air force research laboratory - boston college

14
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Air Force Research Laboratory Integrity Service Excellence T. Pedersen Space Weather Center of Excellence Space Vehicles Directorate Air Force Research Laboratory Ionospheric Effects Symposium Alexandria, VA, May 2015 Empirical Modeling of Plasma Clouds Produced by the Metal Oxide Space Clouds (MOSC) Experiment Cleared for Public Release _____________ under _________________ Approved for public release __(date)___ under Case Number .

Upload: others

Post on 16-Oct-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Air Force Research Laboratory - Boston College

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Air Force Research Laboratory

Integrity Service Excellence

T. PedersenSpace Weather Center of Excellence

Space Vehicles DirectorateAir Force Research Laboratory

Ionospheric Effects SymposiumAlexandria, VA, May 2015

Empirical Modeling of Plasma Clouds Produced by the Metal Oxide Space

Clouds (MOSC) Experiment

Cleared for Public Release _____________ under _________________Approved for public release __(date)___ under Case Number   .

Page 2: Air Force Research Laboratory - Boston College

2DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Co-Authors and Acknowledgements

• Co-authors:• R. Caton, D. Miller, J. Holmes

• AFRL/RVBXI• K. Groves

• Boston College• MOSC Experiment Sponsored by the Department

of Defense Space Test Program• Launch vehicles and payload integration

supplied by NASA Sounding Rocket Program• Data analysis at AFRL supported by the Air Force

Office of Scientific Research

Page 3: Air Force Research Laboratory - Boston College

3DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Outline

• MOSC experiment overview• Diagnostic instrumentation• Fitting of optical data

• Amplitude• Position• Widths

• Comparison with ALTAIR radar data• Peak plasma density as a function of time• Findings and discussion• Summary and conclusions

Page 4: Air Force Research Laboratory - Boston College

4DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

•2 Terrier‐Orion rockets funded by DoD Space Test Program

• Launch from Kwajalein Atoll May 2013• Launch 1 07:38 UT May 1, 2013• Launch 2 07:23 UT May 9, 2013

• Primary objective: examine feasibility of using artificial plasma to short out Rayleigh-Taylor instability

• Released 2 Samarium canisters each, total of ~6 kg per launch

• Produce plasma via chemionization:→

• Ground diagnostics from 5 islands including:‒ Incoherent Scatter Radar, GPS/VHF

Scintillation RX, All-Sky Cameras, Optical Spectrograph, Ionosondes, Beacon RX, HF TX/RX

MOSC Experiment Overview

Page 5: Air Force Research Laboratory - Boston College

5DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Radar and Optical Data• ALTAIR radar pointed at expected release 

location• Pre‐programmed raster scan locations 

updated in real time based on optics• Radar electron density modulated in time 

as radar scans across cloud• But of limited utility unless position relative to 

cloud is known

Optics provide critical context for radar measurements

Movie of radar scan in optics

Radar densities vs. time and altitude

Page 6: Air Force Research Laboratory - Boston College

6DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Empirical Model Construction

• Fit optical data to 2‐D Gaussian distribution as function of time• Provides the following 

properties• X, Y locations (in pixels)• X,Y halfwidths (in pixels)• Peak optical intensity• Background intensity• Tilt relative to principal axes

• Fit low‐order polynomials to data as function of time

• Fit relative optical intensity data to radar TEC and plasma density• Absolute intensity changes due 

to twilight, clouds, etc.

BG: 6.7661Amp: 3590.6162       Xwid: 12.2660Ywid: 18.9391     Xpos: 368.6418     Ypos: 342.1963       Angle: 2.9717

Page 7: Air Force Research Laboratory - Boston College

7DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Optical Intensity Fits

• Absolute intensities from the various filters track each other very well– Unfiltered channel 

overexposed most of the time– Wild points generally due to 

passage of tropospheric clouds

• Not actually used in model– Absolute intensity has 

too many dependencies• Rapidly changing twilight background on ground

• Rapidly changing illumination of clouds at altitude

• Filters not tuned for relevant wavelengths

• Clouds, light pollution, etc.– But good indicator of 

data quality

+  Unfiltered+ 630.0 nm+ 557.7 nm+ 427.8 nm+ 777.4 nm+  844.6 nm

Launch 2 Maximum Cloud Intensity from Fit

• Fitting process very consistent across 4 orders of magnitude and 6 wavelength channels

