agma 929-a06 calculation of bevel gear top land and guidance on cutter edge radius

Upload: simonecastagnetti

Post on 05-Jul-2018

240 views

Category:

Documents


6 download

TRANSCRIPT

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    1/43

     AGMA INFORMATION SHEET(This Information Sheet is NOT an AGMA Standard)

        A    G    M    A    9    2    9  -    A    0    6

     AGMA 929- A06

    AMERICAN GEAR MANUFACTURERS ASSOCIATION

    Calculation of Bevel Gear Top Land and 

    Guidance on Cutter Edge Radius

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    2/43

    ii

    Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius AGMA 929--A06

    CAUTION NOTICE: AGMA technical publications are subject to constant improvement,

    revision or withdrawal as dictated by experience. Any person who refers to any AGMA

    technical publication should be sure that the publicationis the latest available from the As-

    sociation on the subject matter.

    [Tables or other self--supporting sections may be referenced. Citations should read: See

     AGMA 929--A06,   Calculation of Bevel Gear Top Land and Guidance on Cutter Edge

    Radius,  published by the American Gear Manufacturers Association, 500 Montgomery

    Street, Suite 350, Alexandria, Virginia 22314, http://www.agma.org.]

     Approved August 22, 2006

    ABSTRACT

    This information sheet supplements ANSI/AGMA 2005--D03 with calculations for bevel gear top land and guid-

    ance for selection of cutter edge radius for determination of tooth geometry. It integrates various publications

    with modifications to include face hobbing. It adds top land calculations for non--generated manufacturing me-

    thods. It is intended to provide assistance in completing the calculations requiring determination of top landsand cutter edge radii for gear capacity in accordance with ANSI/AGMA 2003--B97.

    Published by

    American Gear Manufacturers Association500 Montgomery Street, Suite 350, Alexandria, Virginia 22314

    Copyright  ©  2006 by American Gear Manufacturers Association

     All rights reserved.

    No part of this publication may be reproduced in any form, in an electronicretrieval system or otherwise, without prior written permission of the publisher.

    Printed in the United States of America

    ISBN: 1--55589--873--4

     AmericanGear

    Manufacturers Association

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    3/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    iii© AGMA 2006 ---- All rights reserved

    Contents

    Page

    Foreword iv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1 Scope 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    2 Symbols, terminology and definitions 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3 Input data 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4 Calculations 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Bibliography 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Annexes

     A Additional equations from ANSI/AGMA 2005 --D03 18. . . . . . . . . . . . . . . . . . . . . .

    B Stock allowance and standard cutter specifications 23. . . . . . . . . . . . . . . . . . . . .

    C Spiral bevel example problem 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    D Hypoid example problem 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Tables

    1 Symbols and terms 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    2 Input variables 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3 Symbols and terms from ANSI/AGMA 2005--D03, table 9 7. . . . . . . . . . . . . . . . .4 Gear rotation factor, k E   7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5 Suggested defaults for input data 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    4/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    iv © AGMA 2006 ---- All rights reserved

    Foreword

    [The foreword, footnotes and annexes, if any, in this document are provided for

    informational purposes only and are not to be construed as a part of AGMA Information

    Sheet 929--A06, Calculation of Bevel Gear Top Land andGuidance on CutterEdge Radius.]

    The Bevel Gearing Committee recognized the need for additional equations to aid in the

    design of bevel gears. The equations for geometry factors found in the annex of 

     ANSI/AGMA 2003--B97 require detailed information on the proposed cutting tool before aproper calculation can be performed. In addition, the minimum top land thickness is

    required to aid in determining the maximum case depth allowed on carburized bevel gears.

    The equations required for these values were not published in AGMA documentation, but

    could be found, for some cases, in the publications listed in the bibliography of this

    information sheet. AGMA 929--A06 expands on those equations to include gears

    manufactured with the face hobbing cutting method.

    In the case of non--generated gears, the equations in this document may yield different

    values forpiniontop landthicknesses andgear tooth depth at thetoe and heel than obtained

    on some well known commercial software. The pinion top land thickness is reduced by

    curvature added to the pinion, a natural consequence of the non--generated gear member

    having no profile curvature on the teeth. For the gear member, the non--generating processcuts a rootline tangent to the gear root cone,a rootline which does notwrap around the root

    cone as in the generated case. This leaves the toe and heel ends of the tooth slots shallow

    compared to the generated gear case, and the gear tooth space at the ends of the teeth

    narrower. The non--generated gear is the imaginary generating gear for the pinion. So the

    pinion teeth, which fit in the non--generated gear tooth slots, are thinner at the ends than

    their generated gear counterparts.

    The cutter edge radii calculated in this document are based on the geometrical conditions

    present and include a manufacturing gauging flat. Individual blade manufacturers have

    standard blade edge radii and manufacturing tolerances for their products which should be

    considered when sourcing non--standard radii. It is recommended to work closely with the

    blade supplier to ensure design specifications and sourced product specifications areconsistent.

    The first draft of AGMA 929--A06 was made in February, 1999. It was approved by the

     AGMA Technical Division Executive Committee in August, 2006.

    Suggestions for improvement of this document will be welcome. They should be sent to the

     American Gear Manufacturers Association, 500 Montgomery Street, Suite 350, Alexandria,

    Virginia 22314.

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    5/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    v© AGMA 2006 ---- All rights reserved

    PERSONNEL of the AGMA Bevel Gear Committee

    Chairman: Robert F. Wasilewski Arrow Gear Company. . . . . . . . . . . . . . . . . . . . . .

    Vice Chairman: George Lian Amarillo Gear Company. . . . . . . . . . . . . . . . . . . . . . . . .

    ACTIVE MEMBERS

    T. Guertin Liebherr Gear Technology Company. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    J. Kolonko Rexnord Geared Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T.J. Krenzer Gleason Corporation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    P.A. McNamara Caterpillar, Inc.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    K. Miller Dana Spicer Off Highway Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    W. Tsung Dana Corporation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    6/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    vi © AGMA 2006 ---- All rights reserved

    (This page is intentionally blank)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    7/43

    1© AGMA 2006 ---- All rights reserved

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

     American Gear Manufacturers Association --

    Calculation of BevelGear Top Land and

    Guidance on Cutter

    Edge Radius

    1 Scope

    Thisinformationsheet provides a setof equationsfor

    the calculation of bevel gear top land and guidance

    on cutter edge radius. It integrates the equations in

     ANSI/AGMA 2005--D03,   Design Manual for Bevel 

    Gears, and Gleason publication SD3124B,

    Formulas for Cutter Specifications and Tooth Thick-

     ness Measurements for Spiral Bevel and Hypoid 

    Gears, with modifications to include face hobbing,

    and additions for the top land calculations for

    non--generated manufacturing methods, to achieve

    compatibility between publications.

    It is intended to provide assistance in completing the

    calculations requiring determination of top lands and

    cutter edge radii in ANSI/AGMA 2003--B97,  Ratingthe Pitting Resistance and Bending Strength of 

    Generated Straight Bevel, Zerol Bevel and Spiral 

    Bevel Gear Teeth.

     Annexes are provided for additional related

    information and calculation examples.

    2 Symbols, terminology and definitions

    2.1 Symbols and terminology

    The equations in this information sheet are written in

    terms generally used for hypoids. See table 1.

    For other gears, thenomenclaturefrom ANSI/AGMA

    2005--D03, table 9 are used (see table 3).

    NOTE:   Some of the symbols and terminology con-

    tained in this document may differ from those used in

    other documents and AGMA standards. Users of this

    standard should assure themselves that they are using

    the symbols, terminology and definitions in the manner

    indicated herein.

    Table 1 -- Symbols and terms

    Symbol Term Units Where firstused

     AiG, AiP   Inner cone distance, gear or pinion inch Eq 7, Eq 1

     AmG, AmP   Mean cone distance, gear or pinion inch Eq 9, Eq 1

     AoG, AoP   Outer cone distance, gear or pinion inch Eq 7, Eq 3

     AxG   Cone distance for involute lengthwise curvature pointwhere normal circular pitch and slot width is a maximum

    inch Eq 31

    aG, aP   Mean addendum, gear or pinion inch Eq 50, Eq 50

    aiG, aiP   Inner addendum, gear or pinion inch Eq 78, Eq 77

    a′iG, a′iP   Adjusted inner addendum, gear or pinion inch Eq 82, Eq 81

    aoG,

     aoP

      Outer addendum, gear or pinion inch Eq 163, Eq 162

     B   Outer normal backlash allowance inch Eq 6

    bG, bP   Mean dedendum, gear or pinion inch Eq 19, Eq 22

    biG, biP   Inner dedendum, gear or pinion inch Eq 25, Eq 24

    boG, boP   Outer dedendum, gear or pinion inch Eq 20, Eq 22

    bxG, bxP   Dedendum at cone distance AxG, gear or pinion inch Eq 44, Eq 45

    b′oG   Theoretical outer gear dedendum inch Eq 19

    c   Clearance inch Eq 77

    (continued)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    8/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    2   © AGMA 2006 ---- All rights reserved

    Table 1 (continued)

    Symbol Term Units Where firstused

     D, d    Pitch diameter, gear or pinion inch Eq 140, Eq 139

     F G, F P   Face width of gear or pinion inch Eq 25, Eq 2

     F iP   Hypoid pinion face width from calculation point to inside inch Eq 1

     F oP   Hypoid pinion face width from calculation point to outside inch Eq 3

     F xG

      Distance from mean cone to cone distance at involutecurvature

    inch Eq 38

    k E   Gear rotation factor -- -- Eq 52

     N , n   Number of teeth, gear or pinion -- -- Eq 79, Eq 79

     pm   Mean circular pitch inch Eq 27

     pn   Mean normal circular pitch inch Eq 27

    Q   Intermediate factor inch Eq 35

    q   Generating angle at mean degrees Eq 9

    qi   Generating angle at inside degrees Eq 13

    qo   Generating angle at outside degrees Eq 11

    qx   Generating angle at involute curvature degrees Eq 39

     RbNG1, RbNP2   Mean normal base radius, convex, gear or pinion inch Eq 143, Eq 142

     RbNG2, RbNP1   Mean normal base radius, concave, gear or pinion inch Eq 144, Eq 141 RibVG, RibVP   Inner base radius -- concave, gear or pinion inch Eq 90, Eq 87

     RibXG, RibXP   Inner base radius -- convex, gear or pinion inch Eq 89, Eq 88

     RiG, RiP   Original inner pitch radius, gear or pinion inch Eq 76, Eq 75

     RioG, RioP   Inner outside radius, gear or pinion inch Eq 86, Eq 85

     RNG, RNP   Mean normal pitch radius, gear or pinion inch Eq 140, Eq 139

     RoNG, RoNP   Mean normal outside radius, gear or pinion inch Eq 146, Eq 145

     R′bNG1, R′bNP2

    Outer normal base radius, convex, gear or pinion inch Eq 160, Eq 159

     R′bNG2, R′bNP1

    Outer normal base radius, concave, gear or pinion inch Eq 161, Eq 158

     R′iG, R′

    iP  New inner pitch radius, gear or pinion inch Eq 84, Eq 83

     R′NG, R′NP   Outer normal pitch radius, gear or pinion inch Eq 157, Eq 156

     R′oNG, R′oNP   Outer normal outside radius, gear or pinion inch Eq 163, Eq 162

     R′′bNG1, R′′bNP2

    Inner normal base radius, convex, gear or pinion inch Eq 179, Eq 178

     R′′bNG2, R′′bNP1

    Inner normal base radius, concave, gear or pinion inch Eq 180, Eq 177

     R′′NG, R′′NP   Inner mean normal pitch radius, gear or pinion inch Eq 176, Eq 175

     R′′oNG, R′′oNP   Inner normal outside radius, gear or pinion inch Eq 182, Eq 181

    rc   Cutter radius inch Eq 9

    rTG, rTP   Maximum blade edge radius, gear or pinion inch Eq 74, Eq 73

    r1G, r1P   Maximum blade edge radius for no running interference,

    gear or pinion

    inch Eq 74, Eq 73

    r1VG, r1VP   Maximum blade edge radius for no running interferenceconcave, gear or pinion

    inch Eq 106, Eq 103

    r1XG, r1XP   Maximum blade edge radius for no running interferenceconvex, gear or pinion

    inch Eq 105, Eq 104

    r2G, r2P   Maximum blade edge radius that can be manufactured,gear or pinion

    inch Eq 74, Eq 73

    r2RG, r2RP   Roughing cutter edge radius, gear or pinion inch Eq 113, Eq 114

    (continued)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    9/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    3© AGMA 2006 ---- All rights reserved

    Table 1 (continued)

    Symbol Term Units Where firstused

    r3G, r3P   Maximum blade edge radius to avoid mutilation, gear orpinion

    inch Eq 74, Eq 73

    r3VG, r3VP   Maximum blade edge radius to avoid mutilation concave,gear or pinion

    inch Eq 136, Eq 133

    r3XG, r3XP   Maximum blade edge radius to avoid mutilation convex,gear or pinion inch Eq 135, Eq 134

    r′2RG, r′2RP   Maximum roughing blade edge radius which can bemanufactured, gear or pinion

    inch Eq 111, Eq 112

    r′2VG, r′2VP   Maximum finishing blade edge radius concave, defined bymaximum roughing blade edge radius and minimum stockallowance, gear or pinion

    inch Eq 118, Eq 115

    r′2XG, r′2XP   Maximum finishing blade edge radius convex, defined bymaximum roughing blade edge radius and minimum stockallowance, gear or pinion

    inch Eq 117, Eq 116

    r′′2VG, r′′2VP   Maximum finishing blade edge radius concave, gear orpinion

    inch Eq 122, Eq 119

    r′′2XG, r′′2XP   Maximum finishing blade edge radius convex, gear or

    pinion

    inch Eq 121, Eq 120

     S AG, S AP   Stock allowance, gear or pinion inch Eq 65, Eq 66

     S1   Crown gear to cutter center distance inch Eq 34

    T mn, t mn   Mean normal circular thickness at pitch line, gear orpinion

    inch Eq 47, Eq 48

    T n   Gear mean normal circular thickness without backlash inch Eq 47

    t iNG, t iNP   Inner normal circular thickness at pitch line, gear or pinion inch Eq 189, Eq 188

    t LiNG, t LiNP   Inner normal top land, gear or pinion inch Eq 192, Eq 190

    t LNG, t LNP   Mean normal top land, gear or pinion inch Eq 154, Eq 152

    t LoNG, t LoNP   Outer normal top land, gear or pinion inch Eq 173, Eq 171

    t mP   Mean pinion transverse circular thickness inch Eq 49

    t oNG, t oNP   Outer normal circular thickness at pitch line, gear orpinion inch Eq 170, Eq 169

    W    Finishing point width gear (Unitool and single sided) inch Table 2

    W BG, W BP   Finishing blade point, gear or pinion inch Eq 69, Eq 70

    W BRG, W BRP   Roughing blade point, gear or pinion inch Eq 67, Eq 68

    W ′e   Effective gear point width inch Eq 52

    W iG, W iP   Inner slot width, gear or pinion inch Eq 59, Eq 60

    W LG, W LP   Minimum slot width, gear or pinion inch Eq 61, Eq 62

    W MG, W MP   Maximum slot width, gear or pinion inch Eq 63, Eq 64

    W mG, W mP   Mean slot width, gear or pinion inch Eq 50, Eq 51

    W oG, W oP   Outer slot width, gear or pinion inch Eq 55, Eq 56

    W RG, W RP   Roughing point width, gear or pinion inch Eq 65, Eq 66

    W xG, W xP   Slot width at AxG (maximum gear or pinion slot) inch Eq 57, Eq 58

     xiVG, xiVP   Limit tooth height for interference concave, gear or pinion inch Eq 102, Eq 97

     xiXG, xiXP   Limit tooth height for interference convex, gear or pinion inch Eq 101, Eq 99

     y   Amount of fillet mutilation permitted inch Eq 129

    Γ, γ   Pitch angle, gear or pinion degrees Eq 76, Eq 75

    ΓR   Gear root angle degrees Eq 17

    ΔaG, ΔaP   Change in inner addendum, gear or pinion inch Eq 80, Eq 79

    (continued)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    10/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    4   © AGMA 2006 ---- All rights reserved

    Table 1 (continued)

    Symbol Term Units Where firstused

    ΔbiG   Depth reduction on non-- generated gear at inside inch Eq 18

    ΔboG   Depth reduction on non--generated gear at outside inch Eq 17

    ΔbxG   Depth reduction on non--generated gear at involutecurvature

    inch Eq 42

    ΔcG, ΔcP   Change in clearance, gear or pinion inch Eq 7, Eq 6

    Δ f    Width of blade flat inch Eq 111

    Δqi   Increment in generating angle at inside degrees Eq 16

    Δqo   Increment in generating angle at outside degrees Eq 15

    Δqx   Increment in generating angle at involute curvature degrees Eq 41

    ΔW ′G, ΔW ′P   Difference between minimum slot width and blade point,gear or pinion

    inch Eq 128, Eq 127

    Δφ2   Normal tilt of finishing cutter non-- generated degrees Eq 8

    δG, δP   Dedendum angle of gear or pinion degrees Eq 19, Eq 22

    ηi   Generating angle at inside degrees Eq 14

    ηo   Generating angle at outside degrees Eq 12

    ηx   Generating angle at involute curvature, for face hobbing degrees Eq 34

    η1   Second auxiliary angle degrees Eq 10

    ρiVG, ρiVP   Inner profile radius of curvature concave, gear or pinion inch Eq 96, Eq 93

    ρiXG, ρiXP   Inner profile radius of curvature convex, gear or pinion inch Eq 95, Eq 94

    ξ   Angle between gear root plane and plane in which taper isspecified

    degrees Eq 53

    Σb   Sum of pinion and gear mean dedendums inch Eq 28

    Σbi   Sum of pinion and gear inner dedendums inch Eq 30

    Σbo   Sum of pinion and gear outer dedendums inch Eq 29

    Σbx   Sum of pinion and gear dedendums at cone distance AxG   inch Eq 46

    Σφ   Included pressure angle degrees Eq 5

    φBXG   Inside blade angle gear cutter (non--generating) degrees Eq 8φiV   Inner pinion pressure angle -- concave degrees Eq 91

    φiX   Inner pinion pressure angle -- convex degrees Eq 92

    φ1   Normal pressure angle, concave, pinion degrees Eq 5

    φ2   Normal pressure angle, convex, pinion degrees Eq 5

    φ1TG, φ2TP   Pressure angle at tip of tooth, convex gear or pinion degrees Eq 150, Eq 149

    φ2TG, φ1TP   Pressure angle at tip of tooth, concave gear or pinion degrees Eq 151, Eq 148

    φ′1TG, φ′2TP   Pressure angle at tip of tooth, outer convex gear or pinion degrees Eq 167, Eq 166

    φ′2TG, φ′1TP   Pressure angle at tip of tooth, outer concave gear orpinion

    degrees Eq 168, Eq 165

    φ′′1TG, φ′′2TP   Pressure angle at tip of tooth, inner convex gear or pinion degrees Eq 186, Eq 185

    φ′′2TG, φ′′1TP   Pressure angle at tip of tooth, inner concave gear orpinion degrees Eq 187, Eq 184

     ψG, ψP   Mean spiral angle, gear or pinion degrees Eq 9, Eq 139

     ψiG, ψiP   Inner spiral angle, gear or pinion degrees Eq 7, Eq 6

     ψoG, ψoP   Outer spiral angle, gear or pinion degrees Eq 7, Eq 6

     ψxG   Spiral angle at cone distance AxG   degrees Eq 32

    ΩVG, ΩVP   Intermediate blade mutilation value concave, gear orpinion

    inch2 Eq 132, Eq 129

    ΩXG, ΩXP   Intermediate blade mutilation value convex, gear or pinion inch2 Eq 131, Eq 130

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    11/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    5© AGMA 2006 ---- All rights reserved

    2.2 Definitions

    This clause provides supplemental definitions for

    bevel gear cutter and cutting method terminologies

    referred to in this information sheet. The list of 

    definitions given here is not intended to be all

    inclusive. For more detailed information regarding a

    particular cutter design or cutting method, the user is

    encouraged to consult the cutter manufacturer’sdata or machine tool manufacturer.

