akt promotes bmp2-mediated osteoblast differentiation and...

11
716 Research Article Introduction Bone remodeling occurs throughout life to maintain bone mass and integrity, and involves the dynamic interplay of two opposing processes: resorption by osteoclasts and deposition by osteoblasts (Hadjidakis and Androulakis, 2006; Khosla et al., 2008; Raisz, 2005; Zaidi, 2007). In the adult skeleton, both phases of remodeling are coupled temporally and spatially, and take place within a specialized environment termed the bone multicellular unit (Khosla et al., 2008; Raisz, 2005; Zaidi, 2007). Bone remodeling also requires regulated interactions between local and systemically derived signals mediated by hormones, growth factors and cytokines, and genetically-defined hierarchical programs of bone-specific transcription factors (Raisz, 2005; Zaidi, 2007). Among growth factors with positive actions on bone formation are the bone morphogenetic proteins (BMPs) (Li and Cao, 2006), and the insulin-like growth factors (IGFs) (Li and Cao, 2006; Raisz, 2005; Zaidi, 2007). BMPs are central regulators of osteoblast differentiation, and were named originally for their ability to promote ectopic bone formation (Wozney, 1992). Like other members of the TGFβ superfamily, BMPs signal through heteromeric Type I and Type II serine- threonine kinase receptors, and activate the intracellular signaling molecules, Smad1, Smad5 and Smad8, through their serine phosphorylation (Herpin and Cunningham, 2007). Activated Smad proteins form heterodimers with the co-Smad, Smad4, and translocate to the nucleus, where they regulate target gene transcription (Herpin and Cunningham, 2007). BMP2 stimulates transcription of Runx2, the master regulator of osteoblast commitment (Lian et al., 2006), and BMP2-activated Smad proteins also collaborate with Runx2 to induce other genes in differentiating osteoblasts, including osterix (Osx/Sp7), another bone-specific transcription factor (Lian et al., 2006). The IGF family consists of two secreted growth factors, IGF-I and IGF-II (official protein symbols IGF1 and IGF2), two receptors and six high-affinity binding proteins. Actions of both IGFs are mediated by the IGF-I receptor, a ligand-activated tyrosine protein kinase that uses a series of intracellular adaptor molecules, including the insulin receptor substrate proteins IRS1 and IRS2, to engage downstream signaling pathways (Nakae et al., 2001). IGF binding proteins function primarily to modulate the bioavailability of IGFs, but might have other IGF-independent effects (Bach et al., 2005; Duan and Xu, 2005). Studies in experimental animals have concluded that action of IGF is essential for normal bone formation, growth and maintenance. Mice globally lacking the IGF-I receptor have retarded skeletal development accompanied by delayed ossification, as well as other severe systemic defects that contribute to their neonatal death (Liu et al., 1993). Targeted loss of the IGF- I receptor exclusively in osteoblasts also has a bone phenotype, in which total trabecular thickness and number were reduced because of a decline in mineral apposition rate (Zhang et al., 2002). In agreement with these conclusions, individual knockouts of IRS1 and IRS2 also caused osteopenia, with defects seen in both cortical and trabecular bone (Akune et al., 2002; Ogata et al., 2000). In contrast to the deficits secondary to loss of IGF signaling, increased expression of IGF-I appears to stimulate bone growth and mineralization. Targeting IGF-I to mature osteoblasts in transgenic mice caused enhanced bone formation and mineralization, and Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is crucial for normal skeletal development and for bone remodeling. Osteogenesis is primarily regulated by bone morphogenetic proteins (BMPs), which activate gene expression programs driven by bone-specific transcription factors. In a mesenchymal stem cell model of osteoblast commitment and differentiation controlled by BMP2, we show that an inhibitor of PI3-kinase or a dominant-negative Akt were as potent in preventing osteoblast differentiation as the IGF binding protein IGFBP5, whereas a Mek inhibitor was ineffective. Conversely, an adenovirus encoding an inducible- active Akt was able to overcome the blockade of differentiation caused by IGFBP5 or the PI3-kinase inhibitor, and could restore normal osteogenesis. Inhibition of PI3-kinase or Akt did not block BMP2-mediated signaling, because the Smad- responsive genes Sox9 and JunB were induced normally under all experimental conditions. When activated during different stages of osteoblast maturation, dominant-negative Akt prevented accumulation of bone-specific alkaline phosphatase and reduced mineralization, and more significantly inhibited the longitudinal growth of metatarsal bones in primary culture by interfering with both chondrocyte and osteoblast development and function. We conclude that an intact IGF- induced PI3-kinase–Akt signaling cascade is essential for BMP2- activated osteoblast differentiation and maturation, bone development and growth, and suggest that manipulation of this pathway could facilitate bone remodeling and fracture repair. Supplementary material available online at http://jcs.biologists.org/cgi/content/full/122/5/716/DC1 Key words: Bone development, Bone morphogenetic factors, Insulin- like growth factors, PI3-kinase–Akt pathway, Akt, Osteoblast Summary Akt promotes BMP2-mediated osteoblast differentiation and bone development Aditi Mukherjee and Peter Rotwein* Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA *Author for correspondence (e-mail: [email protected]) Accepted 10 November 2008 Journal of Cell Science 122, 716-726 Published by The Company of Biologists 2009 doi:10.1242/jcs.042770 Journal of Cell Science

Upload: truongdan

Post on 28-Feb-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

716 Research Article

IntroductionBone remodeling occurs throughout life to maintain bone mass and

integrity, and involves the dynamic interplay of two opposing

processes: resorption by osteoclasts and deposition by osteoblasts

(Hadjidakis and Androulakis, 2006; Khosla et al., 2008; Raisz, 2005;

Zaidi, 2007). In the adult skeleton, both phases of remodeling are

coupled temporally and spatially, and take place within a specialized

environment termed the bone multicellular unit (Khosla et al., 2008;

Raisz, 2005; Zaidi, 2007). Bone remodeling also requires regulated

interactions between local and systemically derived signals mediated

by hormones, growth factors and cytokines, and genetically-defined

hierarchical programs of bone-specific transcription factors (Raisz,

2005; Zaidi, 2007). Among growth factors with positive actions on

bone formation are the bone morphogenetic proteins (BMPs) (Li

and Cao, 2006), and the insulin-like growth factors (IGFs) (Li and

Cao, 2006; Raisz, 2005; Zaidi, 2007).

BMPs are central regulators of osteoblast differentiation, and were

named originally for their ability to promote ectopic bone formation

(Wozney, 1992). Like other members of the TGFβ superfamily,

BMPs signal through heteromeric Type I and Type II serine-

threonine kinase receptors, and activate the intracellular signaling

molecules, Smad1, Smad5 and Smad8, through their serine

phosphorylation (Herpin and Cunningham, 2007). Activated Smad

proteins form heterodimers with the co-Smad, Smad4, and

translocate to the nucleus, where they regulate target gene

transcription (Herpin and Cunningham, 2007). BMP2 stimulates

transcription of Runx2, the master regulator of osteoblast

commitment (Lian et al., 2006), and BMP2-activated Smad proteins

also collaborate with Runx2 to induce other genes in differentiating

osteoblasts, including osterix (Osx/Sp7), another bone-specific

transcription factor (Lian et al., 2006).

The IGF family consists of two secreted growth factors, IGF-I

and IGF-II (official protein symbols IGF1 and IGF2), two receptors

and six high-affinity binding proteins. Actions of both IGFs are

mediated by the IGF-I receptor, a ligand-activated tyrosine protein

kinase that uses a series of intracellular adaptor molecules, including

the insulin receptor substrate proteins IRS1 and IRS2, to engage

downstream signaling pathways (Nakae et al., 2001). IGF binding

proteins function primarily to modulate the bioavailability of IGFs,

but might have other IGF-independent effects (Bach et al., 2005;

Duan and Xu, 2005). Studies in experimental animals have

concluded that action of IGF is essential for normal bone formation,

growth and maintenance. Mice globally lacking the IGF-I receptor

have retarded skeletal development accompanied by delayed

ossification, as well as other severe systemic defects that contribute

to their neonatal death (Liu et al., 1993). Targeted loss of the IGF-

I receptor exclusively in osteoblasts also has a bone phenotype, in

which total trabecular thickness and number were reduced because

of a decline in mineral apposition rate (Zhang et al., 2002). In

agreement with these conclusions, individual knockouts of IRS1

and IRS2 also caused osteopenia, with defects seen in both cortical

and trabecular bone (Akune et al., 2002; Ogata et al., 2000).

In contrast to the deficits secondary to loss of IGF signaling,

increased expression of IGF-I appears to stimulate bone growth and

mineralization. Targeting IGF-I to mature osteoblasts in transgenic

mice caused enhanced bone formation and mineralization, and

Signaling through the IGF-I receptor by locally synthesized

IGF-I or IGF-II is crucial for normal skeletal development and

for bone remodeling. Osteogenesis is primarily regulated by

bone morphogenetic proteins (BMPs), which activate gene

expression programs driven by bone-specific transcription

factors. In a mesenchymal stem cell model of osteoblast

commitment and differentiation controlled by BMP2, we show

that an inhibitor of PI3-kinase or a dominant-negative Akt were

as potent in preventing osteoblast differentiation as the IGF

binding protein IGFBP5, whereas a Mek inhibitor was

ineffective. Conversely, an adenovirus encoding an inducible-

active Akt was able to overcome the blockade of differentiation

caused by IGFBP5 or the PI3-kinase inhibitor, and could

restore normal osteogenesis. Inhibition of PI3-kinase or Akt did

not block BMP2-mediated signaling, because the Smad-

responsive genes Sox9 and JunB were induced normally under

all experimental conditions. When activated during different

stages of osteoblast maturation, dominant-negative Akt

prevented accumulation of bone-specific alkaline phosphatase

and reduced mineralization, and more significantly inhibited

the longitudinal growth of metatarsal bones in primary culture

by interfering with both chondrocyte and osteoblast

development and function. We conclude that an intact IGF-

induced PI3-kinase–Akt signaling cascade is essential for BMP2-

activated osteoblast differentiation and maturation, bone

development and growth, and suggest that manipulation of this

pathway could facilitate bone remodeling and fracture repair.

