agenda overview technology –tinyos; prof. phil levis, stanford –energy scavenging; prof. paul...

40
Agenda • Overview • Technology TinyOS; Prof. Phil Levis, Stanford Energy Scavenging; Prof. Paul Wright, UC Berkeley Low Power Radios Nate Pletcher, BWRC Ben Cook & Steven Lanzisera, BSAC • Applications Stewart Tansley, Microsoft Mark Noworolski, Streetline Networks Joe Polastre, Moteiv Amy Wang, Mela Networks Amine Haoui, Sensys Networks David Culler, Arched Rock

Upload: melina-lamb

Post on 29-Jan-2016

219 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Agenda• Overview• Technology

– TinyOS; Prof. Phil Levis, Stanford– Energy Scavenging; Prof. Paul Wright, UC Berkeley– Low Power Radios

• Nate Pletcher, BWRC

• Ben Cook & Steven Lanzisera, BSAC

• Applications– Stewart Tansley, Microsoft– Mark Noworolski, Streetline Networks– Joe Polastre, Moteiv– Amy Wang, Mela Networks– Amine Haoui, Sensys Networks– David Culler, Arched Rock

Page 2: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Cost of Sensor Networks

Time

$

Computing Power

Sensors

Installation, Connection and Commissioning

Mesh Networking

Page 3: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

IEEE 802.15.4 & WiFiOperating Frequency Bands

868MHz / 915MHz PHY

2.4 GHz

868.3 MHz

Channel 0 Channels 1-10

Channels 11-26

2.4835 GHz

928 MHz902 MHz

5 MHz

2 MHz

2.4 GHz PHY

Gutierrez

Page 4: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Spatial effect of multipath

Plot courtesy Matt Welsh, Harvard

Page 5: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Frequency dependent fading and interference

From: Werb et al., “Improved Quality of Service in IEEE 802.15.4 Networks”, Intl. Wkshp. On Wireless and Industrial Automation, San Francisco, March 7, 2005.

Page 6: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Network Types

Powered mesh infrastructure

Star-Mesh Full Mesh

Star-connected sensors

No infrastructure

Mesh-connected sensors

Star

X X

Why not use 802.11?

Page 7: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Radio Reliability in a Crowded Spectrum

• DSSS doesn’t cut it– Helpful, but only about 10dB

• +20 dBm doesn’t cut it– Helpful, but expensive in batteries– No guarantee: e.g. 802.11 & cordless phones

• Must frequency hop– Time synchronization required…

…but you probably needed that anyway.– Lots of channels, lots of bandwidth, better scaling, …

Page 8: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Implications of RF Challenges• “Transmit and forget” is unreliable

– Lost packets

• Single-path networks (trees) are very dangerous– Lost motes

• Single-channel networks are fatal– Lost networks

Page 9: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

RF Solutions• Temporal Diversity

– Don’t quit until you get an acknowledgement

• Spatial Diversity– Multiple paths from every mote

• Frequency Diversity– Frequency hopping in addition to direct sequence spread

spectrum

Page 10: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

50 motes, 7 hops3 floors, 150,000sf

>100,000 packets/day

Page 11: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

50 motes, 7 hops3 floors, 150,000sf

>100,000 packets/day

Page 12: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Oil Refinery – Double Coker Unit

• Scope limited to Coker facility and support units spanning over 1200ft

• Expanded to 27 units, implemented 14 to start

• No repeaters were needed to ensure connectivity

• Gateway connected via Ethernet port in control room to process control network

• Electrical/Mechanical contractor installed per wired practices

GW

14 unit Network expanded to 27-- Expanding to 50+ in ‘06

Page 13: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Medium Access Approaches• Medium Access (MAC)

– How do motes share the radio spectrum?– How many can co-exist?

• Aloha• Slotted Aloha• CSMA (sometimes CSMA/CA)• CSMA/CD• TDMA• TDMA/CA

Page 14: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Aloha• Simplest MAC protocol

– talk when you want to!– Standard for early wireless sensor networks

• Fine for very light traffic (5%)• Chaotic collapse above ~10%• Theoretical throughput limit ~18% (1/e2)

G

B

A

Aloha!