Approx. terminator 

crossing

Page 8: Air Force Research Laboratory - Boston College

8DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Position Fits

• Data originally in pixel coordinates– Convert to lat, lon

• Calibrate images to azimuth and elevation• Use release height to map from az/el to lat/lon

• Good piecewise fits using low‐order polynomials– Break point near 1000 sec– Linear or parabolic

• Slight differences between wavelengths– This fit for all wavelengths combined

Launch 2

Page 9: Air Force Research Laboratory - Boston College

9DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Cloud Width Fits

• Data originally in pixel coordinates– Convert to km

• Axes can be rotated relative to true N‐S and E‐W– “Tilt” paramater

• Rapid non‐linear cloud expansion before 100 sec– Did not attempt to fit at these early times

• Very linear after 100 sec– E‐W expansion greater for Launch 1– N‐S expansion about 2x that of E‐W for Launch 2

N‐S rotated 90 deg

E‐W rotated 90 deg

Launch 2

Page 10: Air Force Research Laboratory - Boston College

10DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Launch 2

Relative Intensity Model

• Absolute optical intensities not useful• But relative intensities give cloud size and shape

– Key to comparison with radar density data– Relative intensities for radar beam locations

• Now in coordinate system relative to cloud center!

Radar pointing in image coords. Radar pointing in cloud coords. Relative intensity model (=1.0 at center of cloud)

Cloud Center

* RadarCloud track

Launch 2

Launch 2

Page 11: Air Force Research Laboratory - Boston College

11DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Comparison with Radar TEC

Launch 2

Radar TECt‐2 envelopeScaled optical model

*

+

• Reasonably good fit using only simple assumptions

• Optics clearly capturing cloud plasma structure

• Raw radar data is function of range, az, el– Convert az and el to coordinates 

relative to cloud center• Optical data is inherently integrated 

through the cloud– Near‐vertical lines of sight– Integrate radar densities in range 

along beams to give closest equivalent to optical data (TEC)

• First‐cut comparison:– Assume rapid ionization but small 

recombination• Total number of ions approximately 

constant after initial stages• Cloud expansion is dominant cause of 

density decrease– Observed linear expansion in 2‐D (TEC) 

space should give t‐2 dependence– Very good fit captures much of the 

structure– Individual fluctuations from scans 

across cloud clearly highly correlated

Page 12: Air Force Research Laboratory - Boston College

12DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Comparison with Overall Plasma Density Measurements

• Radar data represents minimum bound on peak cloud density– Only occasionally comes close to center of cloud

• Ionosonde picks up peak density regardless of cloud location– Should provide upper bound on radar measurements

• Log‐log fit to sounder densities makes very nice upper bound on radar data for both launches– Exponents of ~‐0.75 much smaller than ‐3 expected from constant particle 

number and 3‐D linear expansion

Ne(t)=1.5x107 x t‐0.68Ne(t)=3.6x107 x t‐0.84

Page 13: Air Force Research Laboratory - Boston College

13DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Findings and Discussion

• 2‐D Gaussian distribution a reasonable model for cloud size and shape– Overall good fits but misses some E‐W asymmetry

• Cloud expansion very linear except at earliest times

– Disagrees with theoretical diffusion‐based prediction:  ∝  

• Optical model correlates well with radar TEC measurements:    gives reasonable scaling and fits well with linear expansion in 2‐D

• Overall density dependence closer to   – Why not  ∝   based on linear expansion in 3‐D?

• Ongoing electron production throughout experiment?

Page 14: Air Force Research Laboratory - Boston College

14DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Summary

• Empirical model developed for MOSC Sm clouds– Position, size, and shape from optical fits to 2‐D 

Gaussian– Density envelope from sounder and radar data

• Observed cloud expansion very linear with time– Constant number of electrons would give t‐3

dependence• Observed density drops off much more slowly 

than theory or fixed electron number would indicate: ~ t‐3/4– Ongoing ionization?

• Model already being used for high‐fidelity raytracing to compare with RF observations

• Planning to use as input to background dynamics model to examine impact on Rayleigh‐Taylor instability

Contours of Half‐Maximum Ne for 

Launch 2