Supplementary material available online at

http://jcs.biologists.org/cgi/content/full/122/5/716/DC1

Key words: Bone development, Bone morphogenetic factors, Insulin-

like growth factors, PI3-kinase–Akt pathway, Akt, Osteoblast

Summary

Akt promotes BMP2-mediated osteoblastdifferentiation and bone developmentAditi Mukherjee and Peter Rotwein*Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA*Author for correspondence (e-mail: [email protected])

Accepted 10 November 2008Journal of Cell Science 122, 716-726 Published by The Company of Biologists 2009doi:10.1242/jcs.042770

Jour

nal o

f Cel

l Sci

ence

717Akt in bone development

resulted in increased trabecular bone volume (Zhao et al., 2000).

Targeting IGF-I to osteoblast precursors also gave rise to a robust

bone phenotype in mice, and led to increases in femur length,

cortical width and cross-sectional area (Jiang et al., 2006). Thus,

regardless of the timing of IGF-I overexpression in bone of

transgenic mice, net bone formation and mass were enhanced.

Therefore, based on several types of evidence, IGF action via the

IGF-I receptor is crucial for normal bone development and

mineralization.

IGF-mediated stimulation of the IGF-I receptor triggers receptor

autophosphorylation to create docking sites at phosphorylated

tyrosine residues for adaptor molecules (Nakae et al., 2001). This

initiates a series of protein-protein interactions that lead to activation

of intracellular signal transduction pathways (Nakae et al., 2001).

Although several signaling pathways mediate IGF action in bone,

as well as in other tissues (Giustina et al., 2008), a growing literature

supports the idea that the PI3-kinase–Akt network is critical for

both osteoblast differentiation and bone growth (Fujita et al., 2004;

Ghosh-Choudhury et al., 2002; Liu et al., 2007; Osyczka and Leboy,

2005; Peng et al., 2003; Raucci et al., 2008), yet the biochemical

or molecular mechanisms through which the IGF-stimulated PI3-

kinase–Akt pathway increases osteoblast development and function

have not been elucidated. Fujita and colleagues have postulated an

interaction with Runx2, because the PI3-kinase inhibitor LY294002

reduced both its DNA-binding activity and its ability to stimulate

target gene transcription (Fujita et al., 2004). Qiao and co-workers

have reached similar conclusions (Qiao et al., 2004), whereas others

have suggested collaboration at the level of nuclear translocation

of BMP2-stimulated Smad proteins (Ghosh-Choudhury et al.,

2002).

Here, we define a key role for the IGF-activated PI3-kinase–Akt

pathway in BMP-mediated osteoblast differentiation of

uncommitted mesenchymal precursor cells and their subsequent

maturation. We also find that Akt-regulated signaling is crucial for

longitudinal bone growth and that it exerts positive actions on both

chondrocyte and osteoblast differentiation and function in

developing bone. Based on these observations, we conclude that

the IGF-stimulated PI3-kinase–Akt pathway is a central component

in an interactive osteogenic signaling network that is necessary for

both bone development and remodeling.

ResultsInhibition of the PI3-kinase–Akt pathway blocks BMP2-mediated osteoblast differentiationWe previously demonstrated that both BMP2-stimulated osteoblast

differentiation of mouse mesenchymal stem cells and growth and

mineralization of mouse metatarsal bones, could be blocked by

IGFBP5 (Mukherjee and Rotwein, 2008). In these studies, the

inhibitory effects of IGFBP5 on osteogenesis appeared to depend

on its ability to bind IGF-I with high affinity, thereby sequestering

IGF-I from its cell-surface receptor, and leading to impaired IGF-

I receptor activity (Mukherjee and Rotwein, 2008). Since an IGF-

I analog with diminished affinity for IGFBPs but normal affinity

for the IGF-I receptor could restore BMP2-mediated osteogenesis

in the presence of otherwise inhibitory concentrations of IGFBP5

(Mukherjee and Rotwein, 2008), our results indicated that sustained

IGF action is required for osteoblast differentiation and bone growth.

The focus of current experiments was to identify and characterize

the pertinent IGF-activated signaling pathways.

To define the IGF-mediated mechanisms involved in regulation

of osteoblast development and function, we first incubated confluent

C3H10T1/2 mesenchymal stem cells with recombinant BMP2 in

osteogenic medium. Under these conditions, BMP2 treatment was

accompanied by the rapid and sustained stimulation of intracellular

signaling via BMP receptors, as indicated by serine phosphorylation

of Smad1, Smad5 and Smad8 in protein extracts observed by day

1 and maintained for up to 7 days (Fig. 1A), and by rapid and

sustained upregulation of Dlx5 and Runx2 mRNA (Fig. 1B), two

osteoblast-specific transcription factors whose genes are well-

known targets of BMP2 (Lee et al., 2003; Phimphilai et al., 2006).

Subsequent events included accumulation of transcripts encoding

the bone transcription factor osterix (Osx), and for the secreted

osteoblast protein osteocalcin (Ocn) (Fig. 1B), followed by activity

of bone-specific alkaline phosphatase, and mineralization of

extracellular matrix, the latter measured by Alizarin red staining

(Fig. 1C,D). None of these biological effects were observed in cells

incubated in osteogenic medium without BMP2 (Fig. 1A-D).

To block potential IGF-regulated signaling cascades, we treated

confluent C3H10T1/2 cells with either the Mek inhibitor UO126

or the PI3-kinase inhibitor LY294002, in the presence of BMP2

and osteogenic medium, because both the Grb-Sos-Mek-Erk and

PI3-kinase–Akt pathways have been shown to be activated by the

IGF-I receptor via the adaptor molecules IRS1 and IRS2 in bone

cells (Akune et al., 2002; Kadowaki et al., 1996; Ogata et al., 2000).

Addition of UO126 had no effect on BMP2-mediated signaling, or

on the rate or extent of osteoblast gene expression or differentiation

(Fig. 2A-D), although at the concentration used (10 μM), it

completely inhibited IGF-I-stimulated Erk phosphorylation in

C3H10T1/2 cells (supplementary material Fig. S1). By contrast,

LY294002 (20 μM), which blocked IGF-induced Akt

phosphorylation (supplementary material Fig. S1), impaired

expression of osteoblast differentiation genes (Fig. 2B) and

completely prevented induction of alkaline phosphatase activity and

mineralization (Fig. 2C,D), although like UO126, it also did not

inhibit BMP2-activated Smad phosphorylation (Fig. 2A).

Fig. 1. BMP2 promotes osteoblast differentiation. Results are shown ofexperiments in which C3H10T1/2 cells were incubated in osteogenic media(OM) without or with BMP2 (200 ng/ml) for up to 7 days. (A) Immunoblotsof whole-cell protein lysates for serine-phosphorylated Smad1, Smad5 andSmad8 (pSmad1,5,8), total Smads, Akt phosphorylated at Ser473 (pAktS473)and total Akt. (B) Results of RT-PCR assays showing expression ofosteoblast-specific genes Dlx5, Runx2, osterix (Osx) and osteocalcin (Ocn),and control gene S17 after incubation for up to 7 days in osteogenic mediumwith or without BMP2. (C) Representative images of qualitative alkalinephosphatase (AP) staining in cells after incubation in osteogenic mediumwith or without BMP2 for 7 days. (D) Measurement of mineralizationassessed by Alizarin red staining 7 days after incubation in osteogenicmedium with or without BMP2.

Jour

nal o

f Cel

l Sci

ence

718

We next considered whether BMP2 could activate the PI3-

kinase–Akt pathway, and whether LY294002 could impair BMP2-

mediated signaling. To address the first question, we incubated

C3H10T1/2 cells with BMP2 in serum-free medium for up to 60

minutes, and measured Akt phosphorylation on Ser473 as an

indicator of PI3-kinase activation. Addition of BMP2 stimulated

serine phosphorylation of Smad1, Smad5 and Smad8 within 15

minutes, but had no effect on Akt. Conversely, IGF-I induced

phosphorylation of Akt but not that of Smad proteins (Fig. 3A). To

examine effects of PI3-kinase inhibition on the acute actions of

BMP2, we measured expression of Smad target genes Sox9 and JunB(Chalaux et al., 1998; Zehentner et al., 1999) after addition of BMP2

with or without LY294002 to confluent C3H10T1/2 cells in

osteogenic medium. Under these conditions, BMP2 stimulated the

progressive accumulation of both mRNAs starting at 12 hours, as

well as inducing transcripts for Dlx5 and Runx2 (Fig. 3B). Addition

of LY294002 had no effect on the kinetics of Sox9 or JunB gene

expression, or mRNA abundance, but completely prevented

accumulation of Dlx5 or Runx2 mRNA. Thus, LY294002 interferes

selectively with BMP2-induced Smad-regulated gene activation.