    2.2.1 Bevel gear cutter terminology

    alternate blade.   Any multiple blade face cutter

    having successive blades that cut on opposite sides

    of a tooth space.

    blade flat.  A flat land on the end of blades required

    for blade manufacturing control.

    blade point.   The length across the end surface of a

    blade or tool (measured along a radius of a circular

    cutter), bounded by the extension of the cutting edgeand non--cutting edge of the blade.

    blade, inside.  A blade of a circular face cutter with a

    cuttingedgethatproduces the convex side of a tooth

    surface.

    blade, outside.  A blade of a circular face cutter with

    a cutting edge that produces the concave tooth

    surface.

    coast side.  Thesideofatoothflankthatisincontact

    with the opposite flank of the mate when the gear set

    is driven in the reverse direction.drive side. Theside of a tooth flank that is in contact

    with the opposite flank of the mate when the gear set

    is driven in the forward direction.

    effective gear point width.  Effective point width is

    one half of the difference of the outside minus the

    inside point diameters of a cutter. The effective point

    width is not equal to the slot width produced on the

    part whenindexing motion occursbetween drive and

    coast side generation. For spread blade cutters, the

    effective point width equals the actual cutter point

    width. When indexing accounts for part of the slotwidth, the effective point width can be negative.

    fillet mutilation.   Fouling of tooth fillet by the

    non--cutting side of the bladetip. This is caused by a

    tool edge radius or a blade point which is too large.

    point width.  One half of the difference between the

    inside and outside point diameters of an alternate

    blade cutter.

    2.2.2 Bevel gear cutting method terminology

    completing.  A machining process where the tooth

    space is completed in one machining setup. Unlike

    single side, single setting, or fixed setting methods

    where the tooth space roughing and finishing are

    carried out in separate machining setups.

    cutter tilt.  A change in the relative position between

    workpiece and cutter, measured as an angle in thenormal, or axial, or both planes of the workpiece.

    Formate.   A term describing non--generated gear

    members whose teeth have surfaces of revolution,

    and straight profiles in their normal sections. Pinions

    generated to run with such gears are called Formate

    pinions.

    non--generated method.   A gear cutting process

    where the tooth space is machined without generat-

    ing motion (see Formate). The tooth surfaces are

    formed by the sweep of a straight--sided cutting tool

    and thus have straight profiles in any normal section.

    single setting.   A finishing method which is a

    variation of the spread blade method. It is used on

    wide face width gears to avoid having two cutter

    blades cutting in the same slot at the same time.

    single side.   A cutting method which uses an

    alternate blade cutter to separately cut the profiles

    on each side of a tooth space, with independent

    machine settings.

    spread blade.   A cutting method which uses a

    circular face cutter with alternate inside and outsideblades to cut both sides ofa tooth space at the same

    time.

    Unitool.   A method for producing pairs of spiral

    bevel, zerol bevel or hypoid gears using the same

    single face mill cutter for both members. The cutters

    used with this method are designated as Unitool

    cutters.

     Versacut. A process which requires very fewcutters

    to accommodate a wide variety of spiral bevel gears.

    Thecutters used with this method are designated as

    Versacut cutters.

    3 Input data

    The equations in this information sheet are intended

    to be as general as possible. Many of the

    calculations require knowledge of the specific cut-

    ting method used in manufacture. Supplemental

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    12/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    6   © AGMA 2006 ---- All rights reserved

    definitions to be used with the terms described in

     ANSI/AGMA 2005--D03 for proper input data selec-

    tion based on the manufacturing method used can

    be found in 2.2.

    Thetablesin thisclause describe thedata necessary

    to complete the calculations of this information

    sheet. In most cases the values can be obtained

    from the calculations detailed in ANSI/AGMA2005--D03. Many of those calculations are dupli-

    cated in annex A. Additional tables are provided

    here to supplement those calculations.

    3.1 Input variables

    Table 2 contains all the input variables necessary for

    the calculations used in this information sheet.

    Table 2 -- Input variables

    Symbol Term

     AiG   Inner gear cone distance

     AmG   Gear mean cone distance

     AmP   Pinion mean cone distance

     AoG   Gear outer cone distance

    aG   Gear mean addendum

    aP   Pinion mean addendum

    aoG   Outer gear addendum

    aoP   Outer pinion addendum

     B   Outer normal backlash allowance

    bG   Gear mean dedendum

    bP   Pinion mean dedendum

    c   Clearance

     D   Gear pitch diameter

    d    Pinion pitch diameter

     F G   Gear face width

     F P   Pinion face width

     N    Gear number of teeth

    n   Pinion number of teeth

     pm   Mean circular pitch

    rc

      Cutter radius

     S AG   Stock allowance, gear

     S AP   Stock allowance, pinion

    T n   Gear mean normal circularthickness without backlash

    W    Gear finishing point width (Unitooland single setting)

     y   Amount of fillet mutilation permitted

    Symbol Term

    Γ   Gear pitch angle

    ΓR   Gear root angle

    γ   Pinion pitch angle

    Δ f    Width of blade flat

    δG   Dedendum angle of gear

    δP   Dedendum angle of pinion

    φBXG   Inside blade angle, gear cutter

    (non--generating)φ1   Concave pinion normal pressure

    angle

    φ2   Convex pinion normal pressureangle (always negative)

     ψG   Gear mean spiral angle

     ψP   Pinion mean spiral angle

     ψiG   Inner gear spiral angle

     ψiP   Inner pinion spiral angle

     ψoG   Outer gear spiral angle

     ψoP   Outer pinion spiral angle

     Additional input variables for face hobbing

    Q   Intermediate factor

     S1   Crown gear to cutter centerdistance

    ηi   Generating angle at inside

    ηo   Generating angle at outside

    η1   Second auxiliary angle

     Additional input variables for hypoids

     F iP   Hypoid pinion face width fromcalculation point to inside

     F oP   Hypoid pinion face width fromcalculation point to outside

    3.2 Variable substitutions

    The calculations in this information sheet are written

    in terms of hypoid gears. Many of the variables for

    non--hypoid bevels are subscripted the same for

    pinion and gear. Table3 provides a means forproper

    substitution of these variables into the calculations

    for hypoids.

    3.3 Gear rotation factor

    Table 4 provides for the proper selection of the inputvariable k E basedonthecuttingmethodtobeusedin

    manufacture.

    3.4 Additional input data

    Table 5 contains some suggested default values for

    variables not described in ANSI/AGMA 2005--D03.

    Other values may be used if experience dictates.

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    13/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    7© AGMA 2006 ---- All rights reserved

    Table 3 -- Symbols and terms from ANSI/AGMA 2005--D03, table 9

    Symbol

    Equivalent symbolfrom ANSI/AGMA

    2005 --D03   Term

     AmG   Am   Gear mean cone distance

     AmP   Am   Pinion mean cone distance

     AoG   Ao   Gear outer cone distance

     AoP   Ao   Pinion outer cone distance

     F G   F    Gear face width

     F P   F    Pinion face width

    φ1   φ   Pressure angle -- drive side

    φ2   φ   Pressure angle -- coast side, set φ2 to --φ1

     ψG   ψ   Gear mean spiral angle

     ψoG   ψo   Outer gear spiral angle

     ψP   ψ   Pinion mean spiral angle

    Table 4 -- Gear rotation factor, k E

    Generating method Face hobbing Face milling   k E

    Spread blade X 0.0

    Gleason and Klingelnberg X 1.0

    Oerlikon not using a roughing blade X 1.0

    Oerlikon using a roughing blade X 1.3

    Straight bevels and planing generator   2 W mG pn

    Unitool and single setting X 2W mG − W  pn

    Versacut and standard single side X 2W mG + bGtan   φ1 − tan   φ2 pn

    Table 5 -- Suggested defaults for input data

    Symbol Term Units Suggested default

    φBXGInside blade angle of gear cutter (non--gener-ated gear only)

      degrees Average pressure angle

    For completing, use 0.000

     S AP   Stock allowance, pinion inch   For rough and finish, use

    actual or see annex BFor completing, use 0.000

     S AG   Stock allowance, gear inch   For rough and finish, useactual or see annex B

     y   Amount of fillet mutilation permitted inch 0.002

    Δ f    Width of blade flat inch 0.008

    Cutter radius (straight bevels) 10000rc

    Cutter radius (all other bevels)  nc

    See ANSI/AGMA 2005--D03

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    14/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    8   © AGMA 2006 ---- All rights reserved

    4 Calculations

    4.1 General geometry

    Inner pinion cone distance

    Hypoids

    iP = A

    mP − F 

    iP

      (1)

    For all other bevels

    iP =   mP − 0.5 F P   (2)

    Outer pinion cone distance

    Hypoids

    oP =   mP + F oP   (3)

    For all other bevels

    oP =   mP + 0.5 F P   (4)

    Included pressure angle

    Σφ = φ1 − φ2   (5)

    Change in clearance

    Pinion

    (6)ΔcP = B iP cos ψiP AoP cos ψoP

    1sinφ1 − sinφ2

    Gear

    (7)ΔcG =  iG cos ψiG

     AoG cos ψoG

    1sinφ1 − sinφ2

    If  ΔcP is greater than 0.75 c, or if  ΔcG is greater than0.75 c, reduce B  or increase the clearance c.

    For non--generated gears normal tilt of finishing

    cutter

    Δφ2 = φBXG − φ1   (8)

    Generating angle at mean

    Face milling

    q = arctan    rc cos ψG AmG − rc sin ψG

      (9)Face hobbing

    q = η1 + ψG   (10)

    Generating angle at outside

    Face milling

    qo = arctan    rc cos ψoG AoG − rc sin ψoG   (11)

    Face hobbing

    qo = ηo   (12)

    Generating angle at inside

    Face milling

    qi = arctan   rc cos ψiG AiG − rc sin ψiG   (13)Face hobbingqi = η i   (14)

    Increment in generating angle

    Outside

    Δqo = q − qo   (15)

    Inside

    Δqi = q i − q   (16)

    Generated gears have slightly deeper teeth at the

    toe and heel ends than non--generated gears

    caused by the relative rolling action between cutter

    and work piece. For non--generated gear depth

    reduction:

    Outside

    ΔboG = AoG − AmG

    2tanΔφ2

    2 rc cos2 ψG

    + AoG sin

    2Δqo

    2tanΓR

    (17)

    Inside

    ΔbiG = AmG − AiG

    2tan  Δφ2

    2 rc cos2

     ψG

    + AiG sin

    2Δqi2tan  Γ

    R(18)

    Theoretical outer gear dedendum

    b′oG = bG +  AoG − AmG   tan δG   (19)Outer gear dedendum

    Non--generated gear

    boG = b′oG − ΔboG   (20)

    Generated gear

    boG = b′oG   (21)

    Outer pinion dedendumHypoid

    boP =  bP + F oP tan   δP   (22)

     All other bevels

    boP =  bP + 0.5 F P   tan   δP   (23)

    Inner pinion dedendum

    biP = boP − F P tan   δP   (24)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    15/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    9© AGMA 2006 ---- All rights reserved

    Inner gear dedendum

    Non--generated gear

    biG = b′oG − F G tan   δG − ΔbiG   (25)

    Generated gear

    biG = boG − F G tan   δG   (26)

    Mean normal circular pitch

    (27) pn = pm   cos ψG

    Sum of pinion and gear mean dedendums

    Σb = bP + bG   (28)

    Sum of pinion and gear outer dedendums

    Σbo = boP + boG   (29)

    Sum of pinion and gear inner dedendums

    Σbi =  b iP + biG   (30)

    Cone distance for involute lengthwise curvaturepoint where normal circular pitch and slot width is a

    maximum for face milling

     AxG =   A2mG

     − 2 AmG rc sin  ψG + 2 r2c

      (31)Spiral angle at cone distance AxG (face milling)

     ψxG = arcsin   rc AxG   (32)For face hobbing iterate for cone distance and spiral

    angle at involute lengthwise curvature point,

     AxG,where normal circular pitch is a maximum.

    Initial cone distance at involute lengthwise curvature

    point

    xG = AmG   (33)

    Generating angle at involute curvature for face

    hobbing

    ηx = arccos A2

    xG + S2

    1 − r2c

    2 AxG S1(34)

    Spiral angle at cone distance AxG for face hobbing

     ψxG = arctan AxG − Q   cosηx

    Q   sinηx(35)

    Change  AxG, until

    (36) ηx − ψxG  ≤ 0.0001For the second trial make

    (37)xG = AxG + 0.0001 inch

    For the third and subsequent trials iterate.

    If  AiG <  AxG <  AoG, calculate F xG, qx, Δqx, ΔbxG, bxPand Σbx; otherwise, set these items to zero.

    Distance from mean cone to cone distance at

    involute curvature

    (38) F xG = AxG − AmG

    Generating angle at involute curvatureFace milling

    (39)qx = arctan   rc cos ψxG AxG − rc   sin ψxGFace hobbing

    (40)qx = ηx

    Increment in generating angle at involute curvature

    (41)Δqx = q − qxDepth reduction on gear at involute curvature

    Non--generated gear

    (42)ΔbxG = F 2

    xGtan  Δφ2

    2 rc cos2 ψG

    + AxG   sin

    2 Δqx

    2 tan  ΓR

    Generated gear

    (43)ΔbxG = 0

    Gear dedendum at cone distance AxG

    (44)bxG = bG + F xG tan δG − ΔbxGPinion dedendum at cone distance AxG

    (45)bxP =  bP + F xG tan δP

    Sum of pinion and gear dedendums at conedistance AxG

    (46)Σbx =  bxP + bxG4.2 Slot width calculations and blade

    specifications

    4.2.1 Slot width calculations, mean

    The following calculations for the mean normal

    circular thickness for the gear and pinion are

    modifications to the calculations in table 9 of 

     ANSI/AGMA 2005--D03. Backlash has been added

    and the backlash is divided evenly between the twomembers. If the mean normal circular tooth thick-

    nesses are otherwise available, bypass equations

    47 and 48.

    Mean normal gear circular thickness

    (47)T mn = T n − AmG AoG

     B cos ψG

    2cosΣφ2  cos ψoG

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    16/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    10   © AGMA 2006 ---- All rights reserved

    Mean normal pinion circular thickness

    t mn =  pn − T mn − AmG AoG

     B cos ψG

    cosΣφ2  cos ψoG

    (48)

    Mean pinion transverse circular thickness

    t mP

     =  t mn

    cos ψG(49)

    Mean gear slot width

    − aP − aG tan Σφ2    (50)W mG = pn − T mn −

     Σb2tan   φ1 − tan   φ2

    Mean pinion slot width

    + AmG cos ψG AoG cos ψoG

     B

    cos

    Σφ

    − W mG(51)

    W mP = pn − Σb tan   φ1 − tan  φ2

    Effective gear point width

    W ′e = W mG −k E   n

    2(52)

    4.2.2 Slot width calculation, outer

     Angle between gear root plane and plane in which

    taper is specified:

    Single side and Versacut methods

    ξ = δG   (53)

     All other cutting methods.

    ξ = 0 (54)

    Outer gear slot width

    × t mP cos ψoG − AoG cos ψoG AmG cos ψG

    +  AmG − AoGtan  φ1 − tan  φ2 tan   ξ(55)

    W oG =  W ′e1 − AoG cos ψoG AmG cos ψG+ AoG AmG

    × bGtan  φ1 − tan  φ2 +  B

    cosΣφ2 

    Outer pinion slot width

    − W oG +  B

    cosΣφ

    2

    (56)

    W oP = AoG cos ψoG AmG cos ψG

     pn − Σbotan  φ1 − tan  φ2

    If  AiG

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    17/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    11© AGMA 2006 ---- All rights reserved

    Inner pinion slot width

    − W iG + AiG cos ψiG AoG cos ψoG

     B

    cosΣφ2    (60)

    W iP = AiG cos ψiG AmG cos ψG

     pn − Σbi tan  φ1 − tan  φ2

    4.2.4 Slot widths, minimum and maximum

    Minimum gear slot width

    W LG = minimum of  W oG,  W mG, or W iG(61)

    Minimum pinion slot width

    W LP = minimum of  W oP,  W mP, or W iP(62)

    Maximum gear slot width

    W MG = maximum of  W oG,  W xG,  W iG, or W mG

    (63)

    Maximum pinion slot width

    W MP = maximum of  W oP,  W xP,  W iP, or W mP(64)

    4.2.5 Point width and blade point calculations

    Roughing cutter calculations for processes with

    separate rough and finish operations and cutters:

    Roughing point width

    Gear

    W RG =  W LG − S AG   (65)

    Pinion

    W RP = W LP − S AP   (66)

    Minimum roughing blade point

    Gear

    W BRG =W RG

    2  + 0.001   (67)

    Pinion

    W BRP =W RP

    2  + 0.001   (68)

    Finishing blade point

    Minimum for completing manufacturing methods

    Gear

    W BG =W LG

    2  + 0.001   (69)

    Pinion

    W BP =W LP

    2  + 0.001   (70)

    Maximum for rough and finish methods

    Gear

    W BG =

     W LG −

     S AG

      (71)

    Pinion

    W BP = W LP − S AP   (72)

    4.2.6 Standard blade point

    Bevel gear blades are either sharpened on the rake

    face or on the blade profile. For face sharpened

    blades, the blade point and edge radius are formed

    by the blade manufacturer. For each distinct blade

    point, a separate cutter blade would be required. A

    common practice is to consolidate similar sized

    blade points into standard ones. A table of standard

    blade points is included in annex B for reference.

    When standard blade point is used, choose one that

    satisfies the blade point equations given in 4.2.5.

    Note that there may be more than one standard

    blade point that would satisfy the blade point

    equations. For profile sharpened blades, the

    required blade point and edge radii are formed at

    sharpening. Standardization of blade point is

    generally not an issue.

    The choice of blade point may affect maximum edgeradius that can be manufactured, see 4.3.2, and

    maximum edge radius for avoiding mutilation, see

    4.3.3. In general, a largerblade pointallows a larger

    edge radius to be manufactured. However, the

    larger blade point may reduce the maximum edge

    radius for avoiding mutilation. It might be possible to

    select a blade point, standard or otherwise, in an

    attempt to balance the maximum edge radius that

    can be manufactured and the maximum edge radius

    for avoiding mutilation.

    Cutters for the Unitool method use standard bladesexclusively. For each available cutter diameter, the

    corresponding cutter blades have standard blade

    point and edge radius. When a cutter diameter is

    chosen, the blade point and tool edge radii are also

    defined.

    Consult the manufacturer for available cutter

    information.

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    18/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    12   © AGMA 2006 ---- All rights reserved

    4.3 Cutter edge radius calculation

    The cutter edge radius for a bevel gear should not

    exceed the radius that would cause any of the

    following conditions:

    -- running interference, see 4.3.1;

    -- unable to manufacture radius on blade, see

    4.3.2;-- fillet mutilation, see 4.3.3.

    Maximum pinion blade edge radius

    rTP = minimum of  r1P,   r2P, or r3P   (73)

    Maximum gear blade edge radius

    rTG = minimum of  r1G,   r2G, or r3G   (74)

    4.3.1 Cutter edge radius for no running

    interference

    Virtual gear calculations

    Original inner pinion pitch radius

    (75) RiP =  iP tanγ

    cos2 ψiP

    Original inner gear pitch radius

    (76) RiG =  iG tanΓ

    cos2 ψiG

    Pinion inner addendum

    (77)aiP = b iG − c

    Gear inner addendum

    (78)aiG = b iP − c

    Change in inner pinion addendum

    (79)ΔaP = ΔcGn cosΓ

    n cosΓ + N cos γ

    Change in inner gear addendum

    (80)ΔaG = ΔcP N cos γ

    n cosΓ + N cos γ

     Adjusted inner pinion addendum

    (81)a′iP =

     aiP +

     ΔaP

     Adjusted inner gear addendum

    (82)a′iG =  a iG + ΔaGNew inner pinion pitch radius

    (83) R′iP = R iP − ΔaPNew inner gear pitch radius

    (84) R′iG =  R iG − ΔaG

    Inner pinion outside radius

    (85) RioP = R iP + aiPInner gear outside radius

    (86) RioG = R iG + aiGInner pinion base radius

    Concave

    (87) RibVP = R iP cosφ1Convex

    (88) RibXP = R iP cosφ2Inner gear base radius

    Convex

    (89) RibXG =  R iG cosφ1Concave

    (90) RibVG =  R iG cosφ2Inner pinion pressure angle

    Concave

    (91)φiV = arccos RibVP R′iP Convex

    (92)φiX = arccos RibXP R′iP Inner pinion profile radius of curvature

    Concave

    ÃiVP

     = R′iP sinφiV −   R2ioG

     − R2ibXG

      + R′iG

    sinφi

    (93)

