aims 2014 madrid, spain, july 7 11, 2014 session on

36
AIMS 2014 Madrid, Spain, July 7–11, 2014 Session on Complex Patterns in Biological Systems Synchronization and noise-induced phase slips Nils Berglund MAPMO, Universit´ e d’Orl´ eans, France Joint work with Barbara Gentz (Bielefeld) Nils Berglund [email protected] http://www.univ-orleans.fr/mapmo/membres/berglund/

Upload: others

Post on 22-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

AIMS 2014Madrid, Spain, July 7–11, 2014

Session on Complex Patterns in Biological Systems

Synchronizationand noise-induced phase slips

Nils Berglund

MAPMO, Universite d’Orleans, France

Joint work with Barbara Gentz (Bielefeld)

Nils Berglund [email protected] http://www.univ-orleans.fr/mapmo/membres/berglund/

Page 2: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Synchronization of two coupled oscillatorsSee e.g. [Pikovsky, Rosenblum, Kurths 2001]

xi = (θi , θi ), i = 1, 2{x1 = f1(x1) + εg1(x1, x2)

x2 = f2(x2) + εg2(x1, x2)

φi : good parametrisation of limit cycles{φ1 = ω1 + εQ1(φ1, φ2)

φ2 = ω2 + εQ2(φ1, φ2)

Synchronization and noise-induced phase slips July 7, 2014 1 / 16

Page 3: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Synchronization of two coupled oscillatorsSee e.g. [Pikovsky, Rosenblum, Kurths 2001]

xi = (θi , θi ), i = 1, 2{x1 = f1(x1) + εg1(x1, x2)

x2 = f2(x2) + εg2(x1, x2)

φi : good parametrisation of limit cycles{φ1 = ω1 + εQ1(φ1, φ2)

φ2 = ω2 + εQ2(φ1, φ2)

Synchronization and noise-induced phase slips July 7, 2014 1 / 16

Page 4: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Synchronization of two coupled oscillatorsSee e.g. [Pikovsky, Rosenblum, Kurths 2001]

xi = (θi , θi ), i = 1, 2{x1 = f1(x1) + εg1(x1, x2)

x2 = f2(x2) + εg2(x1, x2)

φi : good parametrisation of limit cycles{φ1 = ω1 + εQ1(φ1, φ2)

φ2 = ω2 + εQ2(φ1, φ2)

If ω1 ' ω2:

{ψ = φ1 − φ2

ϕ = φ1+φ22

⇒{ψ = −ν + εq(ψ,ϕ) ν = ω2 − ω1

ϕ = ω +O(ε) ω = ω1+ω22

For small detuning ν: averaging ⇒ ωdψ

dϕ' −ν + εq(ψ)

Example: Adler’s equation q(ψ) = sin(ψ): Fixed points for sin(ψ) = ν/ε

Remark: if ω2/ω1 ' m/n similar behaviour for ψ = nφ1 −mφ2 (Arnold tongues)

Synchronization and noise-induced phase slips July 7, 2014 1 / 16

Page 5: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Noise-induced phase slips

Averaged equation with noise

ωdψ

dϕ= −ν + εq(ψ)︸ ︷︷ ︸− ∂∂ψ

(νψ−ε

∫ ψ q(x) dx) + noise

Synchronization and noise-induced phase slips July 7, 2014 2 / 16

Page 6: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Noise-induced phase slips

Averaged equation with noise

ωdψ

dϕ= −ν + εq(ψ)︸ ︷︷ ︸− ∂∂ψ

(νψ−ε

∫ ψ q(x) dx) + noise

Original equations with noise{ψ = −ν + εq(ψ,ϕ) + noise

ϕ = ω +O(ε) + noise

ϕτ− ϕτ0ϕτ+ ϕ

ψ

stable

unstable

stable

Question: distribution of phases ϕτ0 when crossing unstable orbit?This is a stochastic exit problem.

Synchronization and noise-induced phase slips July 7, 2014 2 / 16

Page 7: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Stochastic differential equations

dxt = f (xt) dt + σg(xt) dWt x ∈ R n

. Transition probability density: pt(x , y)

. Markov semigroup Tt : for ϕ ∈ L∞,

(Ttϕ)(x) = Ex [ϕ(xt)] =

∫pt(x , y)ϕ(y) dy

Generator: Lϕ = ddtTtϕ|t=0

(Lϕ)(x) =∑i

fi (x)∂ϕ

∂xi+σ2

2

∑i ,j

(ggT )ij(x)∂2ϕ

∂xi∂xj

. Adjoint semigroup: for µ ∈ L1,

(µTt)(y) = Pµ{xt = dy} =

∫µ(x)pt(x , y) dx

with generator L∗

. Kolmogorov equations: ddt pt(x , y) = Lxpt(x , y)

Kolmogorov equations: ddt pt(x , y) = L∗ypt(x , y) (Fokker–Planck)

Synchronization and noise-induced phase slips July 7, 2014 3 / 16

Page 8: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Stochastic exit problem

Given D ⊂ R n, define first-exit time

τD = inf{t > 0: xt 6∈ D}First-exit location xτD ∈ ∂Ddefines harmonic measure

µ(A) = Px{xτD ∈ A}

D

xτD

Synchronization and noise-induced phase slips July 7, 2014 4 / 16

Page 9: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Stochastic exit problem

Given D ⊂ R n, define first-exit time

τD = inf{t > 0: xt 6∈ D}First-exit location xτD ∈ ∂Ddefines harmonic measure

µ(A) = Px{xτD ∈ A}

D

xτD

Facts (following from Dynkin’s formula):

. u(x) = Ex [τD] satisfies

{Lu(x) = −1 x ∈ Du(x) = 0 x ∈ ∂D

. For ϕ ∈ L∞(∂D,R ), h(x) = Ex [ϕ(xτD)] satisfies{Lh(x) = 0 x ∈ Dh(x) = ϕ(x) x ∈ ∂D

Synchronization and noise-induced phase slips July 7, 2014 4 / 16

Page 10: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Wentzell–Freidlin theorydxt = f (xt) dt + σg(xt) dWt x ∈ R n

Large-deviation principle with rate function

I (γ) =1

2

∫ T

0(γt − f (γt))TD(γt)

−1(γt − f (γt)) dt D = ggT

For a set Γ of paths γ : [0,T ]→ R n: P{(xt)06t6T ∈ Γ} ' e− infΓ I/σ2

Synchronization and noise-induced phase slips July 7, 2014 5 / 16

Page 11: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Wentzell–Freidlin theorydxt = f (xt) dt + σg(xt) dWt x ∈ R n

Large-deviation principle with rate function

I (γ) =1

2

∫ T

0(γt − f (γt))TD(γt)

−1(γt − f (γt)) dt D = ggT

For a set Γ of paths γ : [0,T ]→ R n: P{(xt)06t6T ∈ Γ} ' e− infΓ I/σ2

Consider domain D contained in basin of attraction of attractor AQuasipotential: V (y) = inf{I (γ) : γ : A → y ∈ ∂D in arbitrary time}

. limσ→0

σ2 logE[τD] = V = infy∈∂D

V (y) [Wentzell, Freidlin ’69]

. If inf reached at a single point y∗ ∈ D thenlimσ→0

P{‖xτD − y∗‖ > δ} = 0 ∀δ > 0 [Wentzell, Freidlin ’69]

. Exponential distr of τD: limσ→0

P{τD > sE[τD]} = e−s [Day ’83]

Synchronization and noise-induced phase slips July 7, 2014 5 / 16

Page 12: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Application to exit through unstable periodic orbit

Planar SDEdxt = f (xt) dt + σg(xt) dWt

D ⊂ R 2: int of unstable periodic orbitFirst-exit time: τD = inf{t > 0: xt 6∈ D}Law of first-exit location xτD ∈ ∂D?

D

xτD

Synchronization and noise-induced phase slips July 7, 2014 6 / 16

Page 13: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Application to exit through unstable periodic orbit

Planar SDEdxt = f (xt) dt + σg(xt) dWt

D ⊂ R 2: int of unstable periodic orbitFirst-exit time: τD = inf{t > 0: xt 6∈ D}Law of first-exit location xτD ∈ ∂D?

D

xτD

Large-deviation principle with rate function

I (γ) =1

2

∫ T

0(γt − f (γt))TD(γt)

−1(γt − f (γt)) dt D = ggT

Quasipotential:V (y) = inf{I (γ) : γ : stable orbit→ y ∈ ∂D in arbitrary time}Theorem [Wentzell, Freidlin ’69]: If V reaches its min at a uniquey∗ ∈ ∂D, then xτD concentrates in y∗ as σ → 0

Problem: V is constant on ∂D!

Synchronization and noise-induced phase slips July 7, 2014 6 / 16

Page 14: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Application to exit through unstable periodic orbit

Planar SDEdxt = f (xt) dt + σg(xt) dWt

D ⊂ R 2: int of unstable periodic orbitFirst-exit time: τD = inf{t > 0: xt 6∈ D}Law of first-exit location xτD ∈ ∂D?

D

xτD

Large-deviation principle with rate function

I (γ) =1

2

∫ T

0(γt − f (γt))TD(γt)

−1(γt − f (γt)) dt D = ggT

Quasipotential:V (y) = inf{I (γ) : γ : stable orbit→ y ∈ ∂D in arbitrary time}Theorem [Wentzell, Freidlin ’69]: If V reaches its min at a uniquey∗ ∈ ∂D, then xτD concentrates in y∗ as σ → 0

Problem: V is constant on ∂D!

Synchronization and noise-induced phase slips July 7, 2014 6 / 16

Page 15: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Most probable exit pathsIn polar-type coordinates

dϕt = fϕ(ϕt , rt) dt + σgϕ(ϕt , rt) dWt ϕ ∈ R /2πZdrt = fr (ϕt , rt) dt + σgr (ϕt , rt) dWt r ∈ [−1, 1]

Minimisers of I obey Hamilton equations with Hamiltonian

H(γ, ψ) = 12ψ

TD(γ)ψ + f (γ)Tψ where ψ = D(γ)−1(γ − f (γ))

r1−1

pr

z∗0

z∗1

z∗2

z∗3

z∗−1

z∗−2

z∗−3

Wu−

Ws+

Wu+Ws

stable periodic orbit unstable periodic orbit

Generically optimal path γ∞ (for infinite time) is isolated

Synchronization and noise-induced phase slips July 7, 2014 7 / 16

Page 16: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Random Poincare maps

ϕ

r

1− δ

R0

R1

1

s∗

γ∞

ϕτ

stable periodic orbit

unstable periodic orbit

. R0,R1, . . .RN form substochastic Markov chain (killed in r = 1)

. Under hypoellipticity cond, transition kernel has smooth density k[Ben Arous, Kusuoka, Stroock ’84]

PR0{R1 ∈ B} = K (R0,B) :=

∫Bk(R0, y) dy

. Fredholm theory: spectral decomp k(x , y) =∑

k>0 λkhk(x)h∗k(y)λ0 ∈ [0, 1]: principal eigenvalue [Perron, Frobenius, Jentzsch, Krein–Rutman]

limn→∞

P{Rn ∈ dx |N > n} =h∗0(x)∫

h∗0= π0(x) quasistationary distr (QSD)

Synchronization and noise-induced phase slips July 7, 2014 8 / 16

Page 17: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Random Poincare maps

ϕ

r

1− δ

R0

R1

1

s∗

γ∞

ϕτ

stable periodic orbit

unstable periodic orbit

Consequences of spectral decomp k(x , y) =∑

k>0 λkhk(x)h∗k(y)assuming spectral gap |λ1|/λ0 < 1:

. PR0{Rn ∈ A} = λn0h0(R0)

∫Ah∗0(y) dy

[1 +O((|λ1|/λ0)n)

]. If t = n + s,

PR0{ϕτ ∈ dt} = λn0h0(R0)

∫h∗0(y)Py{ϕτ ∈ ds} dy

[1+O((|λ1|/λ0)n)

]Periodically modulated exponential distribution: f (t + 1) ' λ0f (t)

Synchronization and noise-induced phase slips July 7, 2014 9 / 16

Page 18: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Computation of exit distribution

ϕ

r

1− δ

R0

R1

1

s∗

γ∞

ϕτ

stable periodic orbit

unstable periodic orbit

Split into two Markov chains:

. Chain killed upon r reaching 1− δ in ϕ = ϕτ−

P0{ϕτ− ∈ [ϕ1, ϕ1 + ∆]} ' (λs0)ϕ1 e−J(ϕ1)/σ2

. Chain killed at r = 1− 2δ and on unstable orbit r = 1♦ Principal eigenvalue: λu

0 = e−2λ+T+ (1 +O(δ))λ+ = Lyapunov exponent, T+ = period of unstable orbit

♦ Using LDP:

Pϕ1{ϕτ ∈ [ϕ,ϕ+ ∆]} ' (λu0)ϕ−ϕ1 e−[I∞+c(e−2λ+T+(ϕ−ϕ1))]/σ2

Synchronization and noise-induced phase slips July 7, 2014 10 / 16

Page 19: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Main result: log-periodic oscillations (cycling)

Theorem [B & Gentz, SIAM J Math Anal 2014]

∃β, c > 0: ∀∆, δ > 0 ∃σ0 > 0: ∀0 < σ < σ0

Pr0,0{θ(ϕτ ) ∈ [t, t + ∆]

}= ∆C (σ)(λ0)tQλ+T+

( |log σ|λ+T+

− t +O(δ)

)×[

1+O(e−ct/|log σ|)+O(δ|log δ|)+O(∆β)]

. QλT (x) =∞∑

n=−∞G (λT (n − x)) with G (x) = exp{−2x − 1

2 e−2x}

Cycling profile, periodicised Gumbel distribution

x

Qλ+T+(x)

λ+T+ = 1

λ+T+ = 2

λ+T+ = 5λ+T+ = 10

Synchronization and noise-induced phase slips July 7, 2014 11 / 16

Page 20: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Main result: log-periodic oscillations (cycling)

Theorem [B & Gentz, SIAM J Math Anal 2014]

∃β, c > 0: ∀∆, δ > 0 ∃σ0 > 0: ∀0 < σ < σ0

Pr0,0{θ(ϕτ ) ∈ [t, t + ∆]

}= ∆C (σ)(λ0)tQλ+T+

( |log σ|λ+T+

− t +O(δ)

)×[

1+O(e−ct/|log σ|)+O(δ|log δ|)+O(∆β)]

. QλT (x) =∞∑

n=−∞G (λT (n − x)) with G (x) = exp{−2x − 1

2 e−2x}

Cycling profile, periodicised Gumbel distribution

. θ(ϕ): explicit function of Drr (1, ϕ), θ(ϕ+ 1) = θ(ϕ) + 1

Synchronization and noise-induced phase slips July 7, 2014 11 / 16

Page 21: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Main result: log-periodic oscillations (cycling)

Theorem [B & Gentz, SIAM J Math Anal 2014]

∃β, c > 0: ∀∆, δ > 0 ∃σ0 > 0: ∀0 < σ < σ0

Pr0,0{θ(ϕτ ) ∈ [t, t + ∆]

}= ∆C (σ)(λ0)tQλ+T+

( |log σ|λ+T+

− t +O(δ)

)×[

1+O(e−ct/|log σ|)+O(δ|log δ|)+O(∆β)]

. QλT (x) =∞∑

n=−∞G (λT (n − x)) with G (x) = exp{−2x − 1

2 e−2x}

Cycling profile, periodicised Gumbel distribution

. θ(ϕ): explicit function of Drr (1, ϕ), θ(ϕ+ 1) = θ(ϕ) + 1

. λ0: principal eigenvalue, λ0 = 1− e−V /σ2

Synchronization and noise-induced phase slips July 7, 2014 11 / 16

Page 22: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Main result: log-periodic oscillations (cycling)

Theorem [B & Gentz, SIAM J Math Anal 2014]

∃β, c > 0: ∀∆, δ > 0 ∃σ0 > 0: ∀0 < σ < σ0

Pr0,0{θ(ϕτ ) ∈ [t, t + ∆]

}= ∆C (σ)(λ0)tQλ+T+

( |log σ|λ+T+

− t +O(δ)

)×[

1+O(e−ct/|log σ|)+O(δ|log δ|)+O(∆β)]

. QλT (x) =∞∑

n=−∞G (λT (n − x)) with G (x) = exp{−2x − 1

2 e−2x}

Cycling profile, periodicised Gumbel distribution

. θ(ϕ): explicit function of Drr (1, ϕ), θ(ϕ+ 1) = θ(ϕ) + 1

. λ0: principal eigenvalue, λ0 = 1− e−V /σ2

. C (σ) = O(e−V /σ2)

Synchronization and noise-induced phase slips July 7, 2014 11 / 16

Page 23: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Main result: log-periodic oscillations (cycling)

Theorem [B & Gentz, SIAM J Math Anal 2014]

∃β, c > 0: ∀∆, δ > 0 ∃σ0 > 0: ∀0 < σ < σ0

Pr0,0{θ(ϕτ ) ∈ [t, t + ∆]

}= ∆C (σ)(λ0)tQλ+T+

( |log σ|λ+T+

− t +O(δ)

)×[

1+O(e−ct/|log σ|)+O(δ|log δ|)+O(∆β)]

. QλT (x) =∞∑

n=−∞G (λT (n − x)) with G (x) = exp{−2x − 1

2 e−2x}

Cycling profile, periodicised Gumbel distribution

. θ(ϕ): explicit function of Drr (1, ϕ), θ(ϕ+ 1) = θ(ϕ) + 1

. λ0: principal eigenvalue, λ0 = 1− e−V /σ2

. C (σ) = O(e−V /σ2)

. Cycling: periodic dependence on |log σ|[Day’90, Maier & Stein ’96, Getfert & Reimann ’09]

Synchronization and noise-induced phase slips July 7, 2014 11 / 16

Page 24: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Animations

Influence of noise intensity: cyclingλ+ = 1, T+ = 4, V = 11 > σ > 0.0001(area under curve not normalized)

avi file

Influence of periodλ+ = 1, σ = 0.4, V = 10.001TK 6 T+ 6 TK

TK ' eV /σ2

Kramers’ time(area under curve not normalized)

avi file

See also http://www.univ-orleans.fr/mapmo/membres/berglund/simcycling.html

Synchronization and noise-induced phase slips July 7, 2014 12 / 16

Page 25: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Why log-periodic oscillations?

Phase at crossing: W∆(t) =∑∞

n=0 Pr0,0{θ(ϕτ ) ∈ [n + t, n + t + ∆]

}Corollary : W∆(t) = ∆Qλ+T+

(|log σ|λ+T+

− t +O(δ))[

1+O(δ|log δ|)+O(∆β)]

Corollary : limδ,∆→0

limσ→0

1

∆W∆

(t +|log σ|λ+T+

)= Qλ+T+(−t)

Remark: log-periodic oscillations appear in finance, diffusion through fractals,renormalization maps . . .

Synchronization and noise-induced phase slips July 7, 2014 13 / 16

Page 26: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Why log-periodic oscillations?

Phase at crossing: W∆(t) =∑∞

n=0 Pr0,0{θ(ϕτ ) ∈ [n + t, n + t + ∆]

}Corollary : W∆(t) = ∆Qλ+T+

(|log σ|λ+T+

− t +O(δ))[

1+O(δ|log δ|)+O(∆β)]

Corollary : limδ,∆→0

limσ→0

1

∆W∆

(t +|log σ|λ+T+

)= Qλ+T+(−t)

Heuristics :θ(ϕ) : parametrisation in whicheffective normal diffusion is constant

dist(γ∞, unst orbit) ' e−λ+T+θ(ϕ)

Escape when

e−λ+T+θ(ϕ) = σ ⇒ θ(ϕ) =|log σ|λ+T+

γ∞

Remark: log-periodic oscillations appear in finance, diffusion through fractals,renormalization maps . . .

Synchronization and noise-induced phase slips July 7, 2014 13 / 16

Page 27: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Why log-periodic oscillations?

Phase at crossing: W∆(t) =∑∞

n=0 Pr0,0{θ(ϕτ ) ∈ [n + t, n + t + ∆]

}Corollary : W∆(t) = ∆Qλ+T+

(|log σ|λ+T+

− t +O(δ))[

1+O(δ|log δ|)+O(∆β)]

Corollary : limδ,∆→0

limσ→0

1

∆W∆

(t +|log σ|λ+T+

)= Qλ+T+(−t)

Heuristics :θ(ϕ) : parametrisation in whicheffective normal diffusion is constant

dist(γ∞, unst orbit) ' e−λ+T+θ(ϕ)

Escape when

e−λ+T+θ(ϕ) = σ ⇒ θ(ϕ) =|log σ|λ+T+

γ∞

Remark: log-periodic oscillations appear in finance, diffusion through fractals,renormalization maps . . .

Synchronization and noise-induced phase slips July 7, 2014 13 / 16

Page 28: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Why log-periodic oscillations?

Phase at crossing: W∆(t) =∑∞

n=0 Pr0,0{θ(ϕτ ) ∈ [n + t, n + t + ∆]

}Corollary : W∆(t) = ∆Qλ+T+

(|log σ|λ+T+

− t +O(δ))[

1+O(δ|log δ|)+O(∆β)]

Corollary : limδ,∆→0

limσ→0

1

∆W∆

(t +|log σ|λ+T+

)= Qλ+T+(−t)

Heuristics :θ(ϕ) : parametrisation in whicheffective normal diffusion is constant

dist(γ∞, unst orbit) ' e−λ+T+θ(ϕ)

Escape when

e−λ+T+θ(ϕ) = σ ⇒ θ(ϕ) =|log σ|λ+T+

γ∞

Remark: log-periodic oscillations appear in finance, diffusion through fractals,renormalization maps . . .

Synchronization and noise-induced phase slips July 7, 2014 13 / 16

Page 29: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Some references. N.B. and Barbara Gentz, On the noise-induced passage through an unstable

periodic orbit I: Two-level model, J. Stat. Phys. 114:1577–1618 (2004).

. N.B. and Barbara Gentz, Universality of first-passage and residence-timedistributions in non-adiabatic stochastic resonance, Europhys. Letters 70:1–7(2005).

. N.B. and Barbara Gentz, On the noise-induced passage through an unstableperiodic orbit II: General case, SIAM J. Math. Anal. 46:310–352 (2014).arXiv:1208.2557

. Martin V. Day, Cycling and skewing of exit measures for planar systems, Stoch.Stoch. Rep. 48:227–247 (1994).

. Arkady Pikovsky, Michael Rosenblum, Jurgen Kurths, Synchronization. A universalconcept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.

. Frederic Cerou, Arnaud Guyader, Tony Lelievre and Florent Malrieu, On the lengthof one-dimensional reactive paths, ALEA, Lat. Am. J. Probab. Math. Stat.10:359–389 (2013).

. Yuri Bakhtin, Gumbel distribution in exit problems, arXiv:1307.7060

On Gumbel limit for the length of reactive paths, arXiv:1312.1939

www.univ-orleans.fr/mapmo/membres/berglund

Synchronization and noise-induced phase slips July 7, 2014 14 / 16

Page 30: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Why a Gumbel distribution?

Length of reactive path[Cerou, Guyader, Lelievre, Malrieu 2013] :dxt = −V ′(xt) dt + σ dWt a < x0 < 0

Theorem:

limσ→0

P{τb − 2

λ |log σ| < t∣∣ τb < τa

}= 1

λ

(log 2|x0|b

λ + I (x0) + I (b) + Λ(t))

where λ = −V ′′(0), I (x) =∫ 0

x

V ′(y)+ 1

y

)dy

x∗ z∗ y∗a bx

V (x)

and Λ(t) = e− e−t: distrib. function of standard Gumbel r.v.

Proof uses Doob’s h-transform

[Bakhtin 2013] :

Link with extreme-value theory and residual lifetimesdxt = λxt dt + σ dWt

Synchronization and noise-induced phase slips July 7, 2014 15 / 16

Page 31: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Why a Gumbel distribution?

Length of reactive path[Cerou, Guyader, Lelievre, Malrieu 2013] :dxt = −V ′(xt) dt + σ dWt a < x0 < 0

Theorem:

limσ→0

P{τb − 2

λ |log σ| < t∣∣ τb < τa

}= 1

λ

(log 2|x0|b

λ + I (x0) + I (b) + Λ(t))

where λ = −V ′′(0), I (x) =∫ 0

x

V ′(y)+ 1

y

)dy

x∗ z∗ y∗a bx

V (x)

and Λ(t) = e− e−t: distrib. function of standard Gumbel r.v.

Proof uses Doob’s h-transform

[Bakhtin 2013] :Link with extreme-value theory and residual lifetimes for linear casedxt = λxt dt + σ dWt

Synchronization and noise-induced phase slips July 7, 2014 15 / 16

Page 32: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Extreme-value theory and residual lifetime

. X1,X2, . . . i.i.d. real r.v. Mn = max{X1, . . . ,Xn}

. F (x) = P{X1 6 x} = 1− R(x) ⇒ P{Mn 6 x} = F (x)n

. Def: F ∈ D(Φ) ⇔ ∃(an)n > 0, (bn)n : limn→∞

F (anx + bn)n = Φ(x)

Synchronization and noise-induced phase slips July 7, 2014 16 / 16

Page 33: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Extreme-value theory and residual lifetime

. X1,X2, . . . i.i.d. real r.v. Mn = max{X1, . . . ,Xn}

. F (x) = P{X1 6 x} = 1− R(x) ⇒ P{Mn 6 x} = F (x)n

. Def: F ∈ D(Φ) ⇔ ∃(an)n > 0, (bn)n : limn→∞

F (anx + bn)n = Φ(x)

