was  applied  in  a  few  experiments.  These  data  were  used  to  compare  changes  in  the  mechanical  stimulus  response  before  and  after  chemical  soup  (see  Fig.  3).    

Response  criteria  for  chemical  stimulations  

When  a  fiber  fulfilled  the  following  criteria,  it  was  defined  to  be  sensitive  to  a  stimulus:  (1)  the  net  increase  in  the  discharge  rate  during  the  application  period  of  60  s  for  chemical  soup  was  more  than  0.1  imp/s  from  the  background  discharge  rate  during  the  control  period  (60  s)  immediately  before  application,  and  (2)  the  instantaneous  discharge  rate  of  two  consecutive  discharges  exceeded  the  mean  +  2  SD  of  the  background  discharge  rate.    

Data  analysis  

Action  potentials  collected  on  a  computer  were  analyzed  off-­‐line  with  a  template  matching  function  of  spike  2  software.  Quantitative  analysis  was  carried  out  by  counting  total  impulses  generated  in  the  stimulation  period.  In  addition,  average  discharge  frequencies  during  chemical  soup  application  were  also  counted.  Only  good  signal-­‐to-­‐noise  ratio  (>2:1)  was  considered.  

Statistical  analysis  

Results  are  expressed  as  median  with  interquartile  range  (IQR).  Averaged  response  patterns  of  afferents  are  shown  with  mean  ±  SEM.  Comparisons  of  the  electrophysiological  data  between  the  young  and  the  aged  rats  were  done  using  the  Mann–Whitney  U-­‐test.  Mann–Whitney  U-­‐test  was  also  used  to  compare  baseline  (before  application  of  inflammatory  soup)  spike  numbers  induced  by  mechanical  stimulation  and  the  spike  numbers  after  inflammatory  soup.  All  tests  were  made  with  GraphPad  Prism  software,  version  5  (GraphPad,  San  Diego,  CA).  Values  of  p  <0.05  were  considered  significant.    

Results  

1  General  properties  of  C-­‐fibers  from  young  and  senescent  animals    

127  fibers  were  identified.  86  C-­‐fiber  nociceptors  innervating  the  hairy  skin  of  rat  hindpaw  were  studied:  64  from  the  young  rats  and  22  from  aged  rats.  Conduction  velocity  was  not  different  between  two  age  groups.  The  conduction  velocities  of  the  control  C-­‐fibers  ranged  from  0.1  to  1.5  m/s  (0.54  ±  0.06  m/s,  IQR:  0.1-­‐1.0m/s),  and  those  of  the  aged  C-­‐fibers  were  between  0.1  and  1.2  m/s  (0.59  ±  0.09  m/s  IQR:0.18-­‐1.2m/s).  Part  of  the  reason  we  found  so  few  mechanically  sensitive  and  chemically  sensitive  C-­‐fibers  in  aged  rats  when  compared  with  young  rats  might  have  been  a  reported  remarkably  decreased  proportion  of  mechano-­‐responsive  C-­‐fibers  and  an  notable  increase  in  the  proportion  of  mechano-­‐insensitive  C-­‐fibers  in  aged  rats  (Taguchi  2010),  which  phenomenon  is  also  found  in  humans(Namer,  2009).  Since  we  only  identify  the  C-­‐fibers  by  using  manual  probing  with  a  glass  rod,  therefore,  we  found  much  less  mechano-­‐responsive  c-­‐fibers  in  aged  group  in  comparison  with  young  group.    

There  was  no  significant  increase  in  the  discharge  rates  of  spontaneous  activity,  which  were  0.05  imp/s  (IQR:  0-­‐0.14  imp/s)  in  young  rats  and  0.02  imp/s  (IQR:  0-­‐0.10  imp/s)  in  old  rats,  respectively.  In  this  study  all  tested  C-­‐fibers  responded  to  the  inflammatory  soup  stimulation,  and  they  had  a  single  spot  like  receptive  field.  