    Convex

    ÃiXP

     = R′iP

    sinφiX −   R2

    ioG − R2

    ibVG   + R′

    iGsinφ

    iX

    (94)

    Inner gear profile radius of curvature

    Convex

    ÃiXG

     =  R′iG

    sinφiV −   R2ioP

     − R2ibVP

      + R′iP

    sinφiV

    (95)

    Concave

    ÃiVG

     =  R′iG

    sinφiX −   R2ioP

     − R2ibXP

      + R′iP sinφiX(96)

    Limit tooth height for interference, pinion, concave

    Generated gear

     xiVP

     =  RibVP

    cosφ1 + ÃiVP sinφ1 − R iP + biP(97)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    19/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    13© AGMA 2006 ---- All rights reserved

    Non--generated gear

     xiVP = c − ΔcP   (98)

    Limit tooth height for interference, pinion, convex

    Generated gear

     xiXP = R ibXP cosφ2 − ÃiXP sinφ2 − RiP + biP(99)

    Non--generated gear

     xiXP = c − ΔcP   (100)

    Limit tooth height for interference, gear

    Convex

     xiXG = R ibXG cosφ1 + ÃiXG sinφ1 − RiG + biG(101)

    Concave

     xiVG = R ibVG cosφ2 − ÃiVG sinφ2 − RiG + biG(102)

    Maximum blade edge radius for no running

    interference on pinion tooth

    Concave

    r1VP = xiVP

    1 − sinφ1(103)

    Convex

    r1XP = xiXP

    1 + sinφ2(104)

    Maximum blade edge radius for no running

    interference on gear tooth

    Convex

    r1XG = xiXG

    1 − sinφ1(105)

    Concave

    r1VG = xiVG

    1 + sinφ2(106)

    Maximum blade edge radius for no running

    interference on pinion tooth

    if, r1VP <  r1XP

    r1P =  r1VP   (107)otherwise,

    r1P =  r1XP   (108)

    Maximum blade edge radius for no running

    interference on gear tooth

    if, r1VG <  r1XG

    r1G = r1VG   (109)

    otherwise,

    r1G =  r1XG   (110)

    4.3.2 Cutter edge radius which can be

    manufactured

    4.3.2.1 Roughing

    Maximum gear roughing blade edge radius which

    can be manufactured

    r′2RG =W BRG − Δ

    secφ1 − tan  φ1(111)

    Maximum pinion roughing blade edge radius which

    can be manufactured

    r′2RP =W BRP − Δ

    secφ1 − tan   φ1(112)

    Gear roughing cutter edge radius

    r2RG = maximum of  r′2RG or 0.010 inches(113)

    Pinion roughing cutter edge radius

    r2RP = maximum of  r′2RP or 0.010 inches(114)

    4.3.2.2 Finishing

    The following four r′ finishing cutter calculations are

    each defined by the roughing blade edge radius and

    stock allowance for cutting processes that use

    separate rough and finish operations and cutters:

    Maximum pinion finishing blade edge radius defined

    by maximum roughing blade radius and minimum

    stock allowance

    Concave

    r′2VP = S AP

    2 secφ1 − tan  φ1 + r2RP   (115)

    Convex

    r′2XP = S AP

    2 secφ2 + tan  φ2 + r2RP   (116)

    Maximum gear finishing blade edge radius defined

    by maximum roughing blade radius and minimum

    stock allowance

    Convex

    r′2XG = S AG

    2 secφ1 − tan   φ1 + r2RG   (117)

    Concave

    r′2VG = S AG

    2 secφ2 + tan   φ2 + r2RG   (118)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    20/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    14   © AGMA 2006 ---- All rights reserved

    The following four  r′′ calculations are as defined by

    the finishing cutter:

    The values of   r′′  are never negative; if necessary

    reduce Δ f :

    Maximum pinion finishing blade edge radius

    Concave

    r″2VP =W BP − Δ f 

    secφ1 − tan   φ1(119)

    Convex

    r″2XP =W BP − Δ f 

    secφ2 + tan   φ2(120)

    Maximum gear finishing blade edge radius

    Convex

    r″2XG =W BG − Δ f 

    secφ1 − tan   φ1(121)

    Concave

    r″2VG =W BG − Δ f 

    secφ2 + tan   φ2(122)

    Maximum pinion blade edge radius which can be

    manufactured

    Rough and finish

    r2P = minimum of  r′2VP,   r′2XP, r′′2VP, or r′′XP(123)

    Completing

    r2P = minimum of  r′′2VP, or r′′2XP   (124)

    Maximum gear blade edge radius which can be

    manufactured

    Rough and finish

    r2G = minimum of   r′2VG, r′2XG, r′′2VG, or  r′′XG

    (125)

    Completing

    r2G = minimum of  r′′2VG, or r′′2XG   (126)

    4.3.3 Cutter edge radius to avoid mutilation

    Difference between pinion minimum slot width and

    finishing blade point

    ΔW ′P = W LP − W BP   (127)

    Difference between gear minimum slot width and

    finishing blade point

    ΔW ′G =  W LG − W BG   (128)

    If any of the following Ω values are negative, reduce

    W BP or  W BG accordingly:

    Pinion intermediate blade mutilation value

    Concave

    ΩVP = y2 + 2 y ΔW ′P secφ1 − tan  φ1   (129)

    Convex

    ΩXP = y2 + 2 y ΔW ′P secφ2 + tan  φ2   (130)

    Gear intermediate blade mutilation value

    Convex

    ΩXG = y2 + 2 yΔW ′G secφ1 − tan   φ1   (131)

    Concave

    ΩVG = y2 + 2 yΔW ′Gsecφ2 + tan   φ2   (132)

    Maximum pinion blade edge radius to avoid

    mutilationConcave

    r3VP = y + ΔW ′Psecφ2 + tan  φ2 +   ΩXP

    secφ2 + tan   φ22

    (133)

    Convex

    r3XP = y + ΔW ′Psecφ1 − tanφ1 +   ΩVP

    secφ1 − tan   φ12

    (134)

    Maximum gear blade edge radius to avoid mutilation

    Convex

    r3XG = y + ΔW ′Gsecφ2 + tan   φ2 +   ΩVG

    secφ2 + tan  φ22

    (135)

    Concave

    r3VG = y + ΔW ′Gsecφ1 − tan   φ1 +   ΩXG

    secφ1 − tanφ12

    (136)Therefore, maximum pinion blade edge radius to

    avoid mutilation

    r3P = minimum of  r3VP, or r3XP   (137)

    Therefore, maximum gear blade edge radius to

    avoid mutilation

    r3G =  minimum of  r3VG, or r3XG   (138)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    21/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    15© AGMA 2006 ---- All rights reserved

    4.4 Top land formulas

    4.4.1 Mean top lands

    Mean normal pinion pitch radius

     RNP =  0.5 d 

    cos γ   cos2 ψP

     AmP AoP   (139)

    Mean normal gear pitch radius

     RNG =  0.5 D

    cosΓ   cos2 ψG

     AmG AoG   (140)

    Mean normal pinion base radius

    Concave

     RbNP1 =  RNP cosφ1   (141)

    Convex

     RbNP2 =  RNP cosφ2   (142)

    Mean normal gear base radius

    Convex

     RbNG1 = RNG cosφ1   (143)

    Concave

     RbNG2 = RNG cosφ2   (144)

    Mean normal pinion outside radius

     RoNP = RNP + aP   (145)

    Mean normal gear outside radius

    Generated RoNG =  RNG + aG   (146)

    Non--generated

     RoNG =  RNG − aP   (147)

    Pressure angle at tip of pinion tooth (mean)

    Concave

    φ1TP = arccos RbNP1 RoNP   (148)Convex

    φ2TP = arccos RbNP2 RoNP   (149)Pressure angle at tip of gear tooth (mean)

    Convex

    φ1TG = arccos RbNG1 RoNG   (150)

    Concave

    φ2TG = arccos RbNG2 RoNG   (151)Mean normal pinion top land

    Generated

    − invφ2TP   RoNP   (152)

    t LNP = 

    t mn

     RNP +invφ

    1 −invφ

    1TP +inv

    − φ

    2

    NOTE:   “inv” is the mathematical function involute. It is

    the tangent of the angle minus the angle in radians.

    Non--generated

    (153)  

    − invφ2TP   RoNP −   T mn + aP tanφ1t LNP =  t mn RNP + invφ1 − invφ1TP + inv− φ2

    − tanφ2   − T mn RNG + invφ1 − invφ1TG

    + inv −φ2 − invφ2TG   RoNG

    Mean normal gear top land

    Non--generated

    t LNG = T mn − aGtan   φ1 − tan   φ2   (154)Generated

    − inv φ2TG   RoNG   (155)

    t LNG = T mn RNG + invφ1 − invφ1TG + inv−φ2

    4.4.2 Outer top lands

    Outer normal pinion pitch radius

     R′NP =  0.5 d 

    cosγ cos2 ψoP(156)

    Outer normal gear pitch radius

     R′NG =  0.5

    cosΓ   cos2 ψoG(157)

    Outer normal pinion base radius

    Concave

     R′bNP1 = R′NP cosφ1   (158)

    Convex

     R′bNP2 = R′NP cosφ2   (159)

    Outer normal gear base radius

    Convex

     R′bNG1 = R′NG cosφ1   (160)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    22/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    16   © AGMA 2006 ---- All rights reserved

    Concave

     R′bNG2 = R′NG cosφ2   (161)

    Outer normal pinion outside radius

     R′oNP = R′NP + aoP   (162)

    Outer normal gear outside radius

    Generated

     R′oNG = R′NG + aoG   (163)

    Non--generated

     R′oNG = R′NG − aoP   (164)

    Pressure angle at tip of pinion tooth (outer)

    Concave

    φ′1TP = arccos R′bNP1 R′oNP

    (165)

    Convex

    φ′2TP = arccos R′bNP2 R′oNP

    (166)

    Pressure angle at tip of gear tooth (outer)