. Thm [Fisher, Tippett ’28, Gnedenko ’43]: F 6= 1[c,∞), F ∈ D(Φ)

⇒ Φ ∈{

Λ = e− e−x, e−x

−α1{x>0}, e

−(−x)α 1{x<0} + 1{x>0}}

⇒ Φ ∈ Gumbel Frechet Weibull

. [Gnedenko ’43]: F ∈ D(Φ) ⇔ limn→∞

nR(anx + bn) = − log Φ(x)

. [Balkema, de Haan ’74]:F ∈ D(Λ) ⇔ ∃a(·) > 0: lim

r→∞P{X > r + a(r)x |X > r} = e−x

Synchronization and noise-induced phase slips July 7, 2014 16 / 16

Page 34: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Extreme-value theory and residual lifetime. Thm [Fisher, Tippett ’28, Gnedenko ’43]: F 6= 1[c,∞), F ∈ D(Φ)

⇒ Φ ∈{

Λ = e− e−x, e−x

−α1{x>0}, e

−(−x)α 1{x<0} + 1{x>0}}

⇒ Φ ∈ Gumbel Frechet Weibull

. [Gnedenko ’43]: F ∈ D(Φ) ⇔ limn→∞

nR(anx + bn) = − log Φ(x)

. [Balkema, de Haan ’74]:F ∈ D(Λ) ⇔ ∃a(·) > 0: lim

r→∞P{X > r + a(r)x |X > r} = e−x

Synchronization and noise-induced phase slips July 7, 2014 16 / 16

Page 35: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Extreme-value theory and residual lifetime. Thm [Fisher, Tippett ’28, Gnedenko ’43]: F 6= 1[c,∞), F ∈ D(Φ)

⇒ Φ ∈{

Λ = e− e−x, e−x

−α1{x>0}, e

−(−x)α 1{x<0} + 1{x>0}}

⇒ Φ ∈ Gumbel Frechet Weibull

. [Gnedenko ’43]: F ∈ D(Φ) ⇔ limn→∞

nR(anx + bn) = − log Φ(x)

. [Balkema, de Haan ’74]:F ∈ D(Λ) ⇔ ∃a(·) > 0: lim

r→∞P{X > r + a(r)x |X > r} = e−x

dxt = λxt dt + σ dWt ⇒ Xt = eλt(x0 + W

σ2 1−e−2λt

)= eλt Xt

τ = inf{t > 0: Xt = 0}By the reflection principle:

P{τ < t + 1

λ |log σ|∣∣ τ <∞} = P

{Xt+

1λ |log σ|

> 0∣∣∣ X∞ > 0

}= P

{N > x0

σ

√2λ

1−σ2 e−2λt

∣∣∣ N > x0σ

√2λ}

→ exp{−x2

0λ e−2λt}

as σ → 0

Synchronization and noise-induced phase slips July 7, 2014 16 / 16

Page 36: AIMS 2014 Madrid, Spain, July 7 11, 2014 Session on

Extreme-value theory and residual lifetime. Thm [Fisher, Tippett ’28, Gnedenko ’43]: F 6= 1[c,∞), F ∈ D(Φ)

⇒ Φ ∈{

Λ = e− e−x, e−x

−α1{x>0}, e

−(−x)α 1{x<0} + 1{x>0}}

⇒ Φ ∈ Gumbel Frechet Weibull

. [Gnedenko ’43]: F ∈ D(Φ) ⇔ limn→∞

nR(anx + bn) = − log Φ(x)

. [Balkema, de Haan ’74]:F ∈ D(Λ) ⇔ ∃a(·) > 0: lim

r→∞P{X > r + a(r)x |X > r} = e−x

dxt = λxt dt + σ dWt ⇒ Xt = eλt(x0 + W

σ2 1−e−2λt

)= eλt Xt

τ = inf{t > 0: Xt = 0}By the reflection principle:

P{τ < t + 1

λ |log σ|∣∣ τ <∞} = P

{Xt+

1λ |log σ|

> 0∣∣∣ X∞ > 0

}= P

{N > x0

σ

√2λ

1−σ2 e−2λt

∣∣∣ N > x0σ

√2λ}

Λ(e−x) = e−Λ(x) → exp{−x2

0λ e−2λt}

as σ → 0

Synchronization and noise-induced phase slips July 7, 2014 16 / 16