2  The  mechanical  thresholds  are  different  between  youth  and  aged  rats.  

Although  the  Primary  afferent  response  to  mechanical  stimuli  of  different  age  groups  looks  the  same,  the  mechanical  thresholds  are  different  between  youth  and  aged  rats.  Mechanical  threshold  measured  by  a  train  mechanical  stimulus  in  the  aged  skin  median;  68.44  mN  (IQR:  52.1–92.1  mN),  n  =  18)  was  significantly  higher  than  that  in  the  younger  skin  (median;  52.67  mN  (IQR:  33.6–72.0  mN),  n  =  57,  p  <  0.05,  Mann–Whitney  U-­‐test).  In  addition,  the  magnitude  of  the  mechanical  response  during  the  first  6  stimulus  (from  13mN  to  112mN)  was  significantly  lower  in  the  aged  skin  (22.5  spikes  (IQR:  10.75–34.25  spikes))  than  in  the  young  (31.0spikes  (IQR:  24.25–42  spikes),  p  <  0.05,  Mann–Whitney  U-­‐test).    

<6 and >18 mechanical threshold

t=0.03

Mec

h. th

resh

old

(mN

)

young<6

old>180

50

100

150

200

 

112mn mech mag *

t=0.048< 6

month

> 18 m

onth0

20

40

60

80

 

 

Figure  1  Primary  afferent  responses  to  mechanical  stimuli.  (a–g)  Digitized  oscilloscope  tracings  of  afferent  responsive  to  mechanical  stimuli.  Single  action  potentials  were  recorded  from  fine  filaments  teased  from  medial  or  lateral  plantar  nerves  of  control  mice  while  the  receptive  field  was  stimulated  by  a  feedback-­‐controlled  force  stimulator.  Seven  consecutive  recordings  show  increasing  responses  to  the  ascending  series  of  force  (h)  stimuli.  The  stimulus  duration  of  each  pulse  was  2s  and  they  were  delivered  at  30  s  intervals.  (i)  Comparison  of  mechanical  response  thresholds  between  <6  months  old  (n=57),  >18  months  (n=18)  rats.    

2  Senescent  rats  have  longer  latency  in  responses  to  inflammatory  soup.  

The  onset  of  neuronal  response  to  chemical  stimulation  was  significantly  delayed  in  the  afferents  from  senescent  rats.  In  the  aged  mechano-­‐responsive  C-­‐nociceptors  the  response  latency  to  inflammatory  soup  (median:  15  seconds,  (IQR:  9-­‐23  seconds))  was  significantly  longer  than  that  in  the  younger  skin  (median:  10  seconds,  (IQR:  8-­‐14  seconds))  (p  <  0.05,  Mann–Whitney  U-­‐test),  while  the  magnitude  of  the  response  was  not  different  between  the  two  age  groups.  Intensity  measured  by  total  net  spikes  in  the  aged  skin  (median:  210.5  (IQR:  157.3–281.5),  n  =  20)  was  no  different  from  that  in  the  young  skins  (median:  194.0  (IQR:  139.3-­‐319.8),  n  =  44,  p  =0.93,  Mann–Whitney  U-­‐test).    

Our  observation  suggests  that  initiation  of  chemosensitivity  within  afferents  from  senescent  rats  is  slow  but  once  they  are  activated  they  can  produce  a  same  response  as  afferents  from  younger  rats,  which  were  proved  by  the  same  numbers  of  total  net  spikes  induced  by  inflammatory  soup  in  young  and  aged  rats.  

     

<6 >18new latency

P=0.018

late

ncy(

sec)

<6 m

onth

>18 m

onth0

10

20

30

40

50

   

<6 month >18 month peak frequency no significan

P=0.56

peak

freq

uenc

y

<6 m

onth

>18 m

onth0

5

10

15

20

25

       

chemi net <6 >18

p=0.78

Tota

l spi

kes

< 6 m

onth

> 18 m

onth0

200

400

600

 

Figure  2  Specimen  records  from  4  single  primary  afferents  2  months  (a),  6  months  (b),  18  months  (C)  and  26  months  (d)  rat  hairy  skin  during  trials  of  inflammatory  (mixture  of  chemicals  present  in  an  inflammatory  condition).  Ordinate:  frequency  of  discharges;  ‘inflammatory  soup’  was  applied  for  1  min.  Comparison  of  latencies(e),  which  was  calculated  with  time  from  onset  of  chemical  application  to  appearance  of  clear  response.  (f)  Comparison  of  mean  frequency  (Mann-­‐Whitney  test)  (g)  total  spikes  during  a  response.  

3  Inflammatory  soups  sensitize  mechanical  responses  of  both  young  and  senescent  rats.  However  young  rats  show  longer  and  stronger  sensitization.    