    Convex

    φ′1TG = arccos R′bNG1 R′oNG

    (167)

    Concave

    φ′2TG = arccos R′bNG2 R′oNG

    (168)

    Outer normal pinion circular thickness at pitch line

    −   B

    cosΣφ2    (169)

    t oNP = boG tan   φ1 − tan   φ2 + W oG

    Outer normal gear circular thickness at pitch line

    (170)

    t oNG = boP tan   φ1 − tan   φ2 + W oP

    −   B

    cos

    Σφ

    2

     Outer normal pinion top landGenerated

    − invφ′2TP

      R′oNP   (171)

    t LoNP

     = t oNP R′

    NP+ invφ1 − invφ′1TP + inv−φ2

    Non--generated

    −   t oNG

     + aoPtanφ1 − tanφ2

    t LoNP

     = t oNP R′

    NP+ invφ1 − invφ′1TP + inv

    −φ2

    (172)

    − invφ′2TP   R′oNP

    − t oNG R′

    NG+ invφ1 − invφ′1TG + inv

    −φ2

    − invφ′2TG

      R′oNG

     

    Outer normal gear top land

    Generated

    − invφ′2TG   R′oNG   (173)

    t LoNG

     = t oNG R′

    NG+ invφ1 − invφ′1TG + inv

    −φ2

    Non--generated

    t LoNG = t oNG − aoGtan   φ1 − tan   φ2   (174)

    4.4.3 Inner top lands

    Inner mean normal pinion pitch radius

     R″NP =  0.5 d 

    cos γ   cos ψ2iP

    iP

     AoP   (175)

    Inner mean normal gear pitch radius

     R″NG =  0.5 D

    cosΓ   cos2 ψiG

     AiG AoG   (176)

    Inner normal pinion base radius

    Concave

     R″bNP1 = R″NP cosφ1   (177)

    Convex

     R″bNP2 = R″NP cosφ2   (178)

    Inner normal gear base radiusConvex

     R″bNG1 = R″NG cosφ1   (179)

    Concave

     R″bNG2 = R″NG cosφ2   (180)

    Inner normal pinion outside radius

     R″oNP =  R″NP + aiP   (181)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    23/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    17© AGMA 2006 ---- All rights reserved

    Inner normal gear outside radius

    Generated

     R″oNG =  R″NG+ aiG   (182)

    Non--generated

     R″oNG =  R″NG− aiP   (183)

    Pressure angle at tip of pinion tooth (inner)

    Concave

    φ″1TP = arccos R″bNP1 R″oNP   (184)Convex

    φ″2TP = arccos R″bNP2 R″oNP   (185)Pressure angle at tip of gear tooth (inner)

    Convex

    φ″1TG = arccos R″bNG1 R″oNG   (186)Concave

    φ″2TG = arccos R″bNG2 R″oNG   (187)Inner normal pinion thickness at pitch line

    ×cos ψiPcos ψoP

     B

    cosΣφ2    (188)

    t iNP =  b iGtan   φ1 − tan   φ2 + W iG − AiP AoP

    Inner normal gear thickness at pitch line

    ×cos ψiGcos ψoG

     B

    cosΣφ2    (189)

    t iNG =  b iPtan   φ1 − tan   φ2 + W iP − AiG AoG

    Inner normal pinion top land

    Generated

    − invφ″2TP   R″oNP   (190)

    t LiNP

     = t iNP R″NP

    + invφ1 − invφ″1TP+ inv−φ2

    Non--generated

    −   t iNG

     + aiPtanφ1 − tanφ2

    t LiNP

     = t iNP R″NP

    + invφ1 − invφ″1TP+ inv−φ2

    (191)

    − invφ″

    2TP  R″

    oNP

    − t iNG R″NG

    + invφ1 − invφ″1TG+ inv−φ2

    − invφ″2TG   R″oNG

    Inner normal gear top land

    Generated

    − invφ″2TG   R″oNG   (192)t LiNG =

    t iNG

     R″NG+ invφ1 − invφ″1TG+ inv−φ2

    Non--generated

    t LiNG = t iNG − aiG tan   φ1 − tan   φ2   (193)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    24/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    18   © AGMA 2006 ---- All rights reserved

    Annex A

    (informative)

    Additional equations from ANSI/AGMA 2005--D03

    [This annex is provided for informational purposes only and should not be construed as a part of AGMA  929--A06,

    Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius.]

    A.1 PurposeThis annex is to provide the user additional equa-

    tions thatare in or derived from those in ANSI/AGMA

    2005--D03. The additional symbols used in the

    equations are defined in table A.1. Also see table 1.

    Table A.1 -- Symbols

    Symbol Term Units First used

     E   Hypoid offset in (mm) Eq. A.12

     N S   Number of blade groups -- -- Eq. A.3

     N c   Number of crown gear teeth -- -- Eq. A.3

     RoG   Outside gear pitch radius in (mm) Eq. A.17

     Z    Gear pitch apex beyond crossing point in (mm) Eq. A.12

    γi   Pinion inside pitch angle deg (rad) Eq. A.14γoo   Outer pinion pitch angle deg (rad) Eq. A.20

    γR   Pinion root angle deg (rad) Eq. A.23

    ΔΣ   Shaft angle departure from 90°   deg (rad) Eq. A.12

    εi   Pinion offset angle in axial plane at inside deg (rad) Eq. A.13

    εi’   Pinion offset angle in pitch plane at inner end deg (rad) Eq. A.15

    εo   Pinion offset angle in face plane deg (rad) Eq. A.19

    εo’   Pinion offset angle in pitch plane at outer end deg (rad) Eq. A.21

    η1   Second auxiliary angle deg (rad) Eq. A.8

    ζi   Intermediate angle deg (rad) Eq. A.12

    ζo   Intermediate angle deg (rad) Eq. A.18

    A.2 Common equations

    inner gear cone distance

     AiG =  AmG − 0.5 F G   (A.1)

    inner gear spiral angle (face milling)

     ψiG = arcsin2 AmG rc   sin ψG − A2mG + A2iG2 AiG rc (A.2)

    intermediate variable (face hobbing)

    Q = S1

    1 + N S N c

    (A.3)

    generating angle at inside (face hobbing)

    ηi = arccos A2iG + S21 − r2c2 AiG S1   (A.4)

    inner gear spiral angle (face hobbing)

     ψiG = arctan AiG − Q cos ηiQ sinηi   (A.5)generating angle at outside (face hobbing)

    ηo = arccos A2oG + S21 − r2c2 AoG S1   (A.6)outer gear spiral angle (face hobbing)

     ψoG = arctan AoG − Q   cos ηoQ   sinηo   (A.7)second auxiliary angle (face hobbing)

    cosη1 =  mG   cos ψG

     S1 N c N c + N S   (A.8)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    25/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    19© AGMA 2006 ---- All rights reserved

    A.3 Spiral bevels

    inner pinion spiral angle equals inner gear spiral

    angle

     ψiP = ψ iG   (A.9)

    outer pinion spiral angle equals outer gear spiral

    angle

     ψoP =

     ψoG   (A.10)

    A.4 Hypoids

    inside gear pitch radius

     RiG = A iG sinΓ   (A.11)

    intermediate angle

    ζi = arctan E   tanΔΣ cosΓ AiG − Z cosΓ   (A.12)pinion inner offset angle in axial plane

    εi + ζ i = arcsin E cos ζ

    i

    sinΓ

     AiG − Z cosΓ   (A.13)pinion inside pitch angle

    γi = arcsinsinΔΣ sinΓ + cosΔΣcosΓ cos εi(A.14)

    pinion offset angle in pitch plane at inner end

    ε′i = arcsin sin εicos γi   (A.15)

    inner pinion spiral angle

     ψiP = ψ iG + ε′i   (A.16)

    outside gear pitch radius

     RoG = AoG sinΓ   (A.17)

    intermediate angle

    ζo = arctan E tanΔΣ cosΓ AoG − Z cosΓ   (A.18)pinion outer offset angle in axial plane

    εo + ζo = arcsin  E cos ζo sinΓ AoG − Z cosΓ   (A.19)outer pinion pitch angle

    γoo = arcsinsinΔΣ sinΓ + cos ΔΣ cosΓ cos εo

    (A.20)

    pinion offset angle in pitch plane at outer end

    ε′o = arcsin   sin εocos γoo   (A.21)outer pinion spiral angle

     ψoP = ψoG + ε′o   (A.22)

    pinion dedendum angle

    δP = γ − γR   (A.23)

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    26/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    20   © AGMA 2006 ---- All rights reserved

    Annex B

    (informative)

    Stock allowance and standard cutter specifications

    [This annex is provided for informational purposes only and should not be construed as a part of AGMA  929--A06,

    Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius.]

    B.1 Purpose

    This annex provides information on typical stockallowance and standard cutter specifications.

    B.2 Stock allowance

    For rough and finish cutting methods, if the informa-

    tion on the stock allowance is not available, the

    following default stock allowance can be used for

    calculating point width and blade point (see 4.2.5).

    Table B.1 -- Default stock allowances (inch)

    Diametral pitch Pinion Gear

     P d < 3.0 0.025 0.030

    3.0 ≤  P d < 7.0 0.025 0.020

    7.0 ≤  P d < 10.0 0.010 0.010

    10.0 ≤ P d   0.000 0.000

    B.3 Standard blade point table

    The following table of standard blade points is used

    for some of the face milling cutting methods dis-

    cussed in AGMA 929--A06. The table should not be

    construed to be all inclusive.

    Consult the manufacturer for accurate cutter

    information.

    Table B.2 -- Standard blade specifications, face

    milled (inch)

    Point width range Blade point

    0.015 -- 0.015 0.010

    0.020 -- 0.020 0.012

    0.025 -- 0.025 0.015

    0.030 -- 0.035 0.020

    0.040 -- 0.045 0.025

    0.050 -- 0.055 0.030

    0.060 -- 0.070 0.040

    0.080 -- 0.090 0.050

    0.100 -- 0.120 0.065

    0.130 -- 0.130 0.080

    0.160 -- 0.160 0.100

    0.170 -- 0.170 0.110

    0.190 -- 0.190 0.125

    0.210 -- 0.210 0.150

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    27/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    21© AGMA 2006 ---- All rights reserved

    Annex C

    (informative)

    Spiral bevel example problem

    [This annex is provided for informational purposes only and should not be construed as a part of AGMA  929--A06,Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius.]