Aloha!

Aloha! Aloha!

Aloha!

Aloha!

Aloha!

Aloha!

Page 15: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Slotted Aloha• Packets sent in time slots

– Still collisions, but fewer

• Requires time synchronization• Theoretical throughput limit ~37% (1/e)

G

B

A

Aloha!

Aloha!

Aloha! Aloha!

Aloha!

Aloha!

Aloha!

Aloha!

Page 16: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

CSMA

• CSMA = Carrier Sense Multiple Access– Listen before talk– Only transmit if the channel is clear– “Carrier” is actually RF energy and/or valid symbols

G

B

A TX packet ACK

A listens to channel: idle TX

TX packet ACK

B listens (busy) B listens (idle)

?

? ?

Page 17: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

CSMA Challenges

• A, B listen at the same time• Both detect an idle channel• Both begin to transmit, and collide• ~10% of packet time w/ 802.15.4 radios

G

B

A TX packet ACK

A listens (idle)

TX packet ACK

B listens (idle)

?

?

Page 18: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

CSMA Challenges

• A, B listen at the same time• Both detect an idle channel• Both begin to transmit, and collide• ~10% of packet time w/ 802.15.4 radios

G

B

A TX packet ACK

A listens (idle)

TX packet ACK

B listens (idle)

?

?

Collision!

Page 19: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

CSMA Challenges• A, B both listen, detect a packet• At end of packet, both transmit and collide

G

B

A TX packet ACK

TX packet ACK

?

?

X

? ?

TX packet ACK?? ?

? ? ?

Page 20: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

CSMA Challenges• A, B both listen, detect a packet• At end of packet, both transmit and collide

G

B

A TX packet ACK

TX packet ACK

?

?

X

? ?

TX packet ACK?? ?

? ? ?

Collision!

Page 21: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

CSMA Challenges• A, B can’t hear each other• “Hidden node” or “Hidden terminal” problem• In the limit, reduces CSMA to Aloha

G

B

A TX packet ACK?

TX packet ACK?

Page 22: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

CSMA Challenges• A, B can’t hear each other• “Hidden node” or “Hidden terminal” problem• In the limit, reduces CSMA to Aloha

G

B

A TX packet ACK?

TX packet ACK?

Collision!

Page 23: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

CSMA Solutions• Many approaches

– Random exponential backoff– P-persisent CSMA– RTS/CTS– Slotted CSMA– Synchronized CSMA

• Hot topic in academia– MACA, B-MAC, S-MAC, T-MAC, …

Page 24: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

TDMA

• TDMA = Time Division Multiple Access• Divide time into slots

– With 802.15.4, a slot is ~10ms– ~100 slots/second

• Like Aloha, but with assigned TX time slots– Unique TX slots means no collisions– Many motes can receive if desired

G

B

A

BG AG CBDC BG

Page 25: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

TDMA with multiple channels

• Assign each mote a time slot and channel to transmit.– All channels can be used simultaneously

– Big increase in available bandwidth

– 802.15.4 gives ~ (100 slots/s)(16chan) = 1600 cells/sec

– Uniquely assigned no collisions

• RX need to be scheduled now too• No TX, no RX sleep!

G

B

AAG

CBDC

BG

AG

CBDC

BG

Ch0

Ch1

Ch2

Ch3

Page 26: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

TDMA Challenges• Time synchronization

– Seems to be an article of faith with some that it’s impossible– Others just do it

• Sub-microsecond (pairwise) demonstrated in academia

• Sub-millisecond (entire network) available commercially

• Cell scheduling• Dynamic Bandwidth Allocation

Page 27: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

TDMA with CSMA

• Backbone TDMA network– Baseline connectivity and time synchronization– Guaranteed bandwidth– ~10% of cells in a 10,000 mote network

• All or some of remaining cells are “open listens”– Slotted Aloha by default– Fancier algorithms possible

• All motes can listen, or just those with power

G

B

AAG

CBDC

BG

AG

CBDC

BG

Ch0

Ch1

Ch2

Ch3

Page 28: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

TDMA with CSMA

• Backbone TDMA network– Baseline connectivity and time synchronization– Guaranteed bandwidth– ~10% of cells in a 10,000 mote network

• All or some of remaining cells are “open listens”– Slotted Aloha by default– Fancier algorithms possible

• All motes can listen, or just those with power

G

B

AAG

CBDC

BG

AG

CBDC

BG

Ch0

Ch1

Ch2

Ch3

A?

E?

D?

F? A-Z?

A-Z?

A-Z?

A-Z?

A-Z?

A-Z?

A-Z?

A-Z? A?

E? F?

D?

Page 29: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Scalability: Outdoor Test Network

Interferer(PosA)

10

SmartMeshManager

2

SmartMeshManager

1

SmartMeshManager 9.5

4.5

8

4.5

OPEN SPACE DEPLOYMENT

Netw ork deployed at 1 Thayer Road, Santa Cruz, CA, on roughpasture. Modifications to Implementation plan due to deployment fitinto "thin and hourglass" shape of site (no minimum plan distancescompromised). All measurements given in meters, and accurate to

w ithin +/-25 centimeters (gopher hole offsets).

025

Mote

16

619

Mote

053

Mote

8

6

038

Mote

037

Mote

6

4.5

060

Mote

059

Mote

8

3

8

10

13

13

002

Mote8 8

3

050

Mote

004

Mote

13

005

Mote

13

054

Mote

061

Mote

001

Mote

6

003

Mote10

006

Mote

13

13

10

049

Mote

8

8

4.5

013

Mote

052

Mote

056

Mote6

6

235

Mote

233

Mote

232

Mote

88

234

Mote

8

231

Mote

8

8

12.5

9

11.5

4.5

4.5

4.5

11.5

10.5

3

8

014

Mote8

9

4

SmartMeshManager

148

Mote

4.5

147

Mote

8

015

Mote

16

190

Mote

8

4.5

8

187

Mote

188

Mote

189

Mote

016

Mote

018

Mote6 6

3.5

017

Mote

019

Mote

021

Mote

020

Mote

023

Mote

6

3.5

6

3.5

3.5

022

Mote

3.5

6

024

Mote6

3.5

151

Mote

154

Mote

3.5

159

Mote

3.5

150

Mote

155

Mote

3.5

158

Mote

3.5

156

Mote

153

Mote

66

6

6

6

66 6

149

Mote6

157

Mote6

152

Mote6

160

Mote6

3.5

3.5

3.5

3.5

165

Mote

163

Mote6 6

3.5

164

Mote

172

Mote

170

Mote

171

Mote

178

Mote

6

3.5

6

3.5

3.5

179

Mote

3.5

6

177

Mote6

3.5

162

Mote

173

Mote

3.5

176

Mote

3.5

166

Mote

169

Mote

3.5

180

Mote

3.5

168

Mote

174

Mote

66

6

6

6

66 6

167

Mote6

183

Mote6

161

Mote6

186

Mote6

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

182

Mote6

3.5

181

Mote6

175

Mote6

3.5

185

Mote6

184

Mote

3.5

3.5

3.5

16

4.5

026

Mote

242

Mote

8

4.5

9.5

031

Mote

241

Mote

243

Mote

4.5

236

Mote

237

Mote

238

Mote

8

8

239

Mote

8

240

Mote

8

8

19

19

4.5

4.5

255

Mote

Interferer(PosD)

Interferer(PosC)