Application  of  inflammatory  soup  had  sensitization  effect  on  mechanical  responses.  Before  and  after  inflammatory  soup  application,  a  series  of  mechanical  stimulation  were  applied  to  get  mechanical  response  curve.  Inflammatory  soup  was  super  perfused  for  1  min.    The  mechanical  stimulus  response  curves  before  and  after  inflammatory  soup  application  for  young  rats  (n=34),  and  aged  rats  (n=12)  are  respectively  shown  in  a,b.  Ordinate:  total  spikes/stimulation.  

We  compared  the  spikes  number  between  the  baseline  mechanical  responses  of  nerve  fibers  and  that  of  after  inflammatory  soup  application  of  the  same  fiber.    All  numbers  were  counted  at  the  same  force  level  on  the  same  fiber  before  and  after  chemical  soup  application.  Therefore,  even  after  inflammatory  soup  application,  the  same  fiber  might  fire  at  different  threshold  force,  mostly  at  a  lower  threshold;  we  still  counted  the  number  of  spikes  that  occurred  at  the  same  force  level  as  the  thresholds  and  stimulation  intensities  indicated  by  baseline  mechanical  responses.  

 

 

In  the  hairy  skin  preparation,  application  of  the  chemical  soup  caused  the  afferent  firing  rate  to  be  significantly  increased  during  controlled  mechanical  stimuli.  (One  sample  t-­‐test).  The  soup  enhanced  firing  rate  in  young  rats  during  controlled  mechanical  stimuli.    The  percentages  of  spikes  compared  to  baseline  in  each  phases  are:  s1:  163.4%  s2:225%;  s3:  199%;  s4:190%,  s5:181%;  s6:141%,  which  are  significantly  higher  from  s2  to  s5  compared  to  baseline  (Fig.  3).  In  aged  rats,  the  percentages  are:  91%,  88%,  132%,  184%,  161%,  and  128%  respectively.    In  aged  skin,  during  the  s1,  s2,  s3,  s5  and  s6  phase  of  controlled  stimulation  after  soup,  there  was  no  significant  change  in  activity  (Fig.  3).  Compared  to  young  animals,  the  sensitizing  effect  of  the  chemical  soup  on  the  old  animals  was  only  seen  significant  at  S4  after  soup  administration.      Also,  the  percentages  of  changes  in  firing  rates  are  different.  Compare  to  aged  skin,  the  extent  of  increases  in  s1  to  s2  in  young  skin  were  higher  (s1  P=0.047,  s2  P=0.037)  (Fig  3  c).  A  specimen  recording  showing  the  excitatory  effect  of  soup  on  afferent  nerve  activity  during  controlled  stimulation  of  a  young  and  old  rat  can  be  seen  in  Fig.  3.    Figure  3  

     

Specimen  demonstrating  the  sensitizing  effect  of  sp  during  normal  and  stimulation  is  shown  in  fig  a,b.      Application  of  inflammatory  soup  had  sensitization  effect  on  mechanical  responses.  Before  and  after  inflammatory  soup  application,  a  series  of  mechanical  stimulation  were  applied  to  get  mechanical  response  curve.  Inflammatory  soup  was  super  perfused  for  1  min.    The  mechanical  stimulus  response  curves  before  and  after  inflammatory  soup  application  for  young  rats  (n=34),  and  aged  rats  (n=12)  are  respectively  shown  in  a,b,c.  Ordinate:  total  spikes/stimulation.  

 <6 mon sensitization

s1 s2 s3 s4 s5 s60

50

100

150

200

250LegendLegend

*** ***

*

***

***

>18 mon sensitization

s1 s2 s3 s4 s5 s60

50

100

150

200

250LegendLegend*

*

     

         

% of mech sensitization<6 >18

s1 s2 s3 s4 s5 s6

-50

0

50

100

150<6 month>18 month** #

*

#

** *** *** **

*

       

baseline and % s2 <6 >18 m*

% o

f Bas

elin

e

Baseli

ne young ra

ts s2

after

soup yo

ung rats

s2

Baseli

ne aged

rats

s2

after

soup ag

ed ra

ts s2

-50

0

50

100

150 **

NS

   

baseline and % s4 <6 >18 m*

% o

f Bas

elin

e

Baseli

ne young ra

ts s4

after

soup yo

ung rats

s4

Baseli

ne aged

rats

s4

after

soup ag

ed ra

ts s4

0

50

100

150*** *

 