    Symbol Description Equation Variables Units

    Type of gears Spiral

    Face hobbing or face milling Face milled

    Generated or non--generated Generated

    Completing or rough and finish, pinion Completing

    Completing or rough and finish, gear Completing

    Table 2

     AiG   Inner gear cone distance 2.69971 inch

     AmG   Gear mean cone distance 3.19971 inch

     AmP   Pinion mean cone distance 3.19971 inch

     AoG   Gear outer cone distance 3.69971 inch

    aG   Gear mean addendum 0.06259 inch

    aP   Pinion mean addendum 0.19043 inchaoG   Outer gear addendum 0.08122 inch

    aoP   Outer pinion addendum 0.24734 inch

     B   Outer normal backlash allowance 0.00500 inch

    bG   Gear mean dedendum 0.22206 inch

    bP   Pinion mean dedendum 0.09422 inch

    c   Clearance 0.03163 inch

     D   Gear pitch diameter 6.96429 inch

    d    Pinion pitch diameter 2.50000 inch

     F G   Gear face width 1.00000 inch

     F P   Pinion face width 1.00000 inch

     N    Gear number of teeth 39.00000 -- --n   Pinion number of teeth 14.00000 -- --

     pm   Mean circular pitch 0.48518 inch

    rc   Cutter radius table 5 inch

     S AP   Pinion stock allowance table 5 inch

     S AG   Gear stock allowance table 5 inch

    T n   Gear mean normal zero backlash circular thickness at pitch line 0.14817 inch

    W    Gear finishing point width table 5 inch

     y   Amount of fillet mutilation permitted table 5 inch

    Γ   Gear pitch angle 70.25316 degrees

    ΓR   Gear root angle 63.75967 degrees

    Δ f    Width of blade flat table 5 inch

    γ   Pinion pitch angle 19.74684 degrees

    δG   Dedendum angle of gear 6.49349 degrees

    δP   Dedendum angle of pinion 2.13424 degrees

    φ1   Concave pinion normal pressure angle 20.00000 degrees

    φ2   Convex pinion normal pressure angle --20.00000 degrees

     ψG   Gear mean spiral angle 35.00000 degrees

     ψP   Pinion mean spiral angle 35.00000 degrees

     ψiG   Inner gear spiral angle 33.94561 degrees

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    28/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    22   © AGMA 2006 ---- All rights reserved

    Symbol Units VariablesEquationDescription

     ψiP   Inner pinion spiral angle 33.94561 degrees

     ψoG   Outer gear spiral angle 36.84576 degrees

     ψoP   Outer pinion spiral angle 36.84576 degrees

    Additional input variables for face hobbing (Table 2)

    Q   Intermediate factor Not applicable

     S1   Crown gear to cutter center dist Not applicable inch

    η1   Second auxiliary angle Not applicable degreesηo   Generating angle at outside Not applicable degrees

    ηi   Generating angle at inside Not applicable degrees

    Additional input for hypoids

     F oP   Hypoid pinion face width from calculation point to outside Not applicable degrees

     F iP   Hypoid pinion face width from calculation point to inside Not applicable degrees

    Table 4

    Method Cutting method Spread blade

    k E   Gear rotation factor 0.00000

    Table 5

    φBXG   Inside blade angle gear cutter (non--generated) Not applicable degrees

     S AP   Pinion stock allowance 0.00000 inch S AG   Gear stock allowance 0.00000 inch

     y   Amount of fillet mutilation permitted 0.00200 inch

    Δ f    Width of blade flat 0.00800 inch

    rc   Cutter radius 4.50000 inch

    4 Calculations

    4.1 General geometry

     AiP   Inner pinion cone distance (eq 1 or 2) 2.69971 inch

     AoP   Outer pinion cone distance (eq 3 or 4) 3.69971 inch

    Σφ   Included pressure angle (eq 5) 40.00000 degrees

    ΔcP   Change in pinion clearance (eq 6) 0.00553 inch

    ΔcG

      Change in gear clearance (eq 7) 0.00553 inch

    Δφ2   Normal tilt of f inishing cutter (non--generated) (eq 8) Not applicable degrees

    q   Generating angle at mean (eq 9 or 10) 80.47339 degrees

    qo   Generating angle at outside (eq 11 or 12) 74.46243 degrees

    qi   Generating angle at inside (eq 13 or 14) 87.13405 degrees

    Δqo   Increment in generating angle at outside (eq 15) 6.01095 degrees

    Δqi   Increment in generating angle at inside (eq 16) 6.66066 degrees

    ΔboG   Depth reduction on non--generated gear at

    outside

    (eq 17) Not applicable inch

    ΔbiG   Depth reduction on non--generated gear at

    inside

    (eq 18) Not applicable inch

    b′oG   Theoretical outer gear dedendum (eq 19) 0.27897 inch

    boG   Outer gear dedendum (eq 20 or 21) 0.27897 inch

    boP   Outer pinion dedendum (eq 22 or 23) 0.11285 inch

    biP   Inner pinion dedendum (eq 24) 0.07559 inch

    biG   Inner gear dedendum (eq 25 or 26) 0.16515 inch

     pn   Mean normal circular pitch (eq 27) 0.39744 inch

    Σb   Sum of pinion and gear mean dedendums (eq 28) 0.31628 inch

    Σbo   Sum of pinion and gear outer dedendums (eq 29) 0.39182 inch

    Σbi   Sum of pinion and gear inner dedendums (eq 30) 0.24074 inch

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    29/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    23© AGMA 2006 ---- All rights reserved

    Symbol Units VariablesEquationDescription

     AxG   Cone distance for involute lengthwise curvature

    point where normal circular pitch and slot width

    is a maximum

    (eq 31) 5.84984 inch

     ψxG   Spiral angle at cone distance AxG   (eq 32 or 35) 50.28674 degrees

    ηx   Generating angle at involute curvature (eq 34) Not applicable degrees

     F xG   Distance from mean cone to cone distance at

    involute curvature

    (eq 38) 0.00000 inch

    qx   Generating angle at involute curvature (eq 39 or 40) 0.00000 degrees

    Δqx   Increment in generating angle at involute

    curvature

    (eq 41) 0.00000 degrees

    ΔbxG   Depth reduction on non--generated gear at

    involute curvature

    (eq 42 or 43) 0.00000 inch

    bxG   Gear dedendum at cone distance AxG   (eq 44) 0.00000 inch

    bxP   Pinion dedendum at cone distance AxG   (eq 45) 0.00000 inch

    Σbx   Sum of pinion and gear dedendums at cone

    distance AxG

    (eq 46) 0.00000 inch

    4.2 Slot width calculations and blade specifications

    4.2.1 Slot width calculations, meanT mn   Mean normal gear circular thickness (eq 47) 0.14581 inch

    t mn   Mean normal pinion circular thickness (eq 48) 0.24691 inch

    t mP   Mean pinion transverse circular thickness (eq 49) 0.30142 inch

    W mG   Mean gear slot width (eq 50) 0.08997 inch

    W mP   Mean pinion slot width (eq 51) 0.08194 inch

    W ′e   Effective gear point width (eq 52) 0.08997 inch

    4.2.2 Slot width calculation, outer

    ζ   Angle between gear root plane and plane in

    which taper is specified

    (eq 53 or 54) 0.00000 degrees

    W oG   Outer gear slot width (eq 55) 0.08997 inch

    W oP

      Outer pinion slot width (eq 56) 0.07906 inch

    W xG   Slot width at AxG, gear (maximum gear slot

    width)

    (eq 57) 0.00000 inch

    W xP   Slot width at AxG, pinion (maximum pinion slot

    width)

    (eq 58) 0.00000 inch

    4.2.3 Sloth width calculation, inner

    W iG   Inner gear slot width (eq 59) 0.08997 inch

    W iP   Inner pinion slot width (eq 60) 0.07840 inch

    4.2.4 Sloth widths, minimum and maximum

    W LG   Minimum gear slot width (eq 61) 0.08997 inch

    W LP   Minimum pinion slot width (eq 62) 0.07840 inch

    W MG   Maximum gear slot width (eq 63) 0.08997 inch

    W MP   Maximum pinion slot width (eq 64) 0.08194 inch

    4.2.5 Point width and blade point calculations

    W RG   Gear roughing point width (eq 65) 0.08997 inch

    W RP   Pinion roughing point width (eq 66) 0.07840 inch

    W BRG   Minimum gear roughing blade point (eq 67) 0.04599 inch

    W BRP   Minimum pinion roughing blade point (eq 68) 0.04020 inch

    W BG   Gear finishing blade point (eq 69 or 71) 0.04599 inch

    W BP   Pinion finishing blade point (eq 70 or 72) 0.04020 inch

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    30/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    24   © AGMA 2006 ---- All rights reserved

    Symbol Units VariablesEquationDescription

    4.3 Cutter edge radius calculations

    rTP   Maximum pinion blade edge radius (eq 73) 0.04063 inch

    rTG   Maximum gear blade edge radius (eq 74) 0.05425 inch

    4.3.1 Cutter edge radius for no running interference

     RiP   Original inner pinion pitch radius (eq 75) 1.40824 inch

     RiG   Original inner gear pitch radius (eq 76) 10.92822 inch

    aiP   Pinion inner addendum (eq 77) 0.13352 inchaiG   Gear inner addendum (eq 78) 0.04396 inch

    ΔaP   Change in inner pinion addendum (eq 79) 0.00063 inch

    ΔaG   Change in inner gear addendum (eq 80) 0.00490 inch

    a′iP   Adjusted inner pinion addendum (eq 81) 0.13415 inch

    a′iG   Adjusted inner gear addendum (eq 82) 0.04885 inch

     R′iP   New inner pinion pitch radius (eq 83) 1.40761 inch

     R′iG   New inner gear pitch radius (eq 84) 10.92333 inch

     RioP   Inner pinion outside radius (eq 85) 1.54176 inch

     RioG   Inner gear outside radius (eq 86) 10.97218 inch

     RibVP   Inner pinion base radius, concave (eq 87) 1.32331 inch

     RibXP

      Inner pinion base radius, convex (eq 88) 1.32331 inch

     RibXG   Inner gear base radius, convex (eq 89) 10.26917 inch

     RibVG   Inner gear base radius, concave (eq 90) 10.26917 inch

    φiV   Inner pinion pressure angle, concave (eq 91) 19.92929 degrees

    φiX   Inner pinion pressure angle, convex (eq 92) 19.92929 degrees

    ρiVP   Inner pinion profile radius of curvature, concave (eq 93) 0.33882 inch

    ρiXP   Inner pinion profile radius of curvature, convex (eq 94) 0.33882 inch

    ρiXG   Inner gear profile radius of curvature, convex (eq 95) 3.41201 inch

    ρiVG   Inner gear profile radius of curvature, concave (eq 96) 3.41201 inch

     xiVP   Limit tooth height for interference pinion,

    concave

    (eq 97 or 98) 0.02674 inch

     xiXP   Limit tooth height for interference pinion, convex (eq 99 or 100) 0.02674 inch

     xiXG   Limit tooth height for interference gear, convex (eq 101) 0.05377 inch

     xiVG   Limit tooth height for interference gear, concave (eq 102) 0.05377 inch

    r1VP   Maximum blade edge radius for no running

    interference pinion, concave

    (eq 103) 0.04063 inch

    r1XP   Maximum blade edge radius for no running

    interference pinion, convex

    (eq 104) 0.04063 inch

    r1XG   Maximum blade edge radius for no running

    interference gear, convex

    (eq 105) 0.08171 inch

    r1VG   Maximum blade edge radius for no running

    interference gear, concave

    (eq 106) 0.08171 inch

    r1P   Maximum blade edge radius for no running

    interference on pinion

    (eq 107 or 108) 0.04063 inch

    r1G   Maximum blade edge radius for no running

    interference on gear

    (eq 109 or 110) 0.08171 inch

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    31/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    25© AGMA 2006 ---- All rights reserved

    Symbol Units VariablesEquationDescription

    4.3.2 Cutter edge radius which can be manufactured

    4.3.2.1 Roughing

    r′2RG   Maximum gear roughing blade edge radius

    which can be manufactured

    (eq 111) 0.05425 inch

    r′2RP   Maximum pinion roughing blade edge radius

    which can be manufactured

    (eq 112) 0.04599 inch

    r2RG   Gear roughing cutter edge radius (eq 113) 0.05425 inchr2RP   Pinion roughing cutter edge radius (eq 114) 0.04599 inch

    4.3.2.2 Finishing

    r′2VP   Maximum pinion finishing blade edge radius

    defined by maximum roughing blade radius and

    minimum stock allowance, concave

    (eq 115) 0.04599 inch

    r′2XP   Maximum pinion finishing blade edge radius

    defined by maximum roughing blade radius and

    minimum stock allowance, convex

    (eq 116) 0.04599 inch

    r′2XG   Maximum gear finishing blade edge radius

    defined by maximum roughing blade radius and

    minimum stock allowance, convex

    (eq 117) 0.05425 inch

    r′2VG   Maximum gear finishing blade edge radius

    defined by maximum roughing blade radius and

    minimum stock allowance, concave

    (eq 118) 0.05425 inch

    r′′2VP   Maximum pinion finish blade edge radius

    concave

    (eq 119) 0.04599 inch

    r′′2XP   Maximum pinion finish blade edge radius

    convex

    (eq 120) 0.04599 inch

    r′′2XG   Maximum gear finish blade edge radius, convex (eq 121) 0.05425 inch

    r′′2VG   Maximum gear finish blade edge radius,

    concave

    (eq 122) 0.05425 inch

    r2P   Maximum pinion blade edge radius that can bemanufactured

    (eq 123 or 124) 0.04599 inch

    r2G   Maximum gear blade edge radius that can be

    manufactured

    (eq 125 or 126) 0.05425 inch

    4.3.3 Cutter edge radius to avoid mutilation

    ΔW ′P   Difference between pinion minimum slot width

    and finishing blade point

    (eq 127) 0.03820 inch

    ΔW ′G   Difference between gear minimum slot width

    and finishing blade point

    (eq 128) 0.04399 inch

    ΩVP   Pinion intermediate blade mutilation value,

    concave

    (eq 129) 0.00011 inch2

    ΩXP   Pinion intermediate blade mutilation value,

    convex

    (eq 130) 0.00011 inch2

    ΩXG   Gear intermediate blade mutilation value,

    convex

    (eq 131) 0.00013 inch2

    ΩVG   Gear intermediate blade mutilation value,

    concave

    (eq 132) 0.00013 inch2

    r3VP   Maximum pinion blade edge radius to avoid

    mutilation, concave

    (eq 133) 0.08013 inch

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    32/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    26   © AGMA 2006 ---- All rights reserved

    Symbol Units VariablesEquationDescription

    r3XP   Maximum pinion blade edge radius to avoid

    mutilation, convex

    (eq 134) 0.08013 inch

    r3XG   Maximum gear blade edge radius to avoid

    mutilation, convex

    (eq 135) 0.08990 inch

    r3VG   Maximum gear blade edge radius to avoid

    mutilation, concave

    (eq 136) 0.08990 inch

    r3P   Maximum pinion blade edge radius to avoidmutilation

    (eq 137) 0.08013 inch

    r3G   Maximum gear blade edge radius to avoid

    mutilation

    (eq 138) 0.08990 inch

    4.4 Top land formulas

    4.4.1 Mean top lands

     RNP   Mean normal pinion pitch radius (eq 139) 1.71177 inch

     RNG   Mean normal gear pitch radius (eq 140) 13.28366 inch

     RbNP1   Mean normal pinion base radius, concave (eq 141) 1.60853 inch

     RbNP2   Mean normal pinion base radius, convex (eq 142) 1.60853 inch

     RbNG1   Mean normal gear base radius, convex (eq 143) 12.48256 inch

     RbNG2   Mean normal gear base radius, concave (eq 144) 12.48256 inch

     RoNP   Mean normal pinion outside radius (eq 145) 1.90220 inch

     RoNG   Mean normal gear outside radius (eq 146 or 147) 13.34625 inch

    φ1TP   Pressure angle at tip of pinion tooth, concave (eq 148) 32.26164 degrees

    φ2TP   Pressure angle at tip of pinion tooth, convex (eq 149) 32.26164 degrees

    φ1TG   Pressure angle at tip of gear tooth, concave (eq 150) 20.72564 degrees

    φ2TG   Pressure angle at tip of gear tooth, convex (eq 151) 20.72564 degrees

    t LNP   Mean normal pinion top land (eq 152 or 153) 0.07175 inch

    t LNG   Mean normal gear top land (eq 154 or 155) 0.09992 inch

    4.4.2 Outer top lands

     R′NP   Outer normal pinion pitch radius (eq 156) 2.07384 inch

     R′NG   Outer normal gear pitch radius (eq 157) 16.09347 inch

     R′bNP1   O uter normal pinion base radius, concave (eq 158) 1.94878 inch R′bNP2   Outer normal pinion base radius, convex (eq 159) 1.94878 inch

     R′bNG1   Outer normal gear base radius, convex (eq 160) 15.12291 inch

     R′bNG2   Outer normal gear base radius, concave (eq 161) 15.12291 inch

     R′oNP   Outer normal pinion outside radius (eq 162) 2.32118 inch

     R′oNG   Outer normal gear outside radius (eq 163 or 164) 16.17469 inch

    φ′1TP   Pressure angle at tip of pinion tooth outer,

    concave

    (eq 165) 32.90619 degrees

    φ′2TP   Pressure angle at tip of pinion tooth outer,

    convex

    (eq 166) 32.90619 degrees

    φ′1TG   Pressure angle at tip of gear tooth outer, convex (eq 167) 20.77605 degrees

    φ′2TG   Pressure angle at tip of gear tooth outer,concave

    (eq 168) 20.77605 degrees

    t oNP   Pinion outer normal circular thickness at pitch

    line

    (eq 169) 0.28773 inch

    t oNG   Gear outer normal circular thickness at pitch l ine (eq 170) 0.15589 inch

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    33/43

    AGMA 929--A06AMERICAN GEAR MANUFACTURERS ASSOCIATION

    27© AGMA 2006 ---- All rights reserved

    Symbol Units VariablesEquationDescription

    t LoNP   Outer normal pinion top land (eq 171 or 172) 0.05345 inch

    t LoNG   Outer normal gear top land (eq 173 or 174) 0.09614 inch

    4.4.3 Inner top lands

     R′′NP   Inner mean normal pinion pitch radius (eq 175) 1.40824 inch

     R′′NG   Inner mean normal gear pitch radius (eq 176) 10.92822 inch

     R′′bNP1   Inner normal pinion base radius, concave (eq 177) 1.32331 inch

     R′′bNP2   Inner normal pinion base radius, convex (eq 178) 1.32331 inch R′′bNG1   Inner normal gear base radius, convex (eq 179) 10.26916 inch

     R′′bNG2   Inner normal gear base radius, concave (eq 180) 10.26916 inch

     R′′oNP   Inner normal pinion outside radius (eq 181) 1.54176 inch

     R′′oNG   Inner normal gear outside radius (eq 182 or 183) 10.97217 inch

    φ′′1TP   Pressure angle at tip of pinion tooth inner,

    concave

    (eq 184) 30.87230 degrees

    φ′′2TP   Pressure angle at tip of pinion tooth inner,

    convex

    (eq 185) 30.87230 degrees

    φ′′1TG   Pressure angle at tip of gear tooth inner, convex (eq 186) 20.62140 degrees

    φ′′2TG   Pressure angle at tip of gear tooth inner,

    concave

    (eq 187) 20.62140 degrees

    t iNP   Inner normal pinion thickness at pitch line (eq 188) 0.20617 inch

    t iNG   Inner normal gear thickness at pitch line (eq 189) 0.12940 inch

    t LiNP   Inner normal pinion top land (eq 190 or 191) 0.08972 inch

    t LiNG   Inner normal gear top land (eq 192 or 193) 0.09731 inch

  • 8/15/2019 AGMA 929-A06 Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius

    34/43

    AGMA 929--A06 AMERICAN GEAR MANUFACTURERS ASSOCIATION

    28   © AGMA 2006 ---- All rights reserved

    Annex D

    (informative)

    Hypoid example problem

    [This annex is provided for informational purposes only and should not be construe