alfonso r. zerwekh utfsm, chile - ictp-saifr

65
Dark Matter and Vector fields in non-trivial representations of SU(2)_L Alfonso R. Zerwekh UTFSM, Chile ICTP-SAIFR Program on Particle Physics Dark Universe Workshop – Early Universe Cosmology, Baryogenesis and Dark Matter

Upload: others

Post on 19-Oct-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Dark Matter and Vector fields in non-trivial representations of SU(2)_L

Alfonso R. ZerwekhUTFSM, Chile

ICTP-SAIFR Program on Particle PhysicsDark Universe Workshop – Early Universe Cosmology, Baryogenesis and Dark Matter

Page 2: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

2

Content

I. Why consider vector fields ?

II. A vector resonance in the Dark Sector

III. Spin-1 Dark Mattera) Many possibilities

b) Vectors in the fundamental of SU(2)_L

c) Vectors in the adjoint of SU(2)_L

IV. Conclusions

Page 3: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

3

Why consider vector fields ?

Page 4: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

4

Why consider vector fields ?

Vector fields are wild animals

Usually they are tamed introducing gauge symmetries (like in the SM)

However vectors play different roles in Nature In the hadronic sector we have some examples:

Rho-meson can be seen as an emergent gauge boson (HLS) The a1 axial-vector behaves like a matter field (transforming

homogeneously under HLS)

Of course this example comes from a effective non-fundamental sector, but nothing prevents its realization in other (dark?) sectors of Nature

Page 5: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

5

A Vector Resonance in the Dark Sector

Based on: Phys.Rev. D96 (2017), 095025 M. Mora, F. Rojas-Abatte, J. Urbina, AZ Chin.Phys. C43 (2019), 063102 C. Callender, AZ

Page 6: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

6

Model Based on

Symmetry Breaking Pattern

Hypothesis:

IDM + Vector Resonance

Inert doublet

Page 7: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

7

Spectrum

DM candidate

Standard-like Higgs

Page 8: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

8

Parameters

Self Interaction

Higgs-New Scalars interaction

Page 9: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

9

Relic density

Page 10: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

10

Relic density

Page 11: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

11

Relic density

Page 12: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

12

Relic density

Page 13: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

13

Neutral vector production at LHC

Page 14: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

14

Mono-Z at the LHC

Page 15: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

15

Mono-Z at the LHC

Page 16: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

16

Resonance Searches at ClIC (Heavy Scalars)

Page 17: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

17

Resonance Searches at ClIC (Heavy Scalars)

Page 18: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

18

Mono-Z at CLIC

Page 19: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

19

Vector Dark Matter

Page 20: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

20

Vector Dark Matter

Page 21: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

21

Vector Dark Matter Candidates

Kaluza-Klein photon

T-odd heavy photon in Little Higgs with T-parity

(Abelian) Z’ with Z_2 symmetry

Vector part of propagating torsion [A. Belyaev and I. Shapiro]

Vectors fields in SU(2)_L representations

Page 22: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

22

Minimal Isotriplet Vector Dark Matter

Based on: Phys.Rev. D99 (2019), 115003 A.Belyaev, G. Cacciapaglia, J. McKey, D. Marin and AZ

Page 23: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

This Lagrangian is consistent with perturbative unitarity at tree level due to two crucial facts:

It has an accidental Z2 symmetry

There is only one coupling constant: the gauge coupling constant

A. Zerwekh Int.J.Mod.Phys. A28 (2013) 1350054

V is a massive vector field in the adjoint representation of a local SU(N)

Page 24: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

A simple rotation

Same coupling constant(pseudo-) T-parity

Page 25: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

This is the Yang-Mills analog of Bigravity (Thanks to Max Bañados)

Bigauge theoryA simple rotation

Page 26: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Only two free parameters: a and M

is the covariant derivative of SU(2) in the adjoint representation

Higgs doublet

Page 27: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

27

Unitarity

Page 28: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

28

102 103 104

MV (GeV)

−4

−2

0

2

4

a

10−2

10−1

100

101

102

103

104

105

Unita

rity

violat

ion

scale

,Λ(T

eV)

Unitarity violation scale

Page 29: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

29

Radiative corrections produce mass splitting

Page 30: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

30

Lifetime of the charged components

Page 31: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

31

Interaction between V0 and quarks (low energy)

Page 32: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

32

Experimental Constrains

Page 33: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

33

Page 34: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

34

Page 35: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

35

a = +/- 1(dashed) and a = +/- 5The colour code uses red for positive values and blue for negative. The coloured bands are the experimentally allowed regions at 95 % CL from ATLAS (pink) and CMS (yellow), while the orange band shows the overlap

Page 36: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

36

Page 37: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

37

Page 38: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

38

102 103 104

MV (GeV)

10−27

10−26

10−25

10−24

10−23

10−22

〈σv〉(c

m3 s−

1 )

Indirect Detection Constraints

a = 0.1

a = 0.5

a = 1

a = 5

a = 4π

ΩDMh2 = ΩPLANCKh

2

HESS (Einasto)

HESS (Einasto2)

Unitarity constraints

Page 39: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

39

What about the LHC ?

500 1000 1500 2000 2500 3000 3500 4000MV (GeV)

10−3

10−2

10−1

100

101

102

103

104

σeff

(fb)

LHC@13, @27TeV and FCC@100 TeV constraints from LLP searches

13 TeV LHC27 TeV LHC100 TeV FCC1.15 fb LHC limit2.0 fb FCC limit

Page 40: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

40

Dark Matter from a Vector Field in the Fundamental Representation of SU(2)_L

Based on: Phys.Rev. D99 (2019) no.7, 075026 Bastián Díaz, Felipe Rojas-Abatte, A. Z.

Page 41: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

It is not possible to couple V to standard fermions without introducing exotic vector-like fermions

Very nice but already invented by M.V. Chizhov and G. Dvali, PLB 703 (2011) 593

Page 42: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR
Page 43: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

LEP

Page 44: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

LEP

Page 45: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR
Page 46: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR
Page 47: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR
Page 48: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR
Page 49: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

49

Conclusions

Vectors fields can play crucial roles in the dark sector We built extensions of the SM incorporating the new vector matter field in

SU(2) multiplets and the models contain natural dark matter candidates. In both models a new Z2 symmetry appears motivated by theory and not

imposed by hand (specially in the isotriplet case). The models are consistent with collider and cosmological data A Vector in the Fundamental Representation offers a nice DM candidate but

the model is strongly challenged by data and by unitarity constrains The model with isotriplet vector fields seems to be more robust. The models can be completely rule out (or discovered) at a 100 TeV collider

Page 50: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

50

People’s demand….

Page 51: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

51

Backup

Page 52: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Intriguing Questions

How do we construct a consistent theory containing only a gauge boson and a massive vector field ?

Is it possible to avoid the introduction of scalar fields ?

Page 53: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Poor Man (phenomenologist) Approach

A. Zerwekh Int.J.Mod.Phys. A28 (2013) 1350054

Page 54: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Compute

Page 55: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

If we choose :

The unitary-violating terms disappear

Page 56: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

If we choose :

The unitary-violating terms disappear

Page 57: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

This Lagrangian is consistent with perturbative unitarity at tree level due to two crucial facts:

It has an accidental Z2 symmetry

There is only one coupling constant: the gauge coupling constant

A. Zerwekh Int.J.Mod.Phys. A28 (2013) 1350054

V is a massive vector field in the adjoint representation of a local SU(N)

Page 58: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

A simple rotation

Same coupling constant(pseudo-) T-parity

Page 59: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

This is the Yang-Mills analog of Bigravity (Thanks to Max Bañados)

Bigauge theoryA simple rotation

Page 60: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Let’s start from the gauge-like representation

The idea is to describe both vector fields as gauge fields and to break down the symmetry to SM

We have to reproduce this particular structure

Page 61: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Same coupling constant!(T-parity)

Page 62: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

But…

SU(2)XSU(2) has the same algebra than SO(4)

There is only one coupling constant

Maybe the underlying theory is based on

Page 63: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

A simple idea for coupling the matter fields(toy model)

Make the standard left-handed fermions doublets of both SU(2)’s

Make the SM Higgs field doublet of both SU(2)’s

In this way, the standard fields only couple to the even combination

Page 64: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Scalar Potential

Page 65: Alfonso R. Zerwekh UTFSM, Chile - ICTP-SAIFR

Some prediction and results

As MV is about 3-4 TeV, the scale of the new symmetry breaking has to be about 10 TeV

λ1 has to be larger than in the SM

The a parameter (controlling the hhVV interaction) is small because it is generated only through mixings

The model preserves unitarity