algae energy.pdf

Upload: ismael-san-pablo-gonzalez

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 algae energy.pdf

    1/8

    Green Energy and Technology

  • 8/12/2019 algae energy.pdf

    2/8

    Ayhan Demirbas M. Fatih Demirbas

    Algae Energy

    Algae as a New Source of Biodiesel

    1 3

  • 8/12/2019 algae energy.pdf

    3/8

    Ayhan Demirbas

    Professor of Energy Technology

    Sirnak University

    Sirnak

    Turkey

    M. Fatih Demirbas

    Sila Science and Energy Unlimited Company

    University Mah.

    24 Akif Saruhan Cad., Mekan Sok.

    61080 Trabzon

    Turkey

    ISSN 1865-3529ISBN 978-1-84996-049-6 e-ISBN 978-1-84996-050-2

    DOI 10.1007/978-1-84996-050-2

    Springer London Dordrecht Heidelberg New York

    British Library Cataloguing in Publication DataA catalogue record for this book is available from the British Library

    Library of Congress Control Number: 2010929649

    Springer-Verlag London Limited 2010Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-

    mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by theCopyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent tothe publishers.The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of aspecific statement, that such names are exempt from the relevant laws and regulations and therefore freefor general use.The publisher and the authors make no representation, express or implied, with regard to the accuracyof the information contained in this book and cannot accept any legal responsibility or liability for anyerrors or omissions that may be made.

    Cover design:WMXDesign, Heidelberg, Germany

    Printed on acid-free paper

    Springer is part of Springer Science+Business Media (www.springer.com)

  • 8/12/2019 algae energy.pdf

    4/8

    Preface

    This book examines the production of algae culture and usage of algal biomass

    conversion products. In this book, the modern biomass-based transportation fuels

    biodiesel, bio-oil, biomethane, biohydrogen, and high-value-added products from

    algae are briefly reviewed. The most significant distinguishing characteristic of algal

    oil is its yield and, hence, its biodiesel yield. According to some estimates, the yield

    (per acre) of oil from algae is over 200 times the yield from the best-performing

    plant/vegetable oils. The lipid and fatty acid contents of microalgae vary in accor-

    dance with culture conditions. The availability of algae and the advantages of algal

    oil for biodiesel production have been investigated.

    Billions of years ago the Earths atmosphere was filled with CO2. Thus there was

    no life on Earth. Life on Earth started with Cyanobacteriaand algae. These hum-

    ble photosynthetic organisms sucked out the atmospheric CO2 and started releasing

    oxygen. As a result, the levels of CO2 started decreasing to such an extent that life

    evolved on Earth. Once again these smallest of organisms are poised to save us from

    the threat of global warming.

    In the context of climatic changes and soaring prices for a barrel of petroleum,

    biofuels are now being presented as a renewable energy alternative. Presently, re-

    search is being done on microscopic algae, or microalgae, which are particularly

    rich in oils and whose yield per hectare is considerably higher than that of sun-flower or rapeseed. Algae will become the most important biofuel source in the near

    future. Microalgae appear to be the only source of renewable biodiesel that is capa-

    ble of meeting the global demand for transport fuels. Microalgae are theoretically

    a very promising source of biodiesel.

    Algae are the fastest-growing plants in the world. Industrial reactors for algal

    culture are open ponds, photobioreactors, and closed systems. Algae are very im-

    portant as a biomass source and will some day be competitive as a source for bio-

    fuel. Different species of algae may be better suited for different types of fuel. Algae

    can be grown almost anywhere, even on sewage or salt water, and does not requirefertile land or food crops, and processing requires less energy than the algae pro-

    vides. Algae can be a replacement for oil-based fuels, one that is more effective

    v

  • 8/12/2019 algae energy.pdf

    5/8

    vi Preface

    and has no disadvantages. Algae are among the fastest-growing plants in the world,

    and about 50% of their weight is oil. This lipid oil can be used to make biodiesel

    for cars, trucks, and airplanes. Microalgae have much faster growth rates than ter-

    restrial crops. the per unit area yield of oil from algae is estimated to be between

    20,000 and 80,000 L per acre per year; this is 7 to 31 times greater than the next

    best crop, palm oil. Most current research on oil extraction is focused on microalgae

    to produce biodiesel from algal oil. Algal oil is processed into biodiesel as easily

    as oil derived from land-based crops. Algae biomass can play an important role in

    solving the problem of food or biofuels in the near future.

    Microalgae contain oils, or lipids, that can be converted into biodiesel. The idea

    of using microalgae to produce fuel is not new, but it has received renewed attention

    recently in the search for sustainable energy. Biodiesel is typically produced from

    plant oils, but there are widely voiced concerns about the sustainability of this prac-

    tice. Biodiesel produced from microalgae is being investigated as an alternative to

    using conventional crops such as rapeseed; microalgae typically produce more oil,

    consume less space, and could be grown on land unsuitable for agriculture.

    Using microalgae as a source of biofuels could mean that enormous cultures of

    algae are grown for commercial production, which would require large quantities of

    fertilizers. While microalgae are estimated to be capable of producing 10 to 20 times

    more biodiesel than rapeseed, they need 55 to 111 times more nitrogen fertilizer

    8 to 16 tons/ha/year.

    This book on algae energy attempts to address the needs of energy researchers,

    chemical engineers, chemical engineering students, energy resource specialists, en-

    gineers, agriculturists, crop cultivators, and others interested in practical tools forpursuing their interests in relation to bioenergy. Each chapter in the book starts with

    basic explanations suitable for general readers and ends with in-depth scientific de-

    tails suitable for expert readers. General readers include people interested in learn-

    ing about solutions to current fuel and environmental crises. Expert readers include

    chemists, chemical engineers, fuel engineers, agricultural engineers, farming spe-

    cialists, biologists, fuel processors, policymakers, environmentalists, environmental

    engineers, automobile engineers, college students, research faculty, etc. The book

    may even be adopted as a textbook for college courses that deal with renewable

    energy or sustainability.

    Trabzon, TURKEY (September 2009) Ayhan Demirbas

    Muhammet Demirbas

  • 8/12/2019 algae energy.pdf

    6/8

    Contents

    1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Energy Demand and Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.2.1 Fossil Energy Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.2.2 Renewable Energy Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    1.3 Present Energy Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    1.3.1 Energy Production and Future Energy Scenarios . . . . . . . . . . 12

    1.3.2 Future Energy Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    2 Green Energy Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    2.2 Biomass Feedstocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    2.3 Green Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    2.4 Importance of Biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    2.5 Production of Fuels and Chemicals from Biomass . . . . . . . . . . . . . . . 36

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    3 Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    3.2 Importance of Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    3.3 Bioethanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    3.4 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    3.5 Bio-oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    3.6 Biogas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    3.7 FischerTropsh Liquids from Biorenewable Feedstocks . . . . . . . . . . . 64

    3.8 Biohydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    3.9 Other Liquid Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703.9.1 Glycerol-based Fuel Oxygenates for Biodiesel

    and Diesel Fuel Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    3.9.2 P-series Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    vii

  • 8/12/2019 algae energy.pdf

    7/8

    viii Contents

    3.9.3 Dimethyl Ether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    3.9.4 Other Bio-oxygenated Liquid Fuels . . . . . . . . . . . . . . . . . . . . . 72

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    4 Algae Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.1.1 Definition of Algal Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    4.2 Production Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    4.2.1 Harvesting Microalgae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    4.2.2 Photobioreactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    4.2.3 Open-pond Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    4.2.4 Closed and Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    4.3 Production Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    5 Energy from Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    5.1.1 Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    5.2 Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    5.2.1 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    5.2.2 Bioalcohol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    5.2.3 Costs, Prices, and Economic Impacts of Biofuels . . . . . . . . . . 106

    5.2.4 Environmental Impacts of Biofuels . . . . . . . . . . . . . . . . . . . . . 110

    5.2.5 Combustion Efficiencies of Biofuels . . . . . . . . . . . . . . . . . . . . 113

    5.2.6 Bio-oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    5.2.7 Biomethane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    5.2.8 Production of Bio-oil and Hydrogen by Pyrolysis . . . . . . . . . 120

    5.2.9 Anaerobic Biohydrogen Production . . . . . . . . . . . . . . . . . . . . . 125

    5.3 Liquefaction of Algal Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    5.3.1 Liquefaction of Algal Cells by Hexane Extraction . . . . . . . . . 129

    5.4 High-value-added Products from Algae . . . . . . . . . . . . . . . . . . . . . . . . 131

    5.4.1 Small Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    5.4.2 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    5.4.3 High-value Oils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    6 Biodiesel from Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    6.2 Biodiesel from Algal Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    6.2.1 Production of Biodiesel from Algal Oils . . . . . . . . . . . . . . . . . 144

    6.3 Potential of Microalgal Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    6.4 Acceptability of Microalgal Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . 150

    6.5 Economics of Biodiesel Production . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516.6 Improving Economics of Microalgal Biodiesel . . . . . . . . . . . . . . . . . . 153

    6.7 Advantages and Disadvantages of Biodiesel from Algal Oil . . . . . . . 153

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

  • 8/12/2019 algae energy.pdf

    8/8

    Contents ix

    7 Biorefineries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    7.2 Definitions of Biorefinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    7.2.1 Main Technical and Nontechnical Gaps

    and Barriers to Biorefineries . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    7.3 Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    7.4 Petroleum Refinery and Biorefinery . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    7.5 Refining of Upgraded Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

    7.6 Opportunities for Refining Pyrolysis Products . . . . . . . . . . . . . . . . . . . 178

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    8 Future Developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    8.1.1 World Theoretical Limit of Biomass Supply . . . . . . . . . . . . . . 184

    8.1.2 High-yield Energy Crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1858.1.3 Food Versus Fuel Delineation . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    8.1.4 Thermodynamic Efficiency (Exergy Analysis) . . . . . . . . . . . . 187

    8.1.5 Biofuel Upgradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    8.1.6 Carbon Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

    8.2 Social and Political Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    8.2.1 The Promise of Algae: Energy Security . . . . . . . . . . . . . . . . . . 190

    8.3 Environmental Impacts of Biomass Production . . . . . . . . . . . . . . . . . . 191

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195