 Fig  3  Effect  of  inflammatory  soup  (10-­‐8M)  on  skin  afferent  activity  in  young  (black  squares)  and  aged  (open  triangles)  rats.  Neural  activity  is  shown  in  response  to  mechanical  stimulation  of  the  skin  compared  to  pre-­‐soup  control  (represented  by  solid  line  set  at  0%).  The  sensitizing  effect  of  

inflammatory  chemicals  was  seen  in  s1-­‐s6  in  young  skin,  although  it  is  only  seen  in  s4  in  aged  skin.  Data  are  shown  as  mean  ±  SEM.  *P  <  0.05;  one  sample  t-­‐test;  n=34  fibers  for  young  rats;  n=12  fibers  for  aged  rats.      Discussion  

Ageing  is  of  interest  because  ageing  influences  morphological  and  functional  features  of  cutaneous  mechanical  transducers  and  mechanosensitive  ion  channels,  sensory  innervation,  neurotransmitters  and  even  vascular  system  in  the  skin(Ageing  Res  Rev.  2014  Jan;13C:90-­‐99.Effect  of  ageing  on  tactile  transduction  processes.  Decorps  J.).  Some  age-­‐related  disappearances  in  epidermal  C-­‐fiber  endings  were  previously  reported  to  be  earlier  or  more  markedly  than  those  in  myelinated  fiber  endings  (Pare  et  al.,  2007  and  Ceballos  et  al.,  1999). The  response  to  chemical  is  of  interest  because  ageing  might  have  notable  effect  on  different  response  to  endogenous  or  exogenous  substance  such  as  bradykinin,  histamine,  and  prostaglandin.  In  addition,  there  could  be  different  sensitization  process  in  aged  compared  with  young  animals.  

The  present  study  assessed  in  rats  whether  there  is  an  ageing  related  pain  sensation  change.  We  found  that  although  the  net  intensity  has  no  difference  between  young  and  senescent  rats,  aged  rats  developed  a  relative  longer  latency  in  response  to  chemical  stimulus.  In  addition,  young  rats  showed  lower  mechanical  threshold  and  stronger  mechanical  response  to  stimulation.  Also  young  rats  presented  a  stronger  sensitization  of  mechanical  response  after  chemical  stimulation  compared  to  senescent  rats.  

It  is  generally  agreed  that  the  cool  and  warm  detection  thresholds  assess  the  function  of  small  myelinated  Aδ  fibres  and  unmyelinated  C  fibres,  whereas  sensitivities  to  vibration  and  tactile  stimulation  assess  the  function  of  large  myelinated  fibres,  respectively  (Campero  et  al.,  1996  and  Verdugo  and  Ochoa,  1992).  Abnormalities  of  the  sensory  system,  such  as  detection  thresholds,  nerve  conduction  velocities,  structural  changes  of  sensory  fibres  can  also  develop  because  of  ageing.  For  example,  modest  functional  abnormality  of  small  sensory  fibres  was  shown  in  the  older  subjects,  who  displayed  increased  warm  detection  threshold  compared  to  young  adults  (Fromy  et  al.,  2010).  Also  the  degree  of  activity-­‐dependent  conduction  velocity  slowing  in  response  to  high  frequency  stimulation  was  more  pronounced  in  aged  subjects  (Namer,  2009).  These  changes  in  the  axonal  properties  of  C-­‐fibres  in  aged  subjects  are  compatible  with  hypoexcitability  of  the  fibers.  

Decreased  mechanical  response  

It  was  suggested  that  the  ratio  of  mechano-­‐responsive  fibres  to  mechano-­‐insensitive  fibres  was  shifted  in  favor  of  the  mechano-­‐insensitive  fibres  in  older  subjects  (Namer  et  al.,  2009  and  Orstavik  et  al.,  2006,  Taguchi  2010  pain).  However,  since  we  used  the  probe  stimulation  to  identify  only  mechano-­‐responsive  C-­‐fibers  instead  of  electrically  identifying  both  mechano-­‐responsive  and  mechano-­‐insensitive  C-­‐fiber  population,  we  did  not  see  such  a  ratio  shifting.  But  we  found  much  less  mechano-­‐responsive  fibers  (22)  in  our  aged  group  compared  with  young  rats  (64)  which  might  partially  be  explained  by  the  ratio  shifting  from  mechano-­‐responsive  dominant  fibres  to  mechano-­‐insensitive  fibres.  

Our  results  showed  a  higher  mechanical  threshold  of  response  in  the  aged  group  in  comparison  to  young  rats,  which  is  well  in  line  with  the  previous  observation  in  SD  rats  (Taguchi  2010  pain).  The  mechanical  response  of  individual  mechano-­‐responsive  c  fibres  tends  to  decrease  with  age.  This  may  resulted  from  following  reasons:  First,  the  ageing  effects  on  the  structure  and  function  of  these  mechanosensitive  ion  channels  could  contribute  to  the  age-­‐related  mechano-­‐  response.  Activation  of  mechanosensitive  ion  channels  is  important  for  the  detection  of  mechanical  stimuli  required  for  transduction  to  electrical  signals  in  sensory  neurons.  Expression  of  sodium  channel  Nav1.8  and  TRPV1  expression  has  been  shown  to  be  lowered  in  cutaneous  nerves  of  aged  mice  (Wang  s,  neurobiol  Aging,  2006)  and  is  related  to  reduced  thermal  sensitivity.  The  GFRalpha3  receptor,  which  binds  the  growth  factor  artemin  and  is  expressed  by  TRPV1-­‐positive  neurons,  was  also  decreased  in  the  DRG  of  aged  animals.  These  findings  indicate  that  loss  of  thermal  sensitivity  in  aging  animals  may  result  from  a  decreased  level  of  TRPV1  and  Nav1.8  and  decreased  trophic  support  that  inhibits  efficient  transport  of  channel  proteins  to  peripheral  afferents.  Beside,  some  findings  have  shown  that  selective  TRPV1  antagonists  cause  a  reduction  in  both  thermal  and  mechanical  hyperalgesia  and  TRPV1  also  plays  a  role  in  mechanical  hyperalgesia  (Pomonis  et  al.,  2003;  Walker  et  al.,  2003;  Tang  et  al.,  2007;  Btesh  J,  2013).    

ASIC  3channel  has  also  been  shown  to  detect  some  cutaneous  touch  and  painful  stimuli  (Fromy,  2012).  Other  ion  channels  such  as  TRPA1,  MEC4/MEC-­‐10  and  two-­‐pore  domain  potassium  (K+)-­‐selective  channels  (such  as  TREK1  and  TRAAK)  might  also  be  playing  as  a  neuronal  mechanosensitive  channel  (Decorps  J,  2014).  Although  the  ageing  effects  on  the  structure  and/or  the  function  of  these  mechanosensitive  ion  channels  are  not  described,  one  can  speculate  that  they  could  contribute  to  the  age-­‐related  tactile  defect.  

Second,  changes  in  the  physical  properties  of  aged  skin  may  influence  the  nociceptor  response.  There  are  pronounced  age-­‐induced  changes  in  the  viscoelastic  properties  of  the  skin  and  underlying  tissue.  Profound  differences  in  some  mechanical  properties  of  the  skin  were  found  between  young  and  adult  rats.  The  compliance  of  the  skin  is  decreased  in  adult  rats  when  compared  with  young  rats18(Baumann  KI,  Hamann  W,  Leung  MS:  Mechanical  properties  of  skin  and  responsiveness  of  slowly  adapting  type  I  mechanoreceptors  in  rats  at  different  ages.  J  Physiol  1986;  371:  329-­‐37)  

During  rats’  adulthood,  there  was  a  subsequent  tortuosity  of  the  distorted  elastic  fibers  which  have  lost  their  original  elasticity  and  interlock  with  the  collagen  bundles.  Interlocking  of  both  collagen  and  elastic  fibers  decrease  tissue  compliance19(Imayama  S.  Am  J  Pathol  1989).  In  human  being,  the  thickness  of  the  dermis  also  decreases  with  age  and  this  is  accompanied  by  a  decrease  in  number  of  mast  cells  and  fibroblasts,  and  a  decrease  in  the  generation  of  collagen,  elastin,  glycosaminoglycans,  and  hyaluronic  acid.  It  is  thought  that  changes  in  the  amount  of  collagen,  alterations  in  tissue  reactive  oxygen  species  or  decreases  in  the  amount  of  fibroblast-­‐collagen  linkage  may  result  in  a  diminished  ability  of  the  skin  to  detect  or  propagate  mechanical  stimuli;  however,  it  has  not  yet  been  investigated.  20  (Wu  M:  Effect  of  aging  on  cellular  mechanotransduction.  Ageing  Res  Rev  2011).    