4.5

4.5

027

Mote

285

Mote 4.5

3

304

Mote

286

Mote

303

Mote

302

Mote

3.5

3

4.5

3

287

Mote

3

4.54

279

Mote

278

Mote

3

277

Mote

3

262

Mote

4.5

4.5

4.54.5

261

Mote 4.5

263

Mote 4.5

267

Mote 4.5

4.5

3

3

288

Mote 4.54.5

4.5

301

Mote

289

Mote

300

Mote

299

Mote

5

4.5

4.5

4.54.5

290

Mote

4.5

4.55.5

4.5

276

Mote

275

Mote

4.5

274

Mote

4.5

265

Mote

4.5

4.5

4.54.5

264

Mote 4.5

291

Mote 4.56

4.5

4.5

3

4.53

33

273

Mote 4.5

4.5

266

Mote 4.5

4.5

6

298

Mote

4.5

250

Mote

029

Mote

4

4

3

249

Mote

030

Mote

251

Mote

028

Mote

252

Mote

4

4

307

Mote

282

Mote

253

Mote

254

Mote

3

8

8

269

Mote 4.5

4.5

293

Mote 4.5

4.5

271

Mote 4.5296

Mote

4.5

4.5

268

Mote 4.5

4.5

292

Mote 4.5

4.5

272

Mote 4.5297

Mote

4.5

4.5

3

33

3

260

Mote 4.5284

Mote 4.5

280

Mote 4.5305

Mote

3

33

3

259

Mote 4.5283

Mote 4.5

281

Mote 4.5306

Mote

294

Mote 4.5

4.5

270

Mote 4.5295

Mote

4.5

4.5

258

Mote

8

248

Mote

247

Mote

256

Mote

8

8

245

Mote

246

Mote

257

Mote244

Mote

8

8

88

13

10.5

6

3

4.5

3

4.5

309

Mote

310

Mote

311

Mote

312

Mote

313

Mote

314

Mote

315

Mote

4.5

9

4.5

8

9.59.5

Interferer(PosE)

Interferer(PosB)