To expand these observations, we next used adenovirus-mediated

gene transfer to deliver a regulated dominant-negative version of the

serine-threonine protein kinase Akt (AktDN) to C3H10T1/2 cells, to

assess whether inhibition of Akt activity also could block BMP2-

mediated osteoblast differentiation (see Fig. 4A). Synthesis of AktDN

in our adenoviral delivery system was prevented by the antibiotic

doxycycline (Dox). In the presence of Dox, no AktDN was produced

(Fig. 4B) and osteoblast-specific genes were induced, alkaline

phosphatase activity accumulated and bone matrix mineralization

proceeded normally (Fig. 4C-E). However, when Dox was omitted

from the culture medium, AktDN accumulated in the cells (Fig. 4B),

and as a result, the expression of osteoblast genes was impaired,

alkaline phosphatase activity was eliminated and mineralization

Journal of Cell Science 122 (5)

prevented (Fig. 4C-E), even though BMP2-activated Smad

phosphorylation and Sox9 and JunB gene expression appeared to be

normal (Fig. 4B,C). In other mesenchymal cell derivatives, including

skeletal muscle, inhibition of signaling through Akt can block

differentiation by promoting cell death (Fujio et al., 2001; Lawlor

Fig. 2. Inhibition of PI3-kinase activity blocks BMP2-induced osteoblast differentiation. Results are shown ofexperiments in which C3H10T1/2 cells were incubated inosteogenic media (OM) containing BMP2 for up to 10 dayswithout (Con, control) or with the MEK inhibitor UO126(UO) (10 μM) or the PI3-kinase inhibitor, LY294002 (LY)(20 μM), as described in the Materials and Methods.(A) Immunoblots of whole-cell protein lysates for Aktphosphorylated at Ser473 (pAktS473), total Akt, tyrosineand serine phosphorylated Erk1 and Erk2 (pErk1/2), totalErks, serine phosphorylated Smad1, Smad5 and Smad8(pSmad1,5,8), total Smads and α-tubulin. (B) Results ofRT-PCR assays showing expression of osteoblast-specificgenes encoding Dlx-5, Runx2, osterix (Osx) andosteocalcin (Ocn), and the control gene S17 afterincubation for up to 7 days in osteogenic medium with orwithout UO126 or LY294002. (C) Representative imagesof qualitative alkaline phosphatase (AP) staining in cellsafter incubation in osteogenic medium with or withoutUO126 or LY294002 for 5, 7 or 10 days. The graph depictsmeasurement of alkaline phosphatase activity in lysates ofcells incubated for 5 or 10 days in osteogenic medium withor without UO126 or LY294002 (mean ± s.d., n=3;*P<0.01, **P<0.001 vs cells incubated withoutLY294002). (D) Measurement of osteoblast-mediatedmineralization assessed by Alizarin red staining at days 5, 7and 10 after incubation in osteogenic medium with orwithout UO126 or LY294002. The graph shows calculationof mineralized area at day 10 (mean ± s.d., n=5; **P<0.01vs cells incubated without LY294002).

Fig. 3. Acute effects of BMP2 on signaling and gene expression. (A) BMP2activates Smads but not Akt. Immunoblots of whole-cell protein lysates forserine phosphorylated Smad1, Smad5 and Smad8 (pSmad1,5,8), total Smads,Akt phosphorylated at Ser473 (pAktS473), and total Akt after incubation ofC3H10T1/2 cells in serum-free medium with BMP2 (200 ng/ml), 10 nM IGF-Ior both growth factors for 0, 15, 30 or 60 minutes. (B) Results of RT-PCRexperiments for mRNA encoding Sox9, JunB, Dlx-5, Runx2 and S17 afterincubation for 0, 6, 12, or 24 hours in osteogenic medium without BMP2, withBMP2 or with BMP2 plus 20 μM LY294002.

Jour

nal o

f Cel

l Sci

ence

719Akt in bone development

and Rotwein, 2000), yet under the conditions of these experiments,

cell numbers remained constant whether or not Akt signaling was

impaired by expression of AktDN (Fig. 4F). Thus, taken together, the

results in Figs 2-4 show that inhibition of either PI3-kinase or Akt

activity blocked all aspects of BMP2-mediated osteogenic

differentiation of cultured mesenchymal stem cells, apparently

without interfering with Smad function or impairing cell viability.

An inducible Akt promotes osteoblast differentiation in thepresence of IGFBP5 or the PI3-kinase inhibitor LY294002To test the hypothesis that the PI3-kinase–Akt pathway has an

essential role in IGF-regulated osteogenic differentiation, we next

asked whether an inducible-activated Akt (iAkt) could reverse the

inhibition of differentiation seen with either IGFBP5 or LY294002

(see Fig. 5A and Fig. 6A). Synthesis of iAkt by the adenoviral gene

delivery vehicle was prevented by Dox, and stimulated in its absence

(Fig. 5B and Fig. 6B), and full Akt enzymatic activity of the fusion

protein was induced by the selective estrogen receptor modulator 4-

hydoxytamoxifen (4-HT), thus bypassing normal regulatory

mechanisms (Tureckova et al., 2001). As shown in Fig. 5C, BMP2-

mediated osteoblast-specific gene expression was blocked by IGFBP5

but was restored by iAkt, as was accumulation of alkaline phosphatase

and mineralization (Fig. 5C-E, lanes ‘+IGFBP5, –Dox’). Similar

results were observed in cells incubated with LY294002 (Fig. 6); once

iAkt was produced and activated, osteoblast differentiation proceeded

normally, even in the presence of the PI3-kinase inhibitor (Fig. 6C-

Fig. 4. Dominant-negative Akt (AktDN) blocks BMP2-stimulatedosteoblast differentiation. C3H10T1/2 cells were infected withAd-AktDN and Ad-tTA and incubated in osteogenic medium withBMP2 with or without doxycycline (Dox) for up to 7 days.(A) Experimental scheme. (B) Immunoblots of whole-cell proteinlysates for Akt, AktDN, pSmad1,5,8, total Smads and α-tubulin.(C) Results of RT-PCR experiments for mRNA encoding Sox9,JunB, Dlx-5, Runx2, Osx, Ocn and S17. (D) Results of alkalinephosphatase staining on day 7. (E) Measurement ofmineralization by Alizarin red staining on day 7.(F) Measurement of cell numbers after 1, 3, or 5 days inosteogenic medium.

Fig. 5. Active Akt reverses the inhibitory effects of IGFBP5 onBMP2-mediated osteoblast differentiation. C3H10T1/2 cells wereinfected with Ad-iAkt and Ad-tTA, and incubated in osteogenicmedium with BMP2, 4-hydroxytamoxifen (4-HT), purified mouseIGFBP-5 and with or without Dox for up to 7 days.(A) Experimental scheme. (B) Immunoblots of whole-cell proteinlysates for Akt, iAkt, pSmad1,5,8 and total Smads, andimmunoblot of conditioned medium for IGFBP5. (C) RT-PCRexperiments for mRNA encoding Dlx-5, Runx2, Osx, Ocn andS17. (D) Alkaline phosphatase activity on day 7. (E) Assessmentof mineralization by Alizarin red staining on day 7.

Jour

nal o

f Cel

l Sci

ence

720

E, lanes ‘+LY294002, –Dox’). These latter data additionally show

that the dose of LY294002 used was not toxic, because its effects

could be reversed. Based on the results depicted in Figs 2, 4, 5 and

6, we conclude that the IGF-stimulated PI3-kinase–Akt pathway is

required for BMP2-mediated osteogenic differentiation of cultured

mesenchymal stem cells. Since both Smad phosphorylation and

activation of Smad-dependent genes appeared to be normal when

IGF-stimulated PI3-kinase or Akt were blocked, it seems likely that

the point of interaction between the two growth-factor-initiated

signaling cascades is downstream of Smad action and upstream of

induction of osteoblast-specific gene expression.

Akt activity is required during all phases of osteoblastdifferentiation and functionOsteogenic differentiation is a multi-step process, which begins with

expression of osteoblast-specific transcription factors (Lian et al.,

Journal of Cell Science 122 (5)

2006), and proceeds with production of bone-specific proteins,

deposition of extracellular matrix and its subsequent mineralization

(Balcerzak et al., 2003; Hoshi et al., 2000; Lian et al., 2006). As

depicted in Figs 2, 4, 5 and 6, IGF-mediated Akt activity appears

to be a necessary collaborator with BMP2-stimulated signaling

pathways for initiating osteoblast differentiation. To begin to

address whether Akt actions also are needed for later events in bone

cell maturation and function, we devised a way to activate AktDN

by removal of Dox from the medium at different times during the

course of BMP2-mediated osteogenesis of mesenchymal stem cells

(see Fig. 7A). As shown in Fig. 7B, in the presence of Dox, no

AktDN was synthesized, whereas its sustained production was seen

beginning 1 day after Dox removal from culture medium. Analysis

of osteoblast gene expression revealed complete inhibition when

AktDN was present at the onset of differentiation (Fig. 7C, Dox

removal on day 0; also see Fig. 4C). By contrast, Dlx5 and Runx2

Fig. 6. Active Akt promotes osteoblast differentiation in thepresence of a PI3-kinase inhibitor. C3H10T1/2 cells were infectedwith Ad-iAkt and Ad-tTA, and incubated in osteogenic mediumwith BMP2, LY294002, 4-hydroxytamoxifen (4-HT) with orwithout Dox for up to 7 days. (A) Experimental scheme.(B) Immunoblots of whole-cell protein lysates for Akt, iAkt,pSmad1,5,8 and total Smads. (C) Results of RT-PCR experimentsfor mRNA encoding Dlx-5, Runx2, Osx, Ocn and S17. (D) Alkalinephosphatase staining on day 7. (E) Measurement of mineralizationby Alizarin red staining on day 7.

Fig. 7. Continual Akt activity is necessary forosteoblast differentiation, maturation and function.C3H10T1/2 cells were infected with Ad-AktDN andAd-tTA and incubated in osteogenic medium withBMP2 and Dox. Dox was removed sequentially atdays 0, 2, 4 or 6 to induce expression of AktDN.(A) Experimental scheme. (B) Immunoblots of whole-cell protein lysates for Akt and AktDN. (C) Results ofRT-PCR assays for mRNA encoding Dlx-5, Runx2,Osx, Ocn and S17 at day 3, 5, 7 and 10. (D) Results ofalkaline phosphatase activity measured at day 3, 5, 7and 10 by staining and by in vitro enzymatic assay(graph) after removal of Dox on different days (mean± s.d., n=3 experiments; *P<0.001, **P<0.01 vs+Dox). (E) Mineralized area assessed by Alizarin redstaining at day 10 after removal of Dox on differentdays (mean ± s.d., n=5 experiments; *P<0.001,**P<0.05 vs +Dox at day 10). Representative imagesare depicted above the graph.

Jour

nal o

f Cel

l Sci

ence

721Akt in bone development

mRNA was fully induced even when AktDN was present from day

3 onwards (Fig. 7C, Dox removal on day 2), although expression

of genes encoding Osx and Ocn was diminished by ~50-60%, and

only reached maximal values when normal differentiation conditions

were sustained for a longer interval (Fig. 7C, Dox removal on day

4). Similarly, alkaline phosphatase enzymatic activity, a measure

of differentiated osteoblast function, was inhibited by >85% if AktDN

was present by day 3, but was fully induced in cells if the inhibitor

did not appear until day 5 (Fig. 7D, compare Dox removal on day

2 and day 4). Taken together, the results in Fig. 7C,D indicate a

requirement for continuous IGF-stimulated Akt activity for at least

the first few days of BMP2-directed osteoblast differentiation in

order for sufficient bone-specific mRNAs and proteins to be

produced to sustain differentiated functions. However, matrix

mineralization, a later event in the process of osteoblast maturation,

appears to have a qualitatively different set of requirements, because

the presence of AktDN from day 5 onward prevented 50% of full

mineralization by day 10, and expression of AktDN from day 7

onwards still blocked ~25% of the normal accumulation of

mineralized matrix at day 10 (Fig. 7E, compare Dox removal on

day 4 and day 6 with +Dox), even though at these time points AktDN

had no inhibitory effects on expression of bone genes or on alkaline

phosphatase activity. Our provisional interpretation of the results

in Fig. 7 is that there are several temporally distinct Akt targets in

differentiating osteoblasts that govern different aspects of bone cell

development and function.

Signaling through the PI3-kinase–Akt pathway is required forgrowth of isolated mouse metatarsal bonesShort-term culture of neonatal mouse metatarsal bones has been

used previously to study bone growth and endochondral ossification

(Krishnan et al., 2003; Mukherjee et al., 2005). As we have shown

recently, these bones increased in length by >35% in serum-free

medium over a 10-day culture period, but growth was blocked by

IGFBP5 (Mukherjee and Rotwein, 2008). As also depicted in Fig.

8, a single addition of 20 μM LY294002 at 1 day after plating

reduced growth to <5% over the same time course. We observed

similarly dramatic inhibitory effects on longitudinal growth in

metatarsals infected with Ad-AktDN at the beginning of ex vivo

culture, whereas, by contrast, infection with Ad-EGFP or Ad-AktDN

in the presence of Dox, was completely ineffective (Fig. 9). Thus,

in this model system, the PI3-kinase–Akt pathway appears to be

needed for normal bone growth.

Inhibition of Akt activity impairs cartilage growth and osteoblastdevelopment and function in isolated mouse metatarsal bonesWe analyzed histological sections of mouse metatarsal bones

incubated ex vivo for different intervals to address potential

mechanisms by which Akt signaling was required for bone growth.

At the start of the 10-day culture period, proliferating cartilage made

up nearly half of the bone length and, together with hypertrophic

cartilage, comprised 85% of the total, with the mid-diaphyseal

mineralizing zone comprising the remaining 15% (Fig. 10, top

panel). By day 10, this central mineralizing zone had increased to

almost 30% of the now longer bone, with proliferating cartilage

remaining proportionately constant (54%), and the hypertrophic

zone decreasing from 39% to 18% (Fig. 10, second panel). We

observed nearly identical results on day 10 of culture with bones

infected with Ad-AktDN and incubated with Dox (Fig. 10, third

panel), thus illustrating the lack of effect of adenoviral infection on

the proportion of different cell types in the developing and growing

bone. By contrast, expression of AktDN not only prevented

longitudinal metatarsal growth, but also completely inhibited

lengthening of the zone of proliferating cartilage and expansion of

the mineralized zone (Fig. 10, bottom panel). As a consequence,

the histological profile after 10 days of AktDN expression resembled

Fig. 8. A PI3-kinase inhibitor prevents growth of cultured neonatal mousemetatarsal bones. Neonatal mouse metatarsals were incubated in DMEMcontaining 0.5% BSA with or without 20 μM LY294002 for up to 10 days.(A) Representative images of metatarsal bones after incubation with or withoutLY294002 for 10 days. (B) Relative change in metatarsal bone length afterincubation with or without LY294002 for 4, 7 or 10 days compared with day 0(mean ± s.d., n=3 experiments; *P<0.001 vs +LY294002).

Fig. 9. AktDN inhibits growth of cultured neonatal mouse metatarsal bones.Neonatal mouse metatarsals were infected with Ad-EGFP and Ad-tTa, or Ad-AktDN and Ad-tTa, and were incubated in DMEM containing 0.5% BSA withor without Dox for up to 10 days. (A) Representative image of metatarsal bonefor EGFP expression at 10 days after infection with Ad-EGFP and Ad-tTawithout addition of Dox. In the presence of Dox no EGFP was detected.(B) Immunoblot showing induction of AktDN in the absence of Dox, andexpression of endogenous Akt (lower band) and α-tubulin in tissue lysatesfrom metatarsals after 10 days of culture. (C) Representative images ofmetatarsal bones after incubation with Ad-EGFP or Ad-AktDN with or withoutDox, or no adenovirus (Con) for 10 days. (D) Relative change in metatarsalbone length after infection with Ad-AktDN for 4, 7, or 10 days with or withoutDox treatment compared with day 0 (mean ± s.d., n=3 experiments; *P<0.001,**P<0.01 vs +Dox).

Jour

nal o

f Cel

l Sci

ence

722

that of control metatarsals at the onset of ex vivo incubation (Fig.

10, compare top and bottom panels). Thus, Akt signaling appears

to be required for both cartilage and bone growth in isolated

metatarsal bones.

We further examined the effects of inhibiting Akt signaling on

osteoblasts within the mid-diaphyseal mineralizing zone. Cell-

counting experiments demonstrated that the number of

morphologically recognizable osteoblasts per �400 microscopic

field nearly doubled (from 16±3 to 28±7) during 10 days of organ

culture, whereas total cell density did not change (Fig. 11A). As

the mineralizing zone also expanded twofold in absolute length (Fig.

10), it appears that the total number of osteoblasts increased by a

factor of four during ex vivo bone development. We recorded nearly

identical results in bones infected with Ad-AktDN and incubated

with Dox. By contrast, when AktDN was expressed in the absence

of Dox, both osteoblast numbers and total cell density were

unchanged at day 10 compared with control metatarsals at day 0

(Fig. 11A). Our interpretation of these results is that Akt appears

to be required for osteoblast recruitment and/or differentiation within

bone during the early postnatal period in mice, although

alternatively, Akt signaling might be necessary for osteoblast

viability.

We next assessed osteoblast maturation and function in metatarsal

cultures by examining bone-cell-specific gene expression and

mineralization. AktDN reduced induction of mRNA encoding Ocn

by 70%, but had no effect on transcripts encoding Runx2 or Osx

(Fig. 11B). Since Runx2 and Osx are produced by both chondrocytes

and osteoblasts, whereas Ocn is synthesized exclusively by

differentiated osteoblasts (Karsenty, 1998), we interpret these data

to indicate that AktDN interfered with osteoblast development

Journal of Cell Science 122 (5)

within bone. Similarly, as measured by both calcein labeling of

living bones (Fig. 11C) and Alizarin red staining of histological

sections (Fig. 11D), AktDN prevented the normal accumulation of

mineralized matrix. Thus, based on these results, we conclude that

continuous Akt signaling is necessary for full osteoblast maturation

and function in vivo, as well as in vitro.

DiscussionBMPs have a central role in bone development and osteoblast

differentiation (Li and Cao, 2006), but require interactions with other

growth-factor-activated signals. Here, we demonstrate essential

crosstalk between BMP2 and the IGF-activated PI3-kinase–Akt

pathway to initiate osteogenic differentiation in uncommitted

mesenchymal precursor cells, and to promote maturation of

committed osteoblasts. We also show that IGF-stimulated and Akt-

mediated signaling is crucial for longitudinal bone growth by

exerting facilitating effects on both chondrocyte and osteoblast

development and function. Based on these results, we conclude that

the PI3-kinase–Akt pathway is a crucial component of an interactive

osteogenic signaling network.

An IGF-activated PI3-kinase–Akt pathway regulates BMP2-mediated osteoblast differentiationWe previously found that IGFBP5 could block BMP2-regulated

osteogenic differentiation of mesenchymal stem cells by

sequestering IGF-I and IGF-II from the IGF-I receptor (Mukherjee

and Rotwein, 2008), and postulated that through this mechanism it

also prevented osteoblast maturation and blocked longitudinal

growth of mouse metatarsal bones. We now show that both a

chemical PI3-kinase inhibitor and a dominant-negative version of

Fig. 10. AktDN inhibits chondrocyte maturation andosteoblast development in cultured neonatal mousemetatarsal bones. Neonatal mouse metatarsals wereinfected with Ad-AktDN and Ad-tTa, and incubated inDMEM with 0.5% BSA with or without Dox for 10days followed by histological analysis. Pictured on theleft are hematoxylin and eosin stained sections ofrepresentative metatarsals at day 0 and day 10 ofculture after control incubations (top two panels) orafter infection with Ad-AktDN and Ad-tTa (bottom twopanels); �40 magnification. Zones of proliferating(PC) or hypertrophic chondrocytes (HC) are indicated,as is the central mineralized zone (MZ). The charts inthe center represent graphical analysis of eachcomponent as a percentage of the total length of eachbone. Images on the right show the boxed regions onthe left panels at �100 magnification.

Jour

nal o

f Cel

l Sci

ence

723Akt in bone development

Akt (AktDN), also can inhibit BMP2-initiated osteogenesis (Figs 2

and 4). By contrast, blocking the Mek-Erk signaling pathway had

no effect on the onset or progression of BMP2-activated osteoblast

differentiation (Fig. 2). As the inhibitory actions of IGFBP5 or

LY294002 on BMP2-stimulated osteogenesis could be reversed by

a recombinant adenovirus encoding an activated version of Akt (Figs

5 and 6), our results document that Akt-regulated signaling is the

key pathway of IGF action in promoting osteoblast differentiation

in collaboration with BMPs.

Several previous studies have supported facilitating roles for IGF-

mediated signaling in osteogenesis in cell culture models, but with

disparate results regarding the intracellular pathways implicated

(Merriman et al., 1990; Niu and Rosen, 2005; Strong et al., 1991;

Strong et al., 1994). Fujita and colleagues found that either PI3-

kinase or Mek inhibitors could reduce the amount of bone-specific

alkaline phosphatase produced by cells overexpressing Runx2

(Fujita et al., 2004). Raucci and co-workers also showed that these

chemical inhibitors could decrease alkaline phosphatase activity in

two additional osteogenic cell lines, and attributed the negative

effects of the PI3-kinase inhibitor to enhanced cell death (Raucci

et al., 2008). These authors also found that a constitutively active

Akt led to increased accumulation of several bone-specific mRNAs,

including those encoding Runx2 and Osx (Raucci et al., 2008).

Several other groups also showed that chemical inhibition of PI3-

kinase or Mek could reduce markers of osteoblast differentiation

(Ghosh-Choudhury et al., 2002; Ghosh-Choudhury et al., 2007;

Hanai et al., 2006; Noda et al., 2005; Osyczka and Leboy, 2005).

Our observations thus appear to be one of the few studies to clearly

discriminate between the PI3-kinase–Akt and Mek-Erk pathways

in terms of osteogenic outcomes.

What mechanisms might mediate Akt-regulated osteoblast

differentiation? A dominant-negative Akt decreased the

transcriptional actions of Runx2 in a model system in which Runx2

was overexpressed (Fujita et al., 2004). These authors additionally

found that overexpression of Runx2 led to an increase in abundance

of Akt and of both regulatory and catalytic PI3-kinase subunits,

and postulated the existence of a positive-feedback loop in which

Runx2 upregulated components of the PI3-kinase–Akt pathway,

which then enhanced the functions of Runx2 (Fujita et al., 2004).

Others have found that a dominant-negative Akt could reduce the

activity of a BMP2-dependent promoter-reporter gene, possibly by

inhibiting the nuclear accumulation of activated Smad1 and Smad5

(Ghosh-Choudhury et al., 2002), but these results have not been

replicated, and we see no inhibitory effects of dominant-negative

Akt on Smad-mediated Sox9 and JunB gene expression (Fig. 4B).

In another mesenchymal derivative, skeletal muscle, Akt has been

shown to collaborate with myogenic transcription factors to enhance

the abundance of transcriptional co-activators on muscle gene

promoters (Wilson and Rotwein, 2007), and to reduce co-repressors

(Serra et al., 2007). It thus might be reasonable to postulate an

analogous role for Akt signaling in osteoblast differentiation,

although to date there is little experimental evidence for or against

this idea.

Akt signaling is required in all phases of osteoblastdifferentiation and maturationOsteoblast differentiation can be divided into several phases,

including lineage commitment, characterized in part by expression

of Runx2 and Osx (Komori, 2008), early differentiation, in which

other bone-cell-specific mRNAs and proteins are produced (Deng

et al., 2008), and maturation, marked by accumulation of bone-

specific alkaline phosphatase, extracellular matrix deposition and

mineralization (Balcerzak et al., 2003; Hoshi et al., 2000; Zaidi,

2007). We now find that Akt activity appears to be required for

each of these stages of differentiation, because AktDN can block

progression from one step to the next (Fig. 7). Most remarkable in

this regard is the inhibitory action of AktDN on mineralization, which

was seen even when AktDN was added relatively late in the

differentiation process, at a time when alkaline phosphatase activity

was already maximal (compare Fig. 7D with 7E). These latter

results, which complement our previous data using IGFBP5 to block

osteogenesis (Mukherjee and Rotwein, 2008), are supported by the

inhibitory effects of AktDN on osteoblast maturation and function

in cultured metatarsal bones (Fig. 11), and also are consistent with

Fig. 11. AktDN inhibits osteoblast development and function in culturedneonatal mouse metatarsal bones. Neonatal mouse metatarsals wereuninfected (Con) or were infected with Ad-AktDN and Ad-tTa, andincubated in DMEM plus 0.5% BSA with or without Dox for 10 days.(A) Cell counts of osteoblasts per field (h.p.f.) in histological sections ofthe mineralized zone at �400 magnification [mean ± s.d., n=4;*P<0.001, vs Con (day 0)]. (B) Results of RT-PCR experiments at day10 for mRNA encoding Runx2, Osx, Ocn, and S17. (C) Representativefluorescent images of calcein-labeled mineralizing zone after incubationfor 10 days; graph shows the relative difference in length of the calcein-labeled mineralizing zone at day 10 in metatarsals incubated with orwithout Dox (mean ± s.d., n=4; *P<0.001, vs +Dox). (D) Representativeimages showing Alizarin-red-stained histological sections after aincubation for 10 days; graph shows the difference in the Alizarin-red-stained area at day 10 in metatarsals incubated with or without Dox(mean ± s.d., n=4; *P<0.01).

Jour

nal o

f Cel

l Sci

ence

724 Journal of Cell Science 122 (5)

the defective mineralization phenotype seen in mice lacking the

IGF-I receptor in mature osteoblasts (Zhang et al., 2002).

Mineralization represents the outcome of a complex series of steps

that include active transport of calcium and inorganic phosphate

into osteoblasts, release of matrix vesicles into the extracellular

space, and nucleation and deposition of hydroxyapatite granules in

the osteoid (Balcerzak et al., 2003; Hoshi et al., 2000). Among

factors that control mineralization is the sodium-dependent

phosphate transporter Pit-1, which appears to be regulated by IGF-

I in osteoblasts (Kavanaugh and Kabat, 1996; Palmer et al., 1997;

Selz et al., 1989). As mineralization is an important step in fracture

healing (Schindeler et al., 2008), an understanding of the regulatory

mechanisms has the potential to lead to better treatment options.

Akt signaling in bone growth and endochondral ossificationWe showed previously that incubation with IGFBP5 prevented both

longitudinal growth and mineralization of cultured neonatal mouse

metatarsal bones, and found that the inhibitory effects of IGFBP5

depended on its ability to bind IGFs with high affinity (Mukherjee

and Rotwein, 2008). We now show that a chemical PI3-kinase

inhibitor and adenoviral-delivered AktDN also block metatarsal

growth (Figs 8 and 9). In these experiments, the metatarsals were

incubated in serum-free medium, and because IGFBP5, LY294002

and AktDN all exerted similar inhibitory effects, we conclude that

locally produced IGFs are responsible for activating the PI3-

kinase–Akt signaling pathway that is essential for longitudinal bone

growth. The defects seen in our metatarsal model resemble the bone

phenotype in mice lacking the IGF-I receptor (Zhang et al., 2002)

or both Akt1 and Akt2 (Peng et al., 2003), in which ossification

was delayed and osteopenia resulted. Conversely, the opposite

phenotype was observed in transgenic mice lacking Pten in

osteoblasts, in which progressive increases in bone volume and

density were seen throughout life (Liu et al., 2007). As Pten

dephosphorylates and inactivates phosphatidylinositol (3,4,5)-

trisphosphate (PIP3), the product of PI3-kinase, and because PIP3

is essential for membrane targeting and activation of Akt (Franke,

2008; Hanada et al., 2004), these results predict enhanced Akt

activity in Pten-deficient osteoblasts. In fact, cultured calvarial

osteoblasts engineered to lack Pten did show increased Akt

phosphorylation and phosphorylation of several Akt substrates, and

the cells differentiated more extensively than controls (Liu et al.,

2007). No results have been reported yet on mice in which a

constitutively active Akt has been targeted to osteoblasts, but a

similarly high bone density phenotype might be anticipated.

Akt is essential for optimal chondrogenesis and osteogenesisHistological analysis of growing mouse metatarsal bones revealed

a growth-associated proportional increase in the zone of proliferating

chondrocytes, a decline in the extent of terminally differentiated

hypertrophic chondrocytes and a more-than-proportional rise in the

length of the central mineralized zone, which contained osteoblasts

as well as other cell types (Fig. 10). These growth-related changes

in the profile of cell types within the cultured metatarsals were

completely inhibited by AktDN (Fig. 10), thus demonstrating

negative effects on both chondrocyte and osteoblast development.

In their analysis of isolated tibias from E15.5 mouse embryos, Ulici

and colleagues also found that LY294002 could impair chondrocyte

differentiation and inhibit longitudinal bone growth (Ulici et al.,

2008). In addition, AktDN blocked the normal twofold increase in

osteoblast number seen in the central mineralizing zone, and also

impaired both osteoblast maturation and function, as measured by

diminished osteocalcin gene expression and reduced mineralization

(Fig. 11). Thus, sustained Akt activity appears to be required for

the normal cartilage and bone cell development that leads to

longitudinal bone growth during the early postnatal period, at least

in metatarsals. These observations are additionally supported by

previous studies, which have suggested that Akt signaling is

required for proteoglycan and collagen production in chondrocytes

mediated by Runx2 (Fujita et al., 2004), and that Akt1 is important

for normal rates of bone formation and for preventing osteoblast

apoptosis (Kawamura et al., 2007).

In summary, we have shown that the IGF-activated PI3-

kinase–Akt signaling pathway is a potent facilitator of osteoblast

differentiation, bone growth, and mineralization. Our results point

to a key role for IGF-mediated signaling in all phases of

osteogenesis, and provide an impetus to define the mechanisms of

interaction with BMPs and other regulators of cartilage and bone

development and function.

Materials and MethodsReagentsFetal calf serum, horse serum, Dulbecco’s modified Eagle’s medium (DMEM), andphosphate-buffered saline (PBS) were purchased from Mediatech-Cellgrow (Herndon,VA). Okadaic acid was from Alexis Biochemicals (San Diego, CA), and NBT/BCIPtablets and protease inhibitor tablets were from Roche Applied Sciences (Indianapolis,IN). Calcein, sodium orthovanadate, alizarin red, ascorbic acid and β-glycerolphosphate were purchased from Sigma (St Louis, MO). Trypsin-EDTA solution andSuperscript III first-strand synthesis kit were from Invitrogen (Carlsbad, CA). TheBCA protein assay kit was from Pierce Biotechnologies (Rockford, IL) andImmobilon-FL was from Millipore Corporation (Billerico, MA). AquaBlock EIA/WIBsolution was from East Coast Biologicals (North Berwick, ME). IGF-I (Gropep) wasstored at –80°C at a concentration of 10 mM in 0.01 M HCl until use. Doxycycline(Dox, Clontech, Palo Alto, CA) was used at a final concentration of 1 mg/ml.LY294002 (Biomol Research Laboratories, Plymouth Meeting, PA) was stored indimethyl sulfoxide at –20°C at a concentration of 20 mM until use; 4-hydroxytamoxifen (HT) was from Sigma, and was stored in ethanol at –20°C at aconcentration of 50 mM until use. UO126 (Promega, Madison, WI) was stored inethanol at –80°C at a concentration of 20 mM until use. Other chemicals werepurchased from commercial vendors.

AntibodiesThe following polyclonal antibodies were purchased from commercial suppliers: anti-Smad1, anti-Akt, anti-phospho-Akt (Ser473), anti-Erk1 and 2, anti-phospho-Erk1 and-Erk2, Cell Signaling Technology (Beverly, MA); anti-α-tubulin, Sigma; anti-IGFBP-5, anti-phospho-Smad, Santa Cruz Biotechnology (Santa Cruz, CA). The monoclonalanti-T7 antibody was from Novagen (San Diego, CA) and anti-HA was from RocheApplied Sciences (Indianapolis, IN). Goat anti-rabbit IgG-IR800 and goat anti-mouseIgG-IR680 were from Rockland Immunochemical (Gilbertsville, PA).

Recombinant adenovirusesThe following adenoviruses (Ad) have been described: Ad-EGFP (Tureckova et al.,2001), Ad-IGFBP-5 (Mukherjee et al., 2008), Ad-BMP2 (Mukherjee and Rotwein,2008), Ad-tTA (tetracycline transactivator protein), Ad-iAkt (inducible Akt)(Tureckova et al., 2001) and Ad-AktDN [dominant negative Akt (Wilson et al., 2003)].All viruses were purified by centrifugation through CsCl density gradients and titeredas described (Wilson et al., 2003).

Production of BMP2 and IGFBP5C3H10T1/2 mouse embryonic fibroblasts (ATCC: CCL226) were incubated at 37°Cin humidified air with 5% CO2 in DMEM with 10% fetal calf serum. Cells wereinfected at ~50% of confluent density with Ad-BMP2 [multiplicity of infection (MOI)of 500]. The following day, medium was replaced with DMEM plus 2% horse serum;2 days later, conditioned medium was collected, clarified, and stored in aliquots at–80°C until use. The concentration of BMP2 was determined by immunoblottingwith purified standards purchased from R&D systems (Minneapolis, MN) (seesupplementary material Fig. S2). Mouse IGFBP-5 was produced in C3H10T1/2 cellsfollowing infection with Ad-IGFBP-5, and was purified by heparin affinitychromatography (Mukherjee et al., 2008).

Osteogenic differentiationConfluent C3H10T1/2 cells were incubated in osteogenic medium (DMEM, 10%fetal calf serum, 50 μg/ml ascorbic acid, 10 mM β-glycerol phosphate and 200 ng/mlBMP2) in the absence or presence of LY294002 (20 μM), UO126 (10 μM), or IGFBP-

Jour

nal o

f Cel

l Sci

ence

725Akt in bone development

5 (150 nM). osteogenic medium was replaced every 48 hours for up to 10 days. Cell

counting was performed as described (Wilson and Rotwein, 2007). Alternatively,

C3H10T1/2 cells were infected at ~50% of confluent density with Ad-tTA at an MOI

of 125, and either Ad-EGFP, Ad-iAkt, or Ad-AktDN at MOIs of 500. One day later,

cells were washed and osteogenic medium was added, along with other chemicals

as described in individual figure legends.

Mouse metatarsal bone cultureMetatarsal bones were isolated from newborn C57BL6 mice (days 0-3 after birth),

as described (Krishnan et al., 2001; Mukherjee and Rotwein, 2008) and were incubated

in DMEM containing 0.5% bovine serum albumin, 50 μg/ml ascorbic acid, 1 mM

β-glycerol phosphate and 100 μg/ml penicillin-streptomycin solution at 37°C in

humidified air with 5% CO2 for up to 10 days. In some experiments LY294002 (20

μM) was added the next day. In others, bones were infected the next day with Ad-

tTA (1�107 PFU/ml) plus either Ad-EGFP or Ad-AktDN (6�107 PFU/ml). Images

were captured at days 1, 4, 7 and 10 with a Nikon DXL1200 camera attached to a

Lieca MZ FLIII microscope. Mineralization was assessed by addition of medium

containing calcein (500 ng/ml) for 2 hours. After rinsing three times with PBS,

fluorescent images were captured with a Roper Scientific Cool Snap FX CCD camera

attached to a Nikon Eclipse T300 microscope using an Apple PowerPC computer

running IP Labs Scientific Image Processing software v3.9.4r2 (Scanalytics, Rockville,

MD).

Bone histologyMetatarsals were fixed in 4% paraformaldehyde for 18 hours at 4°C and stored in

70% ethanol. Bones were embedded in paraffin blocks and sectioned. Staining with

hematoxylin and eosin or with alizarin red was performed after hydrating slides in

graded concentrations of ethanol and water, as described (Mukherjee et al., 2005;

Serra et al., 1999). After staining, sections were dehydrated, coverslips added and

images were captured using a MicroPublisher cooled CCD camera (QImaging, Surrey,

British Columbia) attached to a Nikon Eclipse E800 compound microscope. For cell

counting, osteoblasts were identified in the central mineralized zone by the cuboidal

morphology of their nuclei, and were counted at �400 magnification in histological

sections stained with hematoxylin and eosin.

Alkaline phosphatase stainingCells were washed with PBS, fixed with 70% ethanol for 10 minutes, and incubated

with 500 ml NBT/BCIP solution (1 tablet in 10 ml distilled water) for 20 minutes at

20°C (Mukherjee and Rotwein, 2008). After three washes with distilled water, images

were captured and analyzed with the LiCoR Odyssey Infrared Imaging System, using

software version 1.2 (LiCoR, Lincoln, NE). Alkaline phosphatase activity was

determined spectrophotometrically at 405 nM after incubating cell lysates (10 μg)

in a 96-well format for 20 minutes at 20°C in 50 μl of a 1 mg/ml solution of p-

nitrophenyl phosphate (Mukherjee and Rotwein, 2008).

Alizarin red stainingCells were fixed in 70% ethanol for 10 minutes, and stained with 2% alizarin red

solution (pH 4.1-4.5) for 1 minute at 20°C (Mukherjee and Rotwein, 2008). Images

were obtained by scanning plates on a Canon flat-bed scanner or with the LiCoR

Odyssey and results were quantified as described (Mukherjee and Rotwein, 2008).

Analysis of gene expressionWhole-cell RNA (2 μg), isolated as described (Mukherjee and Rotwein, 2008), was

reverse-transcribed with the Superscript III first-strand synthesis kit, using oligo (dT)

primers in a final volume of 20 μl. PCR reactions were performed with 1 μl of cDNA

per reaction and previously published primer pairs for mouse Dlx5, Runx2, osterix,

osteocalcin and S17 (Mukherjee and Rotwein, 2008). Other oligonucleotide primers

are as follows: mouse Sox9: top strand, 5�-AGGAAGCTGGCAGACCAGTA-3�;bottom strand, 5�-CGTTCTTCACCGACTTCCTC-3�; mouse JunB: top strand, 5�-ACGGAGGGAGAGAAAAGCTC-3�; bottom strand, 5�-AAGGCTGT TC -

CATTTTCGTG-3�. Cycle numbers ranged from 20-30 and results were visualized

after agarose gel electrophoresis.

Protein extraction and immunoblottingWhole-cell protein lysates and conditioned cultured medium were prepared from

C3H10T1/2 cells as described (Mukherjee et al., 2008; Mukherjee and Rotwein, 2008),

and aliquots were stored at –80°C until use. Metatarsals were homogenized in cell

lysis buffer with protease inhibitors using a hand-held Teflon homogenizer. After

centrifugation at 14,000 r.p.m. for 10 minutes at 4°C in a microcentrifuge, supernatants

were collected and stored at –80°C until use. Protein samples (30 μg/lane) or medium

(25 μl/lane) were resolved by SDS-PAGE and transferred to Immobilon-FL

membranes. After blocking with 25% AquaBlock solution for 1 hour at 20°C,

membranes were incubated sequentially with primary and secondary antibodies

(Mukherjee and Rotwein, 2008). The following primary antibodies were used at a

dilution of 1:1000: anti-Akt, anti-phospho-Akt (Ser473), anti-IGFBP-5, anti-phospho-

Smad, anti-Smad1, anti-HA, anti-Erk1/2 and anti-phospho-Erk1/2. Anti-T7 was used

at 1:5000 and anti-α-tubulin at 1:15,000. Secondary antibodies were used at 1:5000.

Results were visualized and images captured using the LiCoR Odyssey and version

1.2 analysis software.

We thank Svetlana Lutsenko for reagents and Ronen Schweitzer foruse of his microscope and imaging system, and appreciate the assistanceof the histology core of the Department of Pathology at OHSU. Thestudies presented in this manuscript were supported by NationalInstitutes of Health R01 grants DK42748 and DK63073 (to P. R).Deposited in PMC for release after 12 months.

ReferencesAkune, T., Ogata, N., Hoshi, K., Kubota, N., Terauchi, Y., Tobe, K., Takagi, H., Azuma,

Y., Kadowaki, T., Nakamura, K. et al. (2002). Insulin receptor substrate-2 maintains

predominance of anabolic function over catabolic function of osteoblasts. J. Cell Biol.159, 147-156.

Bach, L. A., Headey, S. J. and Norton, R. S. (2005). IGF-binding proteins-the pieces are

falling into place. Trends Endocrinol. Metab. 16, 228-234.

Balcerzak, M., Hamade, E., Zhang, L., Pikula, S., Azzar, G., Radisson, J., Bandorowicz-

Pikula, J. and Buchet, R. (2003). The roles of annexins and alkaline phosphatase in

mineralization process. Acta Biochim. Pol. 50, 1019-1038.

Chalaux, E., Lopez-Rovira, T., Rosa, J. L., Bartrons, R. and Ventura, F. (1998). JunB

is involved in the inhibition of myogenic differentiation by bone morphogenetic protein-

2. J. Biol. Chem. 273, 537-543.

Deng, Z. L., Sharff, K. A., Tang, N., Song, W. X., Luo, J., Luo, X., Chen, J., Bennett,

E., Reid, R., Manning, D. et al. (2008). Regulation of osteogenic differentiation during

skeletal development. Front. Biosci. 13, 2001-2021.

Duan, C. and Xu, Q. (2005). Roles of insulin-like growth factor (IGF) binding proteins

in regulating IGF actions. Gen. Comp. Endocrinol. 142, 44-52.

Franke, T. F. (2008). Intracellular signaling by Akt: bound to be specific. Sci. Signal. 1,

e29.

Fujio, Y., Mitsuuchi, Y., Testa, J. R. and Walsh, K. (2001). Activation of Akt2 Inhibits

anoikis and apoptosis induced by myogenic differentiation. Cell Death Differ. 8, 1207-

1212.

Fujita, T., Azuma, Y., Fukuyama, R., Hattori, Y., Yoshida, C., Koida, M., Ogita, K.

and Komori, T. (2004). Runx2 induces osteoblast and chondrocyte differentiation and

enhances their migration by coupling with PI3K-Akt signaling. J. Cell Biol. 166, 85-

95.

Ghosh-Choudhury, N., Abboud, S. L., Nishimura, R., Celeste, A., Mahimainathan, L.

and Choudhury, G. G. (2002). Requirement of BMP-2-induced phosphatidylinositol

3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-

dependent BMP-2 gene transcription. J. Biol. Chem. 277, 33361-33368.

Ghosh-Choudhury, N., Mandal, C. C. and Choudhury, G. G. (2007). Statin-induced

Ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for

bone morphogenetic protein-2 expression in osteoblast differentiation. J. Biol. Chem.282, 4983-4993.

Giustina, A., Mazziotti, G. and Canalis, E. (2008). Growth hormone, insulin-like growth

factors, and the skeleton. Endocr. Rev. 29, 535-559.

Hadjidakis, D. J. and Androulakis, I. I. (2006). Bone remodeling. Ann. NY Acad. Sci.1092, 385-396.

Hanada, M., Feng, J. and Hemmings, B. A. (2004). Structure, regulation and function

of PKB/AKT-a major therapeutic target. Biochim. Biophys. Acta 1697, 3-16.

Hanai, Y., Tokuda, H., Ishisaki, A., Matsushima-Nishiwaki, R., Nakamura, N.,

Yoshida, M., Takai, S., Ohta, T. and Kozawa, O. (2006). Involvement of p44/p42

MAP kinase in insulin-like growth factor-I-induced alkaline phosphatase activity in

osteoblast-like-MC3T3-E1 cells. Mol. Cell Endocrinol. 251, 42-48.

Herpin, A. and Cunningham, C. (2007). Cross-talk between the bone morphogenetic

protein pathway and other major signaling pathways results in tightly regulated cell-

specific outcomes. FEBS J. 274, 2977-2985.

Hoshi, K., Ejiri, S. and Ozawa, H. (2000). Ultrastructural, cytochemical, and biophysical

aspects of mechanisms of bone matrix calcification. Kaibogaku Zasshi 75, 457-465.

Jiang, J., Lichtler, A. C., Gronowicz, G. A., Adams, D. J., Clark, S. H., Rosen, C. J.

and Kream, B. E. (2006). Transgenic mice with osteoblast-targeted insulin-like growth

factor-I show increased bone remodeling. Bone 39, 494-504.

Kadowaki, T., Tobe, K., Honda-Yamamoto, R., Tamemoto, H., Kaburagi, Y.,

Momomura, K., Ueki, K., Takahashi, Y., Yamauchi, T., Akanuma, Y. et al. (1996).

Signal transduction mechanism of insulin and insulin-like growth factor-1. Endocr. J.43 Suppl., S33-S41.

Karsenty, G. (1998). Transcriptional regulation of osteoblast differentiation during

development. Front Biosci. 3, d834-d837.

Kavanaugh, M. P. and Kabat, D. (1996). Identification and characterization of a widely

expressed phosphate transporter/retrovirus receptor family. Kidney Int. 49, 959-963.

Kawamura, N., Kugimiya, F., Oshima, Y., Ohba, S., Ikeda, T., Saito, T., Shinoda, Y.,

Kawasaki, Y., Ogata, N., Hoshi, K. et al. (2007). Akt1 in osteoblasts and osteoclasts

controls bone remodeling. PLoS. ONE. 2, e1058.

Khosla, S., Westendorf, J. J. and Oursler, M. J. (2008). Building bone to reverse

osteoporosis and repair fractures. J. Clin. Invest 118, 421-428.

Komori, T. (2008). Regulation of bone development and maintenance by Runx2. FrontBiosci. 13, 898-903.

Krishnan, V., Ma, Y., Moseley, J., Geiser, A., Friant, S. and Frolik, C. (2001). Bone

anabolic effects of sonic/indian hedgehog are mediated by bmp-2/4-dependent pathways

in the neonatal rat metatarsal model. Endocrinology 142, 940-947.

Jour

nal o

f Cel

l Sci

ence

Krishnan, V., Moore, T. L., Ma, Y. L., Helvering, L. M., Frolik, C. A., Valasek, K. M.,

Ducy, P. and Geiser, A. G. (2003). Parathyroid hormone bone anabolic action requires

Cbfa1/Runx2-dependent signaling. Mol. Endocrinol. 17, 423-435.

Lawlor, M. A. and Rotwein, P. (2000). Insulin-like growth factor-mediated muscle cell

survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Mol. Cell. Biol.20, 8983-8995.

Lee, M. H., Kim, Y. J., Kim, H. J., Park, H. D., Kang, A. R., Kyung, H. M., Sung, J.

H., Wozney, J. M., Kim, H. J. and Ryoo, H. M. (2003). BMP-2-induced Runx2

expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast

differentiation by suppression of Dlx5 expression. J. Biol. Chem. 278, 34387-34394.

Li, X. and Cao, X. (2006). BMP signaling and skeletogenesis. Ann. NY Acad. Sci. 1068,

26-40.

Lian, J. B., Stein, G. S., Javed, A., van Wijnen, A. J., Stein, J. L., Montecino, M.,

Hassan, M. Q., Gaur, T., Lengner, C. J. and Young, D. W. (2006). Networks and

hubs for the transcriptional control of osteoblastogenesis. Rev. Endocr. Metab. Disord.7, 1-16.

Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. and Efstratiadis, A. (1993). Mice

carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and

type 1 IGF receptor (Igf1r). Cell 75, 59-72.

Liu, X., Bruxvoort, K. J., Zylstra, C. R., Liu, J., Cichowski, R., Faugere, M. C.,

Bouxsein, M. L., Wan, C., Williams, B. O. and Clemens, T. L. (2007). Lifelong

accumulation of bone in mice lacking Pten in osteoblasts. Proc. Natl. Acad. Sci. USA104, 2259-2264.

Merriman, H. L., La, T. D., Linkhart, T. A., Mohan, S., Baylink, D. J. and Strong, D.

D. (1990). Insulin-like growth factor-I and insulin-like growth factor-II induce c-fos in

mouse osteoblastic cells. Calcif. Tissue Int. 46, 258-262.

Mukherjee, A. and Rotwein, P. (2008). Insulin-like growth factor-binding protein-5 inhibits

osteoblast differentiation and skeletal growth by blocking insulin-like growth factor

actions. Mol. Endocrinol. 22, 1238-1250.

Mukherjee, A., Dong, S. S., Clemens, T., Alvarez, J. and Serra, R. (2005). Co-ordination

of TGF-beta and FGF signaling pathways in bone organ cultures. Mech. Dev. 122, 557-

571.

Mukherjee, A., Wilson, E. M. and Rotwein, P. (2008). IGF binding protein-5 blocks

skeletal muscle differentiation by inhibiting IGF actions. Mol. Endocrinol. 22, 206-

215.

Nakae, J., Kido, Y. and Accili, D. (2001). Distinct and overlapping functions of insulin

and IGF-I receptors. Endocr. Rev. 22, 818-835.

Niu, T. and Rosen, C. J. (2005). The insulin-like growth factor-I gene and osteoporosis:

a critical appraisal. Gene 361, 38-56.

Noda, T., Tokuda, H., Yoshida, M., Yasuda, E., Hanai, Y., Takai, S. and Kozawa, O.

(2005). Possible involvement of phosphatidylinositol 3-kinase/Akt pathway in insulin-

like growth factor-I-induced alkaline phosphatase activity in osteoblasts. Horm. Metab.Res. 37, 270-274.

Ogata, N., Chikazu, D., Kubota, N., Terauchi, Y., Tobe, K., Azuma, Y., Ohta, T.,

Kadowaki, T., Nakamura, K. and Kawaguchi, H. (2000). Insulin receptor substrate-

1 in osteoblast is indispensable for maintaining bone turnover. J. Clin. Invest 105, 935-

943.

Osyczka, A. M. and Leboy, P. S. (2005). Bone morphogenetic protein regulation of early

osteoblast genes in human marrow stromal cells is mediated by extracellular signal-

regulated kinase and phosphatidylinositol 3-kinase signaling. Endocrinology 146, 3428-

3437.

Palmer, G., Bonjour, J. P. and Caverzasio, J. (1997). Expression of a newly identified

phosphate transporter/retrovirus receptor in human SaOS-2 osteoblast-like cells and its

regulation by insulin-like growth factor I. Endocrinology 138, 5202-5209.

Peng, X. D., Xu, P. Z., Chen, M. L., Hahn-Windgassen, A., Skeen, J., Jacobs, J.,

Sundararajan, D., Chen, W. S., Crawford, S. E., Coleman, K. G. et al. (2003).

Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone

development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev.17, 1352-1365.

Phimphilai, M., Zhao, Z., Boules, H., Roca, H. and Franceschi, R. T. (2006). BMP

signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J.Bone Miner. Res. 21, 637-646.

Qiao, M., Shapiro, P., Kumar, R. and Passaniti, A. (2004). Insulin-like growth factor-1

regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol

3-kinase/ERK-dependent and Akt-independent signaling pathway. J. Biol. Chem. 279,

42709-42718.

Raisz, L. G. (2005). Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J.Clin. Invest. 115, 3318-3325.

Raucci, A., Bellosta, P., Grassi, R., Basilico, C. and Mansukhani, A. (2008). Osteoblast

proliferation or differentiation is regulated by relative strengths of opposing signaling

pathways. J. Cell Physiol. 215, 442-451.

Schindeler, A., McDonald, M. M., Bokko, P. and Little, D. G. (2008). Bone remodeling

during fracture repair: the cellular picture. Semin. Cell Dev. Biol. 19, 459-466.

Selz, T., Caverzasio, J. and Bonjour, J. P. (1989). Regulation of Na-dependent Pi transport

by parathyroid hormone in osteoblast-like cells. Am. J. Physiol. 256, E93-E100.

Serra, C., Palacios, D., Mozzetta, C., Forcales, S. V., Morantte, I., Ripani, M., Jones,

D. R., Du, K., Jhala, U. S., Simone, C. et al. (2007). Functional interdependence at

the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during

muscle differentiation. Mol. Cell 28, 200-213.

Serra, R., Karaplis, A. and Sohn, P. (1999). Parathyroid hormone-related peptide (PTHrP)-

dependent and -independent effects of transforming growth factor beta (TGF-beta) on

endochondral bone formation. J. Cell Biol. 145, 783-794.

Strong, D. D., Beachler, A. L., Wergedal, J. E. and Linkhart, T. A. (1991). Insulinlike

growth factor II and transforming growth factor beta regulate collagen expression in

human osteoblastlike cells in vitro. J. Bone Miner. Res. 6, 15-23.

Strong, D. D., Merriman, H. L., Landale, E. C., Baylink, D. J. and Mohan, S. (1994).

The effects of the insulin-like growth factors and transforming growth factor beta on

the Jun proto-oncogene family in MC3T3-E1 cells. Calcif. Tissue Int. 55, 311-315.

Tureckova, J., Wilson, E. M., Cappalonga, J. L. and Rotwein, P. (2001). Insulin-like

growth factor-mediated muscle differentiation: collaboration between

phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin. J. Biol. Chem. 276,

39264-39270.

Ulici, V., Hoenselaar, K. D., Gillespie, J. R. and Beier, F. (2008). The PI3K pathway

regulates endochondral bone growth through control of hypertrophic chondrocyte

differentiation. BMC Dev. Biol. 8, 40.

Wilson, E. M. and Rotwein, P. (2007). Selective control of skeletal muscle differentiation

by Akt1. J. Biol. Chem. 282, 5106-5110.

Wilson, E. M., Hsieh, M. M. and Rotwein, P. (2003). Autocrine growth factor signaling

by insulin-like growth factor-II mediates MyoD-stimulated myocyte maturation. J. Biol.Chem. 278, 41109-41113.

Wozney, J. M. (1992). The bone morphogenetic protein family and osteogenesis. Mol.Reprod. Dev. 32, 160-167.

Zaidi, M. (2007). Skeletal remodeling in health and disease. Nat. Med. 13, 791-801.

Zehentner, B. K., Dony, C. and Burtscher, H. (1999). The transcription factor Sox9 is

involved in BMP-2 signaling. J. Bone Miner. Res. 14, 1734-1741.

Zhang, M., Xuan, S., Bouxsein, M. L., von, Stechow, D., Akeno, N., Faugere, M. C.,

Malluche, H., Zhao, G., Rosen, C. J., Efstratiadis, A. et al. (2002). Osteoblast-specific

knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role

of IGF signaling in bone matrix mineralization. J. Biol. Chem. 277, 44005-44012.

Zhao, G., Monier-Faugere, M. C., Langub, M. C., Geng, Z., Nakayama, T., Pike, J.

W., Chernausek, S. D., Rosen, C. J., Donahue, L. R., Malluche, H. H. et al. (2000).

Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice:

increased trabecular bone volume without increased osteoblast proliferation.

Endocrinology 141, 2674-2682.

Journal of Cell Science 122 (5)726

Jour

nal o

f Cel

l Sci

ence