We  also  found  that  in  aged  rats,  the  number  of  impulses  (magnitude  of  response)  induced  by  mechanical  stimulation  tend  to  decrease  compared  to  young  rats,  which  could  be  due  to  the  following  reasons:    First,  since  there  are  decreased  expression  of  Nav1.8  and  TRPV1  protein  in  cutaneous  nerves  

of  aged  mice  (Wang  s,  neurobiol  Aging,  2006).  It  has  been  indicated  that  Nav1.8  sodium  channels  contribute  substantially  to  action  potential  electrogenesis  in  DRG  neurons  (J  Neurophysiol.  2001,  Renganathan).  It  is  possible  that  the  age-­‐related  expression  of  Nav1.8  could  lead  to  changes  in  less  action  potential  electrogenesis  in  aged  rats.  Secondly,  a  decreased  sodium-­‐  potassium  pump  activity  in  dorsal  root  in  aged  mice  was  observed  (Robertson,  1993).  As  it  has  been  suggested  this  decreased  basal  level  of  pump  activity  would  lead  to  relatively  depolarized  membrane  potential  and  higher  proportion  of  inactivated  sodium  channels,  which  would  result  in  hypoexcitability  of  fires  to  sensory  stimuli  (Namer  2009).  This  could  also  leads  to  fewer  spikes  to  mechanical  stimulation  in  aged  skin.  

Chemical  responses  and  sensitized  mechanical  response  after  chemical  soup  

Although  there  was  no  difference  between  young  and  aged  rats  with  the  net  spikes  induced  by  chemical  stimulation,  activities  of  nociceptors  in  response  to  chemicals  (bradykinin,  histamine,  serotonin,  and  prostaglandin  E2)  have  changed  with  ageing  shown  by  a  longer  latency  in  the  aged  rats.  Our  finding  is  supported  by  previous  report  that  latency  of  mechanoresponsive  C  fibers  to  10uM  bradykinin  was  significantly  longer  in  the  aged  SD  rats  (Taguchi,  2010).  

Also,  our  results  showed  that  after  chemical  soup  the  mechanical  responses  are  enhanced  both  in  young  and  old  rats.  Previous  report  showed  that  local  application  of  SP  had  a  sensitizing  effect  on  joint  afferents  in  response  to  movements  in  old  animals  (McDougall  JJ,  2007).  Here,  our  results  first  time  showed  that  this  sensitization  was  more  prominent  in  young  rats  than  old  rats,  which  was  evidenced  by  stronger  enhanced  mechanical  responses  in  young  rats.  We  found  that  percentages  of  changes  in  firing  rates  induced  by  inflammatory  soup  were  higher  in  young  rats  than  in  aged  rats.  Also  the  increased  firing  could  be  seen  in  all  mechanical  stimulation  phases  including  s1  to  s6,  where  in  aged  rats,  it  was  only  seen  in  s4.      

One  reason  for  a  longer  latency  of  inflammatory  mediator  induced  response  and  weakened  sensitization  in  senescent  skin  might  result  from  the  reduced  expressions  of  receptor  molecules  and  transducers  such  as  TRPV1,  bradykinin  receptors,  histamine  receptors  and  serotonin  receptors,  prostaglandin  receptors.  Indeed,  in  rat  spinal  cord,  study  using  quantitative  immunohistochemistry  for  serotonin  (5-­‐HT)  and  tyrosine  hydroxylase  (TH)  in  male  Wistar  rats  of  3  and  24  months  revealed  significant  age-­‐associated  declines  in  the  monoaminergic  innervation  (Ranson,  R.  N.,2003,  Age-­‐associated  changes  in  the  monoaminergic  innervation  of  rat  lumbosacral  spinal  cord.  Brain  Res).    In  the  dorsal  root  ganglia  of  aged  rats,  SP-­‐like  immunoreactivity  significantly  reduced  compared  to  young  adults  (Bergman,  1996).  Although  there  are  no  study  available  as  for  the  age-­‐related  changes  of  bradykinin,  serotonin  and  prostaglandin  E2  expressions  in  aged  rats,  it  has  been  shown  that  TRPV1  expression  in  peripheral  nerve  is  lower  in  aged  mice  (Wang  s,  neurobiol  Aging,  2006).  This  created  a  possibility  that  reduced  TRPV1  expression  with  ageing  might  lead  to  decreased  bradykinin-­‐evoked  and  prostaglandin-­‐evoked  nociceptor  excitation  and  bradykinin-­‐induced  mechanical  hyperalgesia.  

Bradykinin  is  produced  in  response  to  tissue  injury,  inflammation,  or  ischemia  and  binds  to  PLC  coupled  (BK2)  receptors  on  sensory  neurons  (McMahon  et  al.,  2006).  Bradykinin  elicits  acute  pain  through  immediate  excitation  of  nociceptors,  followed  by  a  longer  lasting  sensitization  to  thermal  and  

mechanical  stimuli  (Dray  and  Perkins,  1993).  Genetic  and  electrophysiological  studies  suggest  that  bradykinin-­‐evoked  thermal  hypersensitivity  is  produced  through  PLC-­‐mediated  potentiation  of  TRPV1  (Cesare  et  al.,  1999;  Chuang  et  al.,  2001;  Premkumar  and  Ahern,  2000).    Several  studies  have  suggested  that  TRPV1  is  essential  to  the  BK-­‐evoked  responses  (Shin  et  al.,  2002;  Ferreira  et  al.,  2004,  Neurosci  Res.  2008  Katanosaka  K).  In  addition,  histamine-­‐dependent  itch  is  mediated  by  a  subset  of  C-­‐fiber  afferents  that  express  TRPV1  and  the  histamine  receptor  (Shim  WS,  2007.  TRPV1  mediates  histamine-­‐induced  itching  via  the  activation  of  phospholipase  A2  and  12-­‐lipoxygenase.  J.  Neurosci.).    

Prostaglandins  (PGs),  another  class  of  fatty  acid  derivatives,  are  produced  at  sites  of  inflammation  and  mediate  inflammatory  responses  and  sensitization  by  a  variety  of  mechanisms.  Protein  kinase  C  (PKC)  and  PKA  downstream  of  prostaglandin  E2  receptors,  sensitize/activate  multiple  molecules  including  transient  receptor  potential  vanilloid-­‐1  (TRPV1)  channels,  purinergic  P2X3  receptors,  and  voltage-­‐gated  calcium  or  sodium  channels  in  nociceptors,  leading  to  hyperalgesia  (Biol  Pharm  Bull.  2011,Prostaglandin  E2  and  pain-­‐-­‐an  update.  Kawabata  A).    

Recently  it  was  shown  that  inflammatory  mediators  such  as  prostaglandin-­‐E2  or  bradykinin  cause  hyperalgesia  by  activating  cellular  kinases  that  phosphorylate  TRPV1,  a  process  that  relies  on  a  scaffolding  protein,  AKAP79,  to  target  the  kinases  to  TRPV1(J  Neurosci.  Btesh  J,  2013).  We  speculated  that  reduced  TRPV1  expression  with  ageing  could  lead  to  reduced  bradykinin-­‐evoked  and  prostaglandin-­‐evoked  nociceptor  excitation  and  bradykinin-­‐induced  mechanical  hyperalgesia.  Also  the  histamine  induced  C-­‐fiber  excitation  might  decrease  with  aging  since  TRPV1  expressions  are  decreased  with  aging.  One  can  speculate  that  the  ageing  effects  on  the  structure  of  other  ion  channels  such  as  TRPA1,  could  contribute  to  the  age-­‐related  chemical  responses.  Interestingly,  a  study  showed  that  the  mechanosensitivity  of  mouse  colon  afferent  fibers  and  their  sensitization  by  inflammatory  mediators  require  TRPV1  and  ASIC  3  (J  Neurosci.  2005  Jones  RC  3rd).  And  combined  genetic  and  pharmacological  inhibition  of  TRPV1  and  P2X3  attenuates  colorectal  hypersensitivity  and  afferent  sensitization  by  inflammatory  soup  was  also  significantly  attenuated  (Kiyatkin  ME,  2013).However,  whether  this  also  applied  to  aged  cutaneous  afferents  needs  to  be  investigated  in  the  future.  

 References  

1.   Edwards  RR,  Fillingim  RB,  Ness  TJ:  Age-­‐related  differences  in  endogenous  pain  modulation:  a  comparison  of  diffuse  noxious  inhibitory  controls  in  healthy  older  and  younger  adults.  Pain  2003;  101:  155-­‐65  2.   Lin  YH,  Hsieh  SC,  Chao  CC,  Chang  YC,  Hsieh  ST:  Influence  of  aging  on  thermal  and  vibratory  thresholds  of  quantitative  sensory  testing.  J  Peripher  Nerv  Syst  2005;  10:  269-­‐81  3.   Matysiak  M,  Ducastelle  T,  Hemet  J:  [Morphometric  study  of  variations  related  to  human  aging  in  pulp  unmyelinated  and  myelinated  axons].  J  Biol  Buccale  1988;  16:  59-­‐68  4.   Melcangi  RC,  Magnaghi  V,  Martini  L:  Aging  in  peripheral  nerves:  regulation  of  myelin  protein  genes  by  steroid  hormones.  Prog  Neurobiol  2000;  60:  291-­‐308  5.   Ochs  S:  Effect  of  maturation  and  aging  on  the  rate  of  fast  axoplasmic  transport  in  mammalian  nerve.  Prog  Brain  Res  1973;  40:  349-­‐62  6.   Parhad  IM,  Scott  JN,  Cellars  LA,  Bains  JS,  Krekoski  CA,  Clark  AW:  Axonal  atrophy  in  aging  is  associated  with  a  decline  in  neurofilament  gene  expression.  J  Neurosci  Res  1995;  41:  355-­‐66  

7.   Wang  S,  Davis  BM,  Zwick  M,  Waxman  SG,  Albers  KM:  Reduced  thermal  sensitivity  and  Nav1.8  and  TRPV1  channel  expression  in  sensory  neurons  of  aged  mice.  Neurobiol  Aging  2006;  27:  895-­‐903  8.   Chang  YC,  Lin  WM,  Hsieh  ST:  Effects  of  aging  on  human  skin  innervation.  Neuroreport  2004;  15:  149-­‐53  9.   Besne  I,  Descombes  C,  Breton  L:  Effect  of  age  and  anatomical  site  on  density  of  sensory  innervation  in  human  epidermis.  Arch  Dermatol  2002;  138:  1445-­‐50  10.   Lauria  G,  Holland  N,  Hauer  P,  Cornblath  DR,  Griffin  JW,  McArthur  JC:  Epidermal  innervation:  changes  with  aging,  topographic  location,  and  in  sensory  neuropathy.  J  Neurol  Sci  1999;  164:  172-­‐8  11.   Bergman  E,  Fundin  BT,  Ulfhake  B:  Effects  of  aging  and  axotomy  on  the  expression  of  neurotrophin  receptors  in  primary  sensory  neurons.  J  Comp  Neurol  1999;  410:  368-­‐86  12.   Ulfhake  B,  Bergman  E,  Edstrom  E,  Fundin  BT,  Johnson  H,  Kullberg  S,  Ming  Y:  Regulation  of  neurotrophin  signaling  in  aging  sensory  and  motoneurons:  dissipation  of  target  support?  Mol  Neurobiol  2000;  21:  109-­‐35  13.   Verdu  E,  Ceballos  D,  Vilches  JJ,  Navarro  X:  Influence  of  aging  on  peripheral  nerve  function  and  regeneration.  J  Peripher  Nerv  Syst  2000;  5:  191-­‐208  14.   Lang  E,  Novak  A,  Reeh  PW,  Handwerker  HO:  Chemosensitivity  of  fine  afferents  from  rat  skin  in  vitro.  J  Neurophysiol  1990;  63:  887-­‐901  15.   Kessler  W,  Kirchhoff  C,  Reeh  PW,  Handwerker  HO:  Excitation  of  cutaneous  afferent  nerve  endings  in  vitro  by  a  combination  of  inflammatory  mediators  and  conditioning  effect  of  substance  P.  Exp  Brain  Res  1992;  91:  467-­‐76  16.   Leem  JW,  Willis  WD,  Chung  JM:  Cutaneous  sensory  receptors  in  the  rat  foot.  J  Neurophysiol  1993;  69:  1684-­‐99  17.   Khalsa  PS,  LaMotte  RH,  Grigg  P:  Tensile  and  compressive  responses  of  nociceptors  in  rat  hairy  skin.  J  Neurophysiol  1997;  78:  492-­‐505  18.   Baumann  KI,  Hamann  W,  Leung  MS:  Mechanical  properties  of  skin  and  responsiveness  of  slowly  adapting  type  I  mechanoreceptors  in  rats  at  different  ages.  J  Physiol  1986;  371:  329-­‐37  19.   Imayama  S,  Braverman  IM:  A  hypothetical  explanation  for  the  aging  of  skin.  Chronologic  alteration  of  the  three-­‐dimensional  arrangement  of  collagen  and  elastic  fibers  in  connective  tissue.  Am  J  Pathol  1989;  134:  1019-­‐25  20.   Wu  M,  Fannin  J,  Rice  KM,  Wang  B,  Blough  ER:  Effect  of  aging  on  cellular  mechanotransduction.  Ageing  Res  Rev  2011;  10:  1-­‐15