7

SmartMeshManager

6

SmartMeshManager

5

SmartMeshManager

4.5

4.5

322

Mote

321

Mote

4.5

320

Mote

4.5

325

Mote

3

4

3.5 3.5

326

Mote4

4.5

319

Mote

318

Mote

4.5

317

Mote

4.5

328

Mote

4.5

5.5

5 5

327

Mote4.5

316

Mote

4.5

4.5

4.54.5

329

Mote5.5

4.5

4.5

453

Mote

518

Mote

512

Mote

511

Mote

331

Mote

337

Mote

335

Mote

338

Mote

339

Mote

336

Mote

334

Mote

333

Mote

340

Mote

341

Mote

342

Mote

343

Mote

344

Mote

345

Mote

346

Mote

355

Mote

354

Mote

353

Mote

352

Mote

351

Mote

350

Mote

349

Mote

356

Mote

357

Mote

358

Mote

359

Mote

360

Mote

361

Mote

362

Mote

371

Mote

370

Mote

369

Mote

368

Mote

367

Mote

366

Mote

365

Mote

372

Mote

373

Mote

374

Mote

375

Mote

376

Mote

4.5

4.5

4.5

4.5

4.5

4.5

3-6m 3-6m 3-6m 4.5

4.5

4.54.5 4.5 4.5

4.54.5

4.54.5

4.5

4.5 4.54.5 4.5 4.5

4.5

4.5

4.5

4.5

4.5

4.5

4.5

4.5

4.5

4.5

4.5 4.5 4.54.5

4.5 4.5 4.5 4.5

4.54.5

4.54.5

4.5

4.5 4.5 4.54.5 4.5

3-6m 3-6m 3-6m 3-6m 3-6m

4.5 4.54.5 4.5 4.5

4.54.5

4.54.5

383

Mote8

392

Mote16

391

Mote

393

Mote

403

Mote

404

Mote

405

Mote

406

Mote

415

Mote

416

Mote

417

Mote

418

Mote

429

Mote

430

Mote

431

Mote

4.5 4.54.5

4.5 4.54.5

4.5 4.5 4.5

4.5

4.5

4.5

4.5

4.5

4.54.5

4.54.5 4.5 4.5

438

Mote

448

Mote

452

Mote

465

Mote

1414

14 14

464

Mote

478

Mote

477

Mote

476

Mote

490

Mote

489

Mote

488

Mote

487

Mote

502

Mote

501

Mote

500

Mote

4 4 4

44

4

4 4 4

4.54.5

4.5

4.5 4.5

4.5 4.54.5 4.5

466

Mote

467

Mote

475

Mote

499

Mote

463

Mote

479

Mote

486

Mote

503

Mote

462

Mote

480

Mote

485

Mote

4.5 4.54.5

4.54.5 4.5 4.5

4.54.5

4.5

4 4 4

44

4 44

390

Mote432

Mote

419

Mote

4.5

4.5

4.5

4.54.5

510

Mote

513

Mote

517

Mote

522

Mote

14 1414

14

523

Mote

382

Mote

380

Mote

384

Mote

4.5

4.5

521

Mote

520

Mote

386

Mote

4.5

455

Mote

389

Mote

388

Mote

407

Mote

408

Mote

409

Mote

412

Mote

413

Mote

414

Mote

433

Mote

434

Mote

4.5 4.54.5

4.5 4.54.5

4.5

4.5

4.5

4.5

4.5

4.5 4.5

4.5 4.5 4.5 4.5

387

Mote435

Mote

4.5

4.5

4.54.5

397

Mote

396

Mote

399

Mote

400

Mote

401

Mote

420

Mote

421

Mote

422

Mote

425

Mote

426

Mote

4.5 4.5 4.5

4.5 4.5 4.5

3-6m

4.5

4.5

4.5

4.5

4.5

395

Mote

427

Mote

4.5

4.5

3-6m3-6m

394

Mote

402

Mote 4.54.5

4.5 4.5

428

Mote

4.5

4.5

4.54.5 4.5 4.5

410

Mote

411

Mote4.5

4.5 4.5

436

Mote

4.5

4.5

504

Mote4

4.5

460

Mote

461

Mote

482

Mote

481

Mote

484

Mote

483

Mote

506

Mote

505

Mote

44 3-6m

44 4

4.5

4.5

4.5

4.5

4.5 4.5

4.5

4.5

468

Mote

469

Mote

474

Mote

473

Mote

472

Mote

493

Mote

492

Mote

491

Mote

498

Mote

497

Mote

4.5 4 4

4 4 4

4

4.5

4.5

4.5

4.5

4.5 4.5

4.5 4.54.5 4.5

470

Mote

496

Mote

4.5

4.5

44

471

Mote

494

Mote4

4.5 4.5

495

Mote

4.5

4

519

Mote

323

Mote

347

Mote

377

Mote

348

Mote

4.5

364

Mote

308

Mote332

Mote

524

Mote

4.5

398

Mote

525

Mote

4.5

424

Mote

527

Mote

526

Mote

446

Mote

440

Mote

4.5

4.5

449

Mote

437

Mote

450

Mote

1414

1414

14 1414

14

451

Mote

363

Mote

379

Mote457

Mote

445

Mote

507

Mote

508

Mote

515

Mote4.5

4.5

456

Mote

442

Mote

9.5

459

Mote

458

Mote

441

Mote

4.5

443

Mote

444

Mote

4.5

423

Mote

378

Mote

385

Mote

381

Mote

8 16

16447

Mote

439

Mote

454

Mote

1414 14

14 509

Mote14

514

Mote

516

Mote

1414 14

330

Mote

324

Mote

8

8

10.5

8

8

7

8

4.5

8

4.5

4.5

4.5

4.5

4.5

4.5

4.5 4.54.5

4.5

4.5

4.5

6.5

4.5

8

16.5

9.5

4.5

9.5

16

9.5

6

033

Mote10

055

Mote

032

Mote6

3

571

Mote

6.5

034

Mote

035

Mote8

4.5

8

036

Mote

16

528

Mote

16

Tree

N

16

058

Mote

620

Mote

13

039

Mote

621

Mote10

13

11.5

Forest Edge

19

16

TreeTrunk

9

SmartMeshManager

661

Mote

057

Mote

646

Mote

665

Mote

663

Mote6 6

664

Mote

658

Mote

657

Mote

044

Mote

651

Mote

6

3

5

33

652

Mote

3

5

650

Mote6

3

662

Mote

659

Mote

3

649

Mote

3

666

Mote

656

Mote

3.5

653

Mote

3

655

Mote

660

Mote

55

5

5

6

66 6

625

Mote6

654

Mote6

622

Mote6

648

Mote6

333

3

641

Mote

643

Mote6 5

3

642

Mote

634

Mote

636

Mote

635

Mote

043

Mote

5

3

6

33

628

Mote

3

6

629

Mote5

3

644

Mote

633

Mote

3

630

Mote

3

640

Mote

637

Mote

3

627

Mote

3

638

Mote

632

Mote

56

5

5

6

66 6

639

Mote6

040

Mote6

645

Mote6

623

Mote5

33

3

3

3 3 33 33

624

Mote6

3

626

Mote6

631

Mote6

3

042

Mote5

041

Mote

3 33

669

Mote

671

Mote

8

667

Mote

668

Mote

670

Mote

672

Mote

673

Mote

679

Mote

678

Mote

045

Mote

677

Mote

676

Mote

675

Mote

674

Mote

680

Mote

046

Mote

047

Mote

048

Mote

681

Mote

682

Mote

683

Mote

690

Mote

689

Mote

688

Mote

687

Mote

686

Mote

685

Mote

684

Mote

691

Mote

692

Mote

693

Mote

694

Mote

695

Mote

696

Mote

697

Mote

703

Mote

702

Mote

701

Mote

700

Mote

699

Mote

6 5 6 6

6656

56

6 5

6 5 6 5 6 6

665656

6 5

3-6m

6 5

3-6m 3-6m

6 6

3-6m

3 3 3 3 3 3 33333333

3 3 3 3 3 3 3

3 3 3 3 3 3 3

3-6

m

3-6

m

3-6

m

3-6

m

3-6

m

698

Mote

647

Mote4.5

16

TreeStump

TreeStump

3 Trees

Stump"Well"

3

SmartMeshManager

107

Mote

051

Mote

064

Mote

065

Mote6 6

3

008

Mote

069

Mote

071

Mote

070

Mote

077

Mote

6

3

6

33

076

Mote

3

6

078

Mote6

3

007

Mote

068

Mote

3

079

Mote

3

063

Mote

072

Mote

3

075

Mote

3

073

Mote

067

Mote

66

6

6

6

66 6

062

Mote6

074

Mote6

066

Mote6

080

Mote6

333

3

087

Mote

085

Mote6 6

3

086

Mote

093

Mote

092

Mote

009

Mote

098

Mote

6

3

6

33

099

Mote

3

6

097

Mote6

3

084

Mote

010

Mote

3

096

Mote

3

088

Mote

091

Mote

3

100

Mote

3

090

Mote

094

Mote

66

6

6

6

64.5 6

089

Mote6

103

Mote6

083

Mote6

106

Mote6

33

3

3

3 33 33 33

102

Mote6

101

Mote3

095

Mote6

3

105

Mote6

104

Mote

3 33

011

Mote

012

Mote

66

112

Mote

111

Mote

110

Mote

109

Mote

108

Mote

113

Mote

114

Mote

115

Mote

116

Mote

117

Mote

118

Mote

119

Mote

126

Mote

125

Mote

124

Mote

123

Mote

122

Mote

121

Mote

120

Mote

127

Mote

128

Mote

129

Mote

130

Mote

131

Mote

132

Mote

133

Mote

141

Mote

140

Mote

139

Mote

138

Mote

137

Mote

136

Mote

135

Mote

142

Mote

143

Mote

144

Mote

145

Mote

146

Mote

3 3 333

33

33

3333

3 3 3 3 333 33 3

3

33

3

33

33

33

6 6 6 6

66 6 6 6 6

66 6 6 6 6

66 6 6 6 6

6 6 6 6 6 6

666666

081

Mote

082

Mote

134

Mote

4.5

9.5

19

16

15

BrushPile

StumpTree

4.5

4.5

4.5

1,100 m

600 m

-1400 Motes -20 Managers - 32 Acres

Page 30: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Standards• 802.15.4• Zigbee, Zensys Z-wave• Wireless HART, ISA SP-100• LonWorks

Page 31: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Zigbee• Great marketing tool, but…

– Nothing interoperable yet– “Zigbee” products typically aren’t– Zigbee typically mean 802.15.4 + proprietary MAC

• Member survey on requirements for Wireless Sensor Networking due 3/17

• Lost industrial automation in 2005• Losing building automation in 2006?• Likely winner in home automation

Page 32: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

ISA SP-100

• http://www.isa.org/community/SP100 • A Word from the Chairman

– “In working to assure confidence in, and the integrity of, wireless technology, and to provide criteria for implementation in manufacturing automation and control systems, the ISA-SP100 Committee recently launched four project teams. Each team’s goal is to develop documents that will help users make the right decision on industrial wireless implementations.”

– Physics of Radio– Interoperability– Requirements– User Guide

• Update: hijacked by Honeywell

Page 33: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Wireless HART• “The Wireless HART working group, an activity of the

HART Communication Foundation (HCF), has set an aggressive goal to produce draft specifications for a Wireless HART standard in early 2006.”

• ABB, Adaptive Instruments, Elpro Technologies, Emerson, Endress+Hauser, Honeywell, Omnex Controls, Phoenix Contact, Siemens, Smar and Yokogawa

• Update: 802.15.4 TDMA network likely to win

Page 34: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

~2 mm^2 ASIC

Mote on a Chip? (circa 2001)

• Goals:– Standard CMOS– Low power– Minimal external components

uP SRAM

RadioADC

Temp

Ampinductor

crystal

battery

antenna

~$1

Page 35: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

System Cost, 2005• E.g. Chipcon cc2510

– 2.4 GHz, 500kbps

– 8051, AES

– Temp sensor

• One of many single-chip options

Single-chip $1.50

Passives $0.20

PCB Assembly & Test $0.20

Battery $0.10

Total $2

Page 36: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Radio Performance

200k Bit rate (bps)100k 300k

I RX (

mA

)

5

10

20

15

25

X cc1000

Molnar 04 (0.4mA)

X

X cc2420

XOtis 05 (0.4mA)

Cook 06 (300 W)

X

With software:10 years D cell

With software:10 years coin cell

Page 37: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

~4 mm^2 ASIC

Mote on a Chip

• Goals:– Standard CMOS– Low power– Minimal external components

uP SRAM

RadioADC

Temp

Ampinductor

crystal

battery

antenna

Security

Location

Time

Page 38: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

~4 mm^2 ASIC

Mote on a Chip

• Goals:– Standard CMOS– Low power– Minimal external components

uP SRAM

RadioADC

Temp

Amp

Security

Location

Time

ZeroResonant antenna on-chip•Demonstrated (e.g. Ken O, U. Florida)

RF Inductor on-chip•Commercially available

Crystal/timing on-chip•Demonstrated (many MEMS papers)

Solar cell on-chip•Commercially available (CMOS cameras ~10% efficient conversion)

Page 39: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Directions• <1W mote• 1mm3 mote• True single-chip mote• Mobility

– Hopping, flying, gliding

• “Integrated” MEMS sensors– Accelerometers, magnetometers, visible & IR cameras,

chem/bio, …

• Bio-interfacing– Neural, inertial, mechanical, chemical

Flexible Platform

Page 40: Agenda Overview Technology –TinyOS; Prof. Phil Levis, Stanford –Energy Scavenging; Prof. Paul Wright, UC Berkeley –Low Power Radios Nate Pletcher, BWRC

Conclusion