algebra common core standards
Embed Size (px)
DESCRIPTION
Common Core StandardsTRANSCRIPT

Common Core State StandardS for
mathematics

Common Core State StandardS for matHematICS
table of ContentsIntroduction 3
Standards for mathematical Practice 6
Standards for mathematical Content
Kindergarten 9Grade1 13Grade2 17Grade3 21Grade4 27Grade5 33Grade6 39Grade7 46Grade8 52HighSchool—Introduction
HighSchool—NumberandQuantity 58HighSchool—Algebra 62HighSchool—Functions 67HighSchool—Modeling 72HighSchool—Geometry 74HighSchool—StatisticsandProbability 79
Glossary 85Sample of Works Consulted 91

Common Core State StandardS for matHematICSIn
tr
od
UC
tIo
n | 3
IntroductionToward greater focus and coherence
Mathematics experiences in early childhood settings should concentrate on (1) number (which includes whole number, operations, and relations) and (2) geometry, spatial relations, and measurement, with more mathematics learning time devoted to number than to other topics. Mathematical process goals should be integrated in these content areas.
—MathematicsLearninginEarlyChildhood,NationalResearchCouncil,2009
The composite standards [of Hong Kong, Korea and Singapore] have a number of features that can inform an international benchmarking process for the development of K–6 mathematics standards in the U.S. First, the composite standards concentrate the early learning of mathematics on the number, measurement, and geometry strands with less emphasis on data analysis and little exposure to algebra. The Hong Kong standards for grades 1–3 devote approximately half the targeted time to numbers and almost all the time remaining to geometry and measurement.
—Ginsburg,LeinwandandDecker,2009
Because the mathematics concepts in [U.S.] textbooks are often weak, the presentation becomes more mechanical than is ideal. We looked at both traditional and non-traditional textbooks used in the US and found this conceptual weakness in both.
—Ginsburgetal.,2005
There are many ways to organize curricula. The challenge, now rarely met, is to avoid those that distort mathematics and turn off students.
—Steen,2007
Foroveradecade,researchstudiesofmathematicseducationinhigh-performing
countrieshavepointedtotheconclusionthatthemathematicscurriculuminthe
UnitedStatesmustbecomesubstantiallymorefocusedandcoherentinorderto
improvemathematicsachievementinthiscountry.Todeliveronthepromiseof
commonstandards,thestandardsmustaddresstheproblemofacurriculumthat
is“amilewideandaninchdeep.”TheseStandardsareasubstantialanswertothat
challenge.
Itisimportanttorecognizethat“fewerstandards”arenosubstituteforfocused
standards.Achieving“fewerstandards”wouldbeeasytodobyresortingtobroad,
generalstatements.Instead,theseStandardsaimforclarityandspecificity.
Assessingthecoherenceofasetofstandardsismoredifficultthanassessing
theirfocus.WilliamSchmidtandRichardHouang(2002)havesaidthatcontent
standardsandcurriculaarecoherentiftheyare:
articulated over time as a sequence of topics and performances that are logical and reflect, where appropriate, the sequential or hierarchical nature of the disciplinary content from which the subject matter derives. That is, what and how students are taught should reflect not only the topics that fall within a certain academic discipline, but also the key ideas that determine how knowledge is organized and generated within that discipline. This implies

Common Core State StandardS for matHematICSIn
tr
od
UC
tIo
n | 4
that to be coherent, a set of content standards must evolve from particulars (e.g., the meaning and operations of whole numbers, including simple math facts and routine computational procedures associated with whole numbers and fractions) to deeper structures inherent in the discipline. These deeper structures then serve as a means for connecting the particulars (such as an understanding of the rational number system and its properties). (emphasis
added)
TheseStandardsendeavortofollowsuchadesign,notonlybystressingconceptual
understandingofkeyideas,butalsobycontinuallyreturningtoorganizing
principlessuchasplacevalueorthepropertiesofoperationstostructurethose
ideas.
Inaddition,the“sequenceoftopicsandperformances”thatisoutlinedinabodyof
mathematicsstandardsmustalsorespectwhatisknownabouthowstudentslearn.
AsConfrey(2007)pointsout,developing“sequencedobstaclesandchallenges
forstudents…absenttheinsightsaboutmeaningthatderivefromcarefulstudyof
learning,wouldbeunfortunateandunwise.”Inrecognitionofthis,thedevelopment
oftheseStandardsbeganwithresearch-basedlearningprogressionsdetailing
whatisknowntodayabouthowstudents’mathematicalknowledge,skill,and
understandingdevelopovertime.
Understanding mathematics
TheseStandardsdefinewhatstudentsshouldunderstandandbeabletodoin
theirstudyofmathematics.Askingastudenttounderstandsomethingmeans
askingateachertoassesswhetherthestudenthasunderstoodit.Butwhatdoes
mathematicalunderstandinglooklike?Onehallmarkofmathematicalunderstanding
istheabilitytojustify,inawayappropriatetothestudent’smathematicalmaturity,
whyaparticularmathematicalstatementistrueorwhereamathematicalrule
comesfrom.Thereisaworldofdifferencebetweenastudentwhocansummona
mnemonicdevicetoexpandaproductsuchas(a+ b)(x+y)andastudentwho
canexplainwherethemnemoniccomesfrom.Thestudentwhocanexplaintherule
understandsthemathematics,andmayhaveabetterchancetosucceedataless
familiartasksuchasexpanding(a+ b+c)(x+y).Mathematicalunderstandingand
proceduralskillareequallyimportant,andbothareassessableusingmathematical
tasksofsufficientrichness.
TheStandardssetgrade-specificstandardsbutdonotdefinetheintervention
methodsormaterialsnecessarytosupportstudentswhoarewellbeloworwell
abovegrade-levelexpectations.ItisalsobeyondthescopeoftheStandardsto
definethefullrangeofsupportsappropriateforEnglishlanguagelearnersand
forstudentswithspecialneeds.Atthesametime,allstudentsmusthavethe
opportunitytolearnandmeetthesamehighstandardsiftheyaretoaccessthe
knowledgeandskillsnecessaryintheirpost-schoollives.TheStandardsshould
bereadasallowingforthewidestpossiblerangeofstudentstoparticipatefully
fromtheoutset,alongwithappropriateaccommodationstoensuremaximum
participatonofstudentswithspecialeducationneeds.Forexample,forstudents
withdisabilitiesreadingshouldallowforuseofBraille,screenreadertechnology,or
otherassistivedevices,whilewritingshouldincludetheuseofascribe,computer,
orspeech-to-texttechnology.Inasimilarvein,speakingandlisteningshouldbe
interpretedbroadlytoincludesignlanguage.Nosetofgrade-specificstandards
canfullyreflectthegreatvarietyinabilities,needs,learningrates,andachievement
levelsofstudentsinanygivenclassroom.However,theStandardsdoprovideclear
signpostsalongthewaytothegoalofcollegeandcareerreadinessforallstudents.
TheStandardsbeginonpage6witheightStandardsforMathematicalPractice.

Common Core State StandardS for matHematICSIn
tr
od
UC
tIo
n | 5
How to read the grade level standards
Standards definewhatstudentsshouldunderstandandbeabletodo.
Clusters aregroupsofrelatedstandards.Notethatstandardsfromdifferentclusters
maysometimesbecloselyrelated,becausemathematics
isaconnectedsubject.
domainsarelargergroupsofrelatedstandards.Standardsfromdifferentdomains
maysometimesbecloselyrelated.
number and operations in Base ten 3.nBtUse place value understanding and properties of operations to perform multi-digit arithmetic.
1. Useplacevalueunderstandingtoroundwholenumberstothenearest10or100.
2. Fluentlyaddandsubtractwithin1000usingstrategiesandalgorithmsbasedonplacevalue,propertiesofoperations,and/ortherelationshipbetweenadditionandsubtraction.
3. Multiplyone-digitwholenumbersbymultiplesof10intherange10-90(e.g.,9×80,5×60)usingstrategiesbasedonplacevalueandpropertiesofoperations.
TheseStandardsdonotdictatecurriculumorteachingmethods.Forexample,just
becausetopicAappearsbeforetopicBinthestandardsforagivengrade,itdoes
notnecessarilymeanthattopicAmustbetaughtbeforetopicB.Ateachermight
prefertoteachtopicBbeforetopicA,ormightchoosetohighlightconnectionsby
teachingtopicAandtopicBatthesametime.Or,ateachermightprefertoteacha
topicofhisorherownchoosingthatleads,asabyproduct,tostudentsreachingthe
standardsfortopicsAandB.
Whatstudentscanlearnatanyparticulargradeleveldependsuponwhatthey
havelearnedbefore.Ideallythen,eachstandardinthisdocumentmighthavebeen
phrasedintheform,“Studentswhoalreadyknow...shouldnextcometolearn....”
Butatpresentthisapproachisunrealistic—notleastbecauseexistingeducation
researchcannotspecifyallsuchlearningpathways.Ofnecessitytherefore,
gradeplacementsforspecifictopicshavebeenmadeonthebasisofstateand
internationalcomparisonsandthecollectiveexperienceandcollectiveprofessional
judgmentofeducators,researchersandmathematicians.Onepromiseofcommon
statestandardsisthatovertimetheywillallowresearchonlearningprogressions
toinformandimprovethedesignofstandardstoamuchgreaterextentthanis
possibletoday.Learningopportunitieswillcontinuetovaryacrossschoolsand
schoolsystems,andeducatorsshouldmakeeveryefforttomeettheneedsof
individualstudentsbasedontheircurrentunderstanding.
TheseStandardsarenotintendedtobenewnamesforoldwaysofdoingbusiness.
Theyareacalltotakethenextstep.Itistimeforstatestoworktogethertobuild
onlessonslearnedfromtwodecadesofstandardsbasedreforms.Itistimeto
recognizethatstandardsarenotjustpromisestoourchildren,butpromiseswe
intendtokeep.
domain
ClusterStandard

Common Core State StandardS for matHematICSS
tan
da
rd
S f
or
ma
tH
em
at
ICa
l p
ra
Ct
ICe
| 6
mathematics | Standards for mathematical PracticeTheStandardsforMathematicalPracticedescribevarietiesofexpertisethat
mathematicseducatorsatalllevelsshouldseektodevelopintheirstudents.
Thesepracticesrestonimportant“processesandproficiencies”withlongstanding
importanceinmathematicseducation.ThefirstofthesearetheNCTMprocess
standardsofproblemsolving,reasoningandproof,communication,representation,
andconnections.Thesecondarethestrandsofmathematicalproficiencyspecified
intheNationalResearchCouncil’sreportAdding It Up:adaptivereasoning,strategic
competence,conceptualunderstanding(comprehensionofmathematicalconcepts,
operationsandrelations),proceduralfluency(skillincarryingoutprocedures
flexibly,accurately,efficientlyandappropriately),andproductivedisposition
(habitualinclinationtoseemathematicsassensible,useful,andworthwhile,coupled
withabeliefindiligenceandone’sownefficacy).
1 Make sense of problems and persevere in solving them.Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaning
ofaproblemandlookingforentrypointstoitssolution.Theyanalyzegivens,
constraints,relationships,andgoals.Theymakeconjecturesabouttheformand
meaningofthesolutionandplanasolutionpathwayratherthansimplyjumpinginto
asolutionattempt.Theyconsideranalogousproblems,andtryspecialcasesand
simplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They
monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudents
might,dependingonthecontextoftheproblem,transformalgebraicexpressionsor
changetheviewingwindowontheirgraphingcalculatortogettheinformationthey
need.Mathematicallyproficientstudentscanexplaincorrespondencesbetween
equations,verbaldescriptions,tables,andgraphsordrawdiagramsofimportant
featuresandrelationships,graphdata,andsearchforregularityortrends.Younger
studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualize
andsolveaproblem.Mathematicallyproficientstudentschecktheiranswersto
problemsusingadifferentmethod,andtheycontinuallyaskthemselves,“Doesthis
makesense?”Theycanunderstandtheapproachesofotherstosolvingcomplex
problemsandidentifycorrespondencesbetweendifferentapproaches.
2 Reason abstractly and quantitatively.Mathematicallyproficientstudentsmakesenseofquantitiesandtheirrelationships
inproblemsituations.Theybringtwocomplementaryabilitiestobearonproblems
involvingquantitativerelationships:theabilitytodecontextualize—toabstract
agivensituationandrepresentitsymbolicallyandmanipulatetherepresenting
symbolsasiftheyhavealifeoftheirown,withoutnecessarilyattendingto
theirreferents—andtheabilitytocontextualize,topauseasneededduringthe
manipulationprocessinordertoprobeintothereferentsforthesymbolsinvolved.
Quantitativereasoningentailshabitsofcreatingacoherentrepresentationof
theproblemathand;consideringtheunitsinvolved;attendingtothemeaningof
quantities,notjusthowtocomputethem;andknowingandflexiblyusingdifferent
propertiesofoperationsandobjects.
3 Construct viable arguments and critique the reasoning of others.Mathematicallyproficientstudentsunderstandandusestatedassumptions,
definitions,andpreviouslyestablishedresultsinconstructingarguments.They
makeconjecturesandbuildalogicalprogressionofstatementstoexplorethe
truthoftheirconjectures.Theyareabletoanalyzesituationsbybreakingtheminto
cases,andcanrecognizeandusecounterexamples.Theyjustifytheirconclusions,

Common Core State StandardS for matHematICSS
tan
da
rd
S f
or
ma
tH
em
at
ICa
l p
ra
Ct
ICe
| 7
communicatethemtoothers,andrespondtotheargumentsofothers.Theyreason
inductivelyaboutdata,makingplausibleargumentsthattakeintoaccountthe
contextfromwhichthedataarose.Mathematicallyproficientstudentsarealsoable
tocomparetheeffectivenessoftwoplausiblearguments,distinguishcorrectlogicor
reasoningfromthatwhichisflawed,and—ifthereisaflawinanargument—explain
whatitis.Elementarystudentscanconstructargumentsusingconcretereferents
suchasobjects,drawings,diagrams,andactions.Suchargumentscanmakesense
andbecorrect,eventhoughtheyarenotgeneralizedormadeformaluntillater
grades.Later,studentslearntodeterminedomainstowhichanargumentapplies.
Studentsatallgradescanlistenorreadtheargumentsofothers,decidewhether
theymakesense,andaskusefulquestionstoclarifyorimprovethearguments.
4 Model with mathematics.Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolve
problemsarisingineverydaylife,society,andtheworkplace.Inearlygrades,thismight
beassimpleaswritinganadditionequationtodescribeasituation.Inmiddlegrades,
astudentmightapplyproportionalreasoningtoplanaschooleventoranalyzea
probleminthecommunity.Byhighschool,astudentmightusegeometrytosolvea
designproblemoruseafunctiontodescribehowonequantityofinterestdepends
onanother.Mathematicallyproficientstudentswhocanapplywhattheyknoware
comfortablemakingassumptionsandapproximationstosimplifyacomplicated
situation,realizingthatthesemayneedrevisionlater.Theyareabletoidentify
importantquantitiesinapracticalsituationandmaptheirrelationshipsusingsuch
toolsasdiagrams,two-waytables,graphs,flowchartsandformulas.Theycananalyze
thoserelationshipsmathematicallytodrawconclusions.Theyroutinelyinterprettheir
mathematicalresultsinthecontextofthesituationandreflectonwhethertheresults
makesense,possiblyimprovingthemodelifithasnotserveditspurpose.
5 Use appropriate tools strategically.Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvinga
mathematicalproblem.Thesetoolsmightincludepencilandpaper,concrete
models,aruler,aprotractor,acalculator,aspreadsheet,acomputeralgebrasystem,
astatisticalpackage,ordynamicgeometrysoftware.Proficientstudentsare
sufficientlyfamiliarwithtoolsappropriatefortheirgradeorcoursetomakesound
decisionsaboutwheneachofthesetoolsmightbehelpful,recognizingboththe
insighttobegainedandtheirlimitations.Forexample,mathematicallyproficient
highschoolstudentsanalyzegraphsoffunctionsandsolutionsgeneratedusinga
graphingcalculator.Theydetectpossibleerrorsbystrategicallyusingestimation
andothermathematicalknowledge.Whenmakingmathematicalmodels,theyknow
thattechnologycanenablethemtovisualizetheresultsofvaryingassumptions,
exploreconsequences,andcomparepredictionswithdata.Mathematically
proficientstudentsatvariousgradelevelsareabletoidentifyrelevantexternal
mathematicalresources,suchasdigitalcontentlocatedonawebsite,andusethem
toposeorsolveproblems.Theyareabletousetechnologicaltoolstoexploreand
deepentheirunderstandingofconcepts.
6 Attend to precision.Mathematicallyproficientstudentstrytocommunicatepreciselytoothers.They
trytousecleardefinitionsindiscussionwithothersandintheirownreasoning.
Theystatethemeaningofthesymbolstheychoose,includingusingtheequalsign
consistentlyandappropriately.Theyarecarefulaboutspecifyingunitsofmeasure,
andlabelingaxestoclarifythecorrespondencewithquantitiesinaproblem.They
calculateaccuratelyandefficiently,expressnumericalanswerswithadegreeof
precisionappropriatefortheproblemcontext.Intheelementarygrades,students
givecarefullyformulatedexplanationstoeachother.Bythetimetheyreachhigh
schooltheyhavelearnedtoexamineclaimsandmakeexplicituseofdefinitions.

Common Core State StandardS for matHematICSS
tan
da
rd
S f
or
ma
tH
em
at
ICa
l p
ra
Ct
ICe
| 8
7 Look for and make use of structure.Mathematicallyproficientstudentslookcloselytodiscernapatternorstructure.
Youngstudents,forexample,mightnoticethatthreeandsevenmoreisthesame
amountassevenandthreemore,ortheymaysortacollectionofshapesaccording
tohowmanysidestheshapeshave.Later,studentswillsee7×8equalsthe
wellremembered7×5+7×3,inpreparationforlearningaboutthedistributive
property.Intheexpressionx2+9x+14,olderstudentscanseethe14as2×7and
the9as2+7.Theyrecognizethesignificanceofanexistinglineinageometric
figureandcanusethestrategyofdrawinganauxiliarylineforsolvingproblems.
Theyalsocanstepbackforanoverviewandshiftperspective.Theycansee
complicatedthings,suchassomealgebraicexpressions,assingleobjectsoras
beingcomposedofseveralobjects.Forexample,theycansee5–3(x–y)2as5
minusapositivenumbertimesasquareandusethattorealizethatitsvaluecannot
bemorethan5foranyrealnumbersxandy.
8 Look for and express regularity in repeated reasoning.Mathematicallyproficientstudentsnoticeifcalculationsarerepeated,andlook
bothforgeneralmethodsandforshortcuts.Upperelementarystudentsmight
noticewhendividing25by11thattheyarerepeatingthesamecalculationsover
andoveragain,andconcludetheyhavearepeatingdecimal.Bypayingattention
tothecalculationofslopeastheyrepeatedlycheckwhetherpointsareontheline
through(1,2)withslope3,middleschoolstudentsmightabstracttheequation
(y–2)/(x–1)=3.Noticingtheregularityinthewaytermscancelwhenexpanding
(x–1)(x+1),(x–1)(x2+x+1),and(x–1)(x3+x2+x+1)mightleadthemtothe
generalformulaforthesumofageometricseries.Astheyworktosolveaproblem,
mathematicallyproficientstudentsmaintainoversightoftheprocess,while
attendingtothedetails.Theycontinuallyevaluatethereasonablenessoftheir
intermediateresults.
Connecting the Standards for Mathematical Practice to the Standards for Mathematical ContentTheStandardsforMathematicalPracticedescribewaysinwhichdevelopingstudent
practitionersofthedisciplineofmathematicsincreasinglyoughttoengagewith
thesubjectmatterastheygrowinmathematicalmaturityandexpertisethroughout
theelementary,middleandhighschoolyears.Designersofcurricula,assessments,
andprofessionaldevelopmentshouldallattendtotheneedtoconnectthe
mathematicalpracticestomathematicalcontentinmathematicsinstruction.
TheStandardsforMathematicalContentareabalancedcombinationofprocedure
andunderstanding.Expectationsthatbeginwiththeword“understand”areoften
especiallygoodopportunitiestoconnectthepracticestothecontent.Students
wholackunderstandingofatopicmayrelyonprocedurestooheavily.Without
aflexiblebasefromwhichtowork,theymaybelesslikelytoconsideranalogous
problems,representproblemscoherently,justifyconclusions,applythemathematics
topracticalsituations,usetechnologymindfullytoworkwiththemathematics,
explainthemathematicsaccuratelytootherstudents,stepbackforanoverview,or
deviatefromaknownproceduretofindashortcut.Inshort,alackofunderstanding
effectivelypreventsastudentfromengaginginthemathematicalpractices.
Inthisrespect,thosecontentstandardswhichsetanexpectationofunderstanding
arepotential“pointsofintersection”betweentheStandardsforMathematical
ContentandtheStandardsforMathematicalPractice.Thesepointsofintersection
areintendedtobeweightedtowardcentralandgenerativeconceptsinthe
schoolmathematicscurriculumthatmostmeritthetime,resources,innovative
energies,andfocusnecessarytoqualitativelyimprovethecurriculum,instruction,
assessment,professionaldevelopment,andstudentachievementinmathematics.

Common Core State StandardS for matHematICSK
Ind
er
Ga
rt
en
| 9
mathematics | KindergartenInKindergarten,instructionaltimeshouldfocusontwocriticalareas:(1)
representing,relating,andoperatingonwholenumbers,initiallywith
setsofobjects;(2)describingshapesandspace.Morelearningtimein
Kindergartenshouldbedevotedtonumberthantoothertopics.
(1)Studentsusenumbers,includingwrittennumerals,torepresent
quantitiesandtosolvequantitativeproblems,suchascountingobjectsin
aset;countingoutagivennumberofobjects;comparingsetsornumerals;
andmodelingsimplejoiningandseparatingsituationswithsetsofobjects,
oreventuallywithequationssuchas5+2=7and7–2=5.(Kindergarten
studentsshouldseeadditionandsubtractionequations,andstudent
writingofequationsinkindergartenisencouraged,butitisnotrequired.)
Studentschoose,combine,andapplyeffectivestrategiesforanswering
quantitativequestions,includingquicklyrecognizingthecardinalitiesof
smallsetsofobjects,countingandproducingsetsofgivensizes,counting
thenumberofobjectsincombinedsets,orcountingthenumberofobjects
thatremaininasetaftersomearetakenaway.
(2)Studentsdescribetheirphysicalworldusinggeometricideas(e.g.,
shape,orientation,spatialrelations)andvocabulary.Theyidentify,name,
anddescribebasictwo-dimensionalshapes,suchassquares,triangles,
circles,rectangles,andhexagons,presentedinavarietyofways(e.g.,with
differentsizesandorientations),aswellasthree-dimensionalshapessuch
ascubes,cones,cylinders,andspheres.Theyusebasicshapesandspatial
reasoningtomodelobjectsintheirenvironmentandtoconstructmore
complexshapes.

Common Core State StandardS for matHematICSK
Ind
er
Ga
rt
en
| 10
Counting and Cardinality
• Know number names and the count sequence.
• Count to tell the number of objects.
• Compare numbers.
operations and algebraic thinking
• Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.
number and operations in Base ten
• Work with numbers 11–19 to gain foundations for place value.
measurement and data
• describe and compare measurable attributes.
• Classify objects and count the number of objects in categories.
Geometry
• Identify and describe shapes.
• analyze, compare, create, and compose shapes.
mathematical Practices
1. Makesenseofproblemsandperseverein
solvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritique
thereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeated
reasoning.
Grade K overview

Common Core State StandardS for matHematICSK
Ind
er
Ga
rt
en
| 11
Counting and Cardinality K.CC
Know number names and the count sequence.
1. Countto100byonesandbytens.
2. Countforwardbeginningfromagivennumberwithintheknownsequence(insteadofhavingtobeginat1).
3. Writenumbersfrom0to20.Representanumberofobjectswithawrittennumeral0-20(with0representingacountofnoobjects).
Count to tell the number of objects.
4. Understandtherelationshipbetweennumbersandquantities;connectcountingtocardinality.
a. Whencountingobjects,saythenumbernamesinthestandardorder,pairingeachobjectwithoneandonlyonenumbernameandeachnumbernamewithoneandonlyoneobject.
b. Understandthatthelastnumbernamesaidtellsthenumberofobjectscounted.Thenumberofobjectsisthesameregardlessoftheirarrangementortheorderinwhichtheywerecounted.
c. Understandthateachsuccessivenumbernamereferstoaquantitythatisonelarger.
5. Counttoanswer“howmany?”questionsaboutasmanyas20thingsarrangedinaline,arectangulararray,oracircle,orasmanyas10thingsinascatteredconfiguration;givenanumberfrom1–20,countoutthatmanyobjects.
Compare numbers.
6. Identifywhetherthenumberofobjectsinonegroupisgreaterthan,lessthan,orequaltothenumberofobjectsinanothergroup,e.g.,byusingmatchingandcountingstrategies.1
7. Comparetwonumbersbetween1and10presentedaswrittennumerals.
operations and algebraic thinking K.oa
Understand addition as putting together and adding to, and under-stand subtraction as taking apart and taking from.
1. Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings2,sounds(e.g.,claps),actingoutsituations,verbalexplanations,expressions,orequations.
2. Solveadditionandsubtractionwordproblems,andaddandsubtractwithin10,e.g.,byusingobjectsordrawingstorepresenttheproblem.
3. Decomposenumberslessthanorequalto10intopairsinmorethanoneway,e.g.,byusingobjectsordrawings,andrecordeachdecompositionbyadrawingorequation(e.g.,5=2+3and5=4+1).
4. Foranynumberfrom1to9,findthenumberthatmakes10whenaddedtothegivennumber,e.g.,byusingobjectsordrawings,andrecordtheanswerwithadrawingorequation.
5. Fluentlyaddandsubtractwithin5.
1Includegroupswithuptotenobjects.2Drawingsneednotshowdetails,butshouldshowthemathematicsintheproblem.(ThisapplieswhereverdrawingsarementionedintheStandards.)

Common Core State StandardS for matHematICSK
Ind
er
Ga
rt
en
| 12
number and operations in Base ten K.nBt
Work with numbers 11–19 to gain foundations for place value.
1. Composeanddecomposenumbersfrom11to19intotenonesandsomefurtherones,e.g.,byusingobjectsordrawings,andrecordeachcompositionordecompositionbyadrawingorequation(e.g.,18=10+8);understandthatthesenumbersarecomposedoftenonesandone,two,three,four,five,six,seven,eight,ornineones.
measurement and data K.md
Describe and compare measurable attributes.
1. Describemeasurableattributesofobjects,suchaslengthorweight.Describeseveralmeasurableattributesofasingleobject.
2. Directlycomparetwoobjectswithameasurableattributeincommon,toseewhichobjecthas“moreof”/“lessof”theattribute,anddescribethedifference.For example, directly compare the heights of two children and describe one child as taller/shorter.
Classify objects and count the number of objects in each category.
3. Classifyobjectsintogivencategories;countthenumbersofobjectsineachcategoryandsortthecategoriesbycount.3
Geometry K.G
Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).
1. Describeobjectsintheenvironmentusingnamesofshapes,anddescribetherelativepositionsoftheseobjectsusingtermssuchasabove,below,beside,in front of,behind,andnext to.
2. Correctlynameshapesregardlessoftheirorientationsoroverallsize.
3. Identifyshapesastwo-dimensional(lyinginaplane,“flat”)orthree-dimensional(“solid”).
Analyze, compare, create, and compose shapes.
4. Analyzeandcomparetwo-andthree-dimensionalshapes,indifferentsizesandorientations,usinginformallanguagetodescribetheirsimilarities,differences,parts(e.g.,numberofsidesandvertices/“corners”)andotherattributes(e.g.,havingsidesofequallength).
5. Modelshapesintheworldbybuildingshapesfromcomponents(e.g.,sticksandclayballs)anddrawingshapes.
6. Composesimpleshapestoformlargershapes.For example, “Can you join these two triangles with full sides touching to make a rectangle?”
3Limitcategorycountstobelessthanorequalto10.

Common Core State StandardS for matHematICSG
ra
de
1 | 13
mathematics | Grade 1InGrade1,instructionaltimeshouldfocusonfourcriticalareas:(1)
developingunderstandingofaddition,subtraction,andstrategiesfor
additionandsubtractionwithin20;(2)developingunderstandingofwhole
numberrelationshipsandplacevalue,includinggroupingintensand
ones;(3)developingunderstandingoflinearmeasurementandmeasuring
lengthsasiteratinglengthunits;and(4)reasoningaboutattributesof,and
composinganddecomposinggeometricshapes.
(1)Studentsdevelopstrategiesforaddingandsubtractingwholenumbers
basedontheirpriorworkwithsmallnumbers.Theyuseavarietyofmodels,
includingdiscreteobjectsandlength-basedmodels(e.g.,cubesconnected
toformlengths),tomodeladd-to,take-from,put-together,take-apart,and
comparesituationstodevelopmeaningfortheoperationsofadditionand
subtraction,andtodevelopstrategiestosolvearithmeticproblemswith
theseoperations.Studentsunderstandconnectionsbetweencounting
andadditionandsubtraction(e.g.,addingtwoisthesameascountingon
two).Theyusepropertiesofadditiontoaddwholenumbersandtocreate
anduseincreasinglysophisticatedstrategiesbasedontheseproperties
(e.g.,“makingtens”)tosolveadditionandsubtractionproblemswithin
20.Bycomparingavarietyofsolutionstrategies,childrenbuildtheir
understandingoftherelationshipbetweenadditionandsubtraction.
(2)Studentsdevelop,discuss,anduseefficient,accurate,andgeneralizable
methodstoaddwithin100andsubtractmultiplesof10.Theycompare
wholenumbers(atleastto100)todevelopunderstandingofandsolve
problemsinvolvingtheirrelativesizes.Theythinkofwholenumbers
between10and100intermsoftensandones(especiallyrecognizingthe
numbers11to19ascomposedofatenandsomeones).Throughactivities
thatbuildnumbersense,theyunderstandtheorderofthecounting
numbersandtheirrelativemagnitudes.
(3)Studentsdevelopanunderstandingofthemeaningandprocessesof
measurement,includingunderlyingconceptssuchasiterating(themental
activityofbuildingupthelengthofanobjectwithequal-sizedunits)and
thetransitivityprincipleforindirectmeasurement.1
(4)Studentscomposeanddecomposeplaneorsolidfigures(e.g.,put
twotrianglestogethertomakeaquadrilateral)andbuildunderstanding
ofpart-wholerelationshipsaswellasthepropertiesoftheoriginaland
compositeshapes.Astheycombineshapes,theyrecognizethemfrom
differentperspectivesandorientations,describetheirgeometricattributes,
anddeterminehowtheyarealikeanddifferent,todevelopthebackground
formeasurementandforinitialunderstandingsofpropertiessuchas
congruenceandsymmetry.
1Studentsshouldapplytheprincipleoftransitivityofmeasurementtomakeindirectcomparisons,buttheyneednotusethistechnicalterm.

Common Core State StandardS for matHematICSG
ra
de
1 | 14
Grade 1 overviewoperations and algebraic thinking
• represent and solve problems involving addition and subtraction.
• Understand and apply properties of operations and the relationship between addition and subtraction.
• add and subtract within 20.
• Work with addition and subtraction equations.
number and operations in Base ten
• extend the counting sequence.
• Understand place value.
• Use place value understanding and properties of operations to add and subtract.
measurement and data
• measure lengths indirectly and by iterating length units.
• tell and write time.
• represent and interpret data.
Geometry
• reason with shapes and their attributes.
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritique
thereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeated
reasoning.

Common Core State StandardS for matHematICSG
ra
de
1 | 15
operations and algebraic thinking 1.oa
Represent and solve problems involving addition and subtraction.
1. Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,byusingobjects,drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem.2
2. Solvewordproblemsthatcallforadditionofthreewholenumberswhosesumislessthanorequalto20,e.g.,byusingobjects,drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem.
Understand and apply properties of operations and the relationship between addition and subtraction.
3. Applypropertiesofoperationsasstrategiestoaddandsubtract.3Examples: If 8 + 3 = 11 is known, then 3 + 8 = 11 is also known. (Commutative property of addition.) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 = 12. (Associative property of addition.)
4. Understandsubtractionasanunknown-addendproblem.For example, subtract 10 – 8 by finding the number that makes 10 when added to 8.
Add and subtract within 20.
5. Relatecountingtoadditionandsubtraction(e.g.,bycountingon2to
add2).
6. Addandsubtractwithin20,demonstratingfluencyforadditionandsubtractionwithin10.Usestrategiessuchascountingon;makingten(e.g.,8+6=8+2+4=10+4=14);decomposinganumberleadingtoaten(e.g.,13–4=13–3–1=10–1=9);usingtherelationshipbetweenadditionandsubtraction(e.g.,knowingthat8+4=12,oneknows12–8=4);andcreatingequivalentbuteasierorknownsums(e.g.,adding6+7bycreatingtheknownequivalent6+6+1=12+1=13).
Work with addition and subtraction equations.
7. Understandthemeaningoftheequalsign,anddetermineifequationsinvolvingadditionandsubtractionaretrueorfalse.For example, which of the following equations are true and which are false? 6 = 6, 7 = 8 – 1, 5 + 2 = 2 + 5, 4 + 1 = 5 + 2.
8. Determinetheunknownwholenumberinanadditionorsubtractionequationrelatingthreewholenumbers.For example, determine the unknown number that makes the equation true in each of the equations 8 + ? = 11, 5 = � – 3, 6 + 6 = �.
number and operations in Base ten 1.nBt
Extend the counting sequence.
1. Countto120,startingatanynumberlessthan120.Inthisrange,readandwritenumeralsandrepresentanumberofobjectswithawrittennumeral.
Understand place value.
2. Understandthatthetwodigitsofatwo-digitnumberrepresentamountsoftensandones.Understandthefollowingasspecialcases:
a. 10canbethoughtofasabundleoftenones—calleda“ten.”
b. Thenumbersfrom11to19arecomposedofatenandone,two,three,four,five,six,seven,eight,ornineones.
c. Thenumbers10,20,30,40,50,60,70,80,90refertoone,two,three,four,five,six,seven,eight,orninetens(and0ones).
2SeeGlossary,Table1.3Studentsneednotuseformaltermsfortheseproperties.

Common Core State StandardS for matHematICSG
ra
de
1 | 16
3. Comparetwotwo-digitnumbersbasedonmeaningsofthetensandonesdigits,recordingtheresultsofcomparisonswiththesymbols>,=,and<.
Use place value understanding and properties of operations to add and subtract.
4. Addwithin100,includingaddingatwo-digitnumberandaone-digitnumber,andaddingatwo-digitnumberandamultipleof10,usingconcretemodelsordrawingsandstrategiesbasedonplacevalue,propertiesofoperations,and/ortherelationshipbetweenadditionandsubtraction;relatethestrategytoawrittenmethodandexplainthereasoningused.Understandthatinaddingtwo-digitnumbers,oneaddstensandtens,onesandones;andsometimesitisnecessarytocomposeaten.
5. Givenatwo-digitnumber,mentallyfind10moreor10lessthanthenumber,withouthavingtocount;explainthereasoningused.
6. Subtractmultiplesof10intherange10-90frommultiplesof10intherange10-90(positiveorzerodifferences),usingconcretemodelsordrawingsandstrategiesbasedonplacevalue,propertiesofoperations,and/ortherelationshipbetweenadditionandsubtraction;relatethe
strategytoawrittenmethodandexplainthereasoningused.
measurement and data 1.md
Measure lengths indirectly and by iterating length units.
1. Orderthreeobjectsbylength;comparethelengthsoftwoobjectsindirectlybyusingathirdobject.
2. Expressthelengthofanobjectasawholenumberoflengthunits,bylayingmultiplecopiesofashorterobject(thelengthunit)endtoend;understandthatthelengthmeasurementofanobjectisthenumberofsame-sizelengthunitsthatspanitwithnogapsoroverlaps.Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.
Tell and write time.
3. Tellandwritetimeinhoursandhalf-hoursusinganaloganddigitalclocks.
Represent and interpret data.
4. Organize,represent,andinterpretdatawithuptothreecategories;askandanswerquestionsaboutthetotalnumberofdatapoints,howmanyineachcategory,andhowmanymoreorlessareinonecategorythaninanother.
Geometry 1.G
Reason with shapes and their attributes.
1. Distinguishbetweendefiningattributes(e.g.,trianglesareclosedandthree-sided)versusnon-definingattributes(e.g.,color,orientation,overallsize);buildanddrawshapestopossessdefiningattributes.
2. Composetwo-dimensionalshapes(rectangles,squares,trapezoids,triangles,half-circles,andquarter-circles)orthree-dimensionalshapes(cubes,rightrectangularprisms,rightcircularcones,andrightcircularcylinders)tocreateacompositeshape,andcomposenewshapesfromthecompositeshape.4
3. Partitioncirclesandrectanglesintotwoandfourequalshares,describethesharesusingthewordshalves,fourths,andquarters,andusethephraseshalf of,fourth of,andquarter of.Describethewholeastwoof,orfouroftheshares.Understandfortheseexamplesthatdecomposingintomoreequalsharescreatessmallershares.
4Studentsdonotneedtolearnformalnamessuchas“rightrectangularprism.”

Common Core State StandardS for matHematICSG
ra
de
2 | 17
mathematics | Grade 2InGrade2,instructionaltimeshouldfocusonfourcriticalareas:(1)
extendingunderstandingofbase-tennotation;(2)buildingfluencywith
additionandsubtraction;(3)usingstandardunitsofmeasure;and(4)
describingandanalyzingshapes.
(1)Studentsextendtheirunderstandingofthebase-tensystem.This
includesideasofcountinginfives,tens,andmultiplesofhundreds,tens,
andones,aswellasnumberrelationshipsinvolvingtheseunits,including
comparing.Studentsunderstandmulti-digitnumbers(upto1000)written
inbase-tennotation,recognizingthatthedigitsineachplacerepresent
amountsofthousands,hundreds,tens,orones(e.g.,853is8hundreds+5
tens+3ones).
(2)Studentsusetheirunderstandingofadditiontodevelopfluencywith
additionandsubtractionwithin100.Theysolveproblemswithin1000
byapplyingtheirunderstandingofmodelsforadditionandsubtraction,
andtheydevelop,discuss,anduseefficient,accurate,andgeneralizable
methodstocomputesumsanddifferencesofwholenumbersinbase-ten
notation,usingtheirunderstandingofplacevalueandthepropertiesof
operations.Theyselectandaccuratelