alfa instrument introduction-and-applications

18
Introduction to a novel tool to address the fluorescence complexity of natural waters 1

Upload: seabirdscientific

Post on 19-Jun-2015

35 views

Category:

Science


0 download

DESCRIPTION

Introduction to a novel tool to address the fluorescence complexity of natural waters.

TRANSCRIPT

Page 1: Alfa instrument introduction-and-applications

Introduction to a novel tool to address the fluorescence complexity of natural waters 

1

Page 2: Alfa instrument introduction-and-applications

What is ALFA? CDOM, Chlorophyll, PBPs, Fv/Fm

Community structure, algal health Provides unprecedented accuracy and versatility 

CDOM corrected fluorescence and non‐photochemical quenching corrected CHL

Shipboard flow loop or discrete bottle sampling mode (e.g., rosette casts) Working towards in‐situ version

2

B

0 155 310 465 620Sample Number

0.0

0.1

0.2

0.3

0.4

Fv /

Fm

Fv / FmCDOMChl-a

0

1

2

3

4

5

6

7

8

A.U

.

170 m

Page 3: Alfa instrument introduction-and-applications

How does it work?

3

Sample515 nm Laser 405 nm Laser

PMT

Spectrometer Spectral info

Time response of chlorophyll

Page 4: Alfa instrument introduction-and-applications

Biological Significance

CDOM measurement and correction: Related to community dynamics Overlaps with pigment! Must be corrected to get accurate pigment 

and variable fluorescence Raman normalization:

Provides means to compare data to other, benchtop, systems and provides inherent correction for instrument specific artifacts

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

0

20

40

60

80

100

120

140

160

180

200

220

PB0

9_P

DP

\1

Bay_mouth_Pb5MAB_offshoreRiver_St18

0

100

200

300

400

500

600

700

0

100

200

300

400

500

1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5AU

Selective spectral fluorescence to assess

phytoplankton pigment and taxonomic composition

Fluorescence induction assessment of

phytoplankton physiology

Page 5: Alfa instrument introduction-and-applications

Laser stimulation

Provides enhanced sensitivity over traditional light sources Biological/environmental significance of different lasers CDOM correction (blue laser): 405 nm CHL targeted (green laser): 515 nm

Fast laser pulses permit determination of Fv/Fm

5

Page 6: Alfa instrument introduction-and-applications

Water Raman (R)

PE2

PE3

PE1

Chl-a

6

Spectral Deconvolution: extracting a wealth of information

Collected spectrum (blue) is Raman normalized and component spectra are fitted to derive individual values and correct for CDOM

Simplified spectra: phycoerythrin and chorophyll components

Page 7: Alfa instrument introduction-and-applications

Importance of corrections

7

Chl‐a fluorescence, 1 min vs. 2‐3 h dark adaptation:

Fv/Fm, 1 min vs. 2‐3 h dark adaptation:

Non-photochemical inhibition correction (Fv/Fm) can

provide chlorophyll values equivalent to extraction

and HPLC!

Fv/Fm must be corrected for background

fluorescence!

ALFA provides dark adapted values, regardless of daytime or ambient light!

Page 8: Alfa instrument introduction-and-applications

Operational Modes Bottle vs. sample mode

Designed to plumb directly into shipboard flow loop Simple plumbing Features to integrate 

shipboard data (e.g., CTD, GPS)

Special sensor interface to integrate PAR data

Modular pump and click‐connect sampling bottles

8

Page 9: Alfa instrument introduction-and-applications

Bottle Setup

9

Page 10: Alfa instrument introduction-and-applications

Flow Setup

10

Page 11: Alfa instrument introduction-and-applications

Graphical User Interface

11

Page 12: Alfa instrument introduction-and-applications

GUI Breakdown

12

Instrument control Spectra and deconvolution visualization

Relative component

levels

Observation of variable

fluorescence (Fv/Fm)

Transect Mode(Shipboard flow loop)

Page 13: Alfa instrument introduction-and-applications

Example data: Depth profile from bottle samples

13

Page 14: Alfa instrument introduction-and-applications

Example data: Shipboard flow loop transects and satellite data comparison

14

Chlorophyll‐a  (Chl‐a) determination comparison

ALF in green, high resolution transect, good comparison to grab samples

Bottle samples red dots, extraction and HPLC

In Dark red MODIS Satellite Chl‐estimates 

In pink is ALF FV/FM , Variable Fluorescence: measure of photosystem health (CDOM corrected)

MODIS Satellite Sea Surface Temperature in blue

Orange line is ALF phycoerythrin (PE) a phycobiliprotien, often indicative of cryptophytes 

Dark blue is ALF CDOM

Light blue dots are the PE to Chl‐a ratio which give a measure of pigment composition, allowing spatial shifts in community structure to be observed

Page 15: Alfa instrument introduction-and-applications

Gulf of Mexico assemblages

15

PE1/Total PE Log Chlorophyll concentration

Normalized PE1 shows change in phycoerythrinpigment composition likely indicative of a change in community structure

Chlorophyll maximums in different areas than phycobiliprotiens showing differences in community pigment structure

Page 16: Alfa instrument introduction-and-applications

Example data: Assessment of Phycobiliprotein‐Containing Photosynthesizing Organisms in Mixed Populations

C

y = 0.41x + 0.001R2 = 0.78

0.000

0.005

0.010

0.015

0.020

0.025

0.00 0.01 0.02 0.03 0.04 0.05

IPE1/Rg

Zea

xant

hin

(mg

m-3

)

A

y = 1.17x + 0.01R2 = 0.77

0.00

0.05

0.10

0.15

0.20

0.00 0.05 0.10 0.15

IPE3/Rg

Allo

xant

hin

(mg

m-3

)

D

y = 0.47x + 0.001R2 = 0.63

0.000

0.005

0.010

0.015

0.020

0.00 0.01 0.02 0.03 0.04

IPE1/Chlag

Zea

xant

hin

Chl

-a -1

B

y = 1.12x + 0.013R2 = 0.63

0.00

0.02

0.04

0.06

0.08

0.10

0.00 0.02 0.04 0.06 0.08

IPE3/Chlag

Allo

xant

hin

Chl

-a -1

Spectral deconvolution of laser‐stimulated emission yields the group‐specific phycoerythrin (PE) spectral indexes: 

IPE1/R, IPE2/R, IPE3/R IPE1/Chla, IPE2/Chla, IPE3/Chla

Correlations with HPLC‐retrieved group‐specific pigment biomarkers demonstrate ALF potential for discrimination and quantitative assessment of cryptophytes and cyanobacteria (field data)

Water Raman (R)

PE2

PE3

PE1

Chl-a

Page 17: Alfa instrument introduction-and-applications

ALFA provides vast information on biogeochemical fluorescence properties

ALFA provides highly accurate values for chlorophyll and Fv/Fm

Numerous application spaces: community composition, community health, biological response to 

physical forcing, comparison to satellite data, studying pigment degredation, DOM studies, etc.

Future work: In‐situ, potential for advanced lasers (i.e., the science vs. monitoring)

References  Chekalyuk, A. and M. Hafez.  Advanced laser fluorometry of natural aquatic environments.  

2008.  Limnol. Oceanogr.: Methods 6, 591‐609.  Chekalyuk, A. and M. Hafez.  Photo‐physiological variability in phytoplankton chlorophyll 

fluorescence and  assessment of chlorophyll concentration.  2011.  Optics Express 19 (23), 22,643‐22,658. 

17

Page 18: Alfa instrument introduction-and-applications

ContactsAndrew Barnard Casey MooreVice President, Research & Development [email protected] [email protected]

Cris Orrico Michael TwardowskiSenior Research Associate V.P., Director of [email protected]  [email protected] 

Corey Koch Jim SullivanRes. Sci./Chemist Res. [email protected]   [email protected] 

WET Labs, IncPO Box 518

Philomath, OR 97370(541) 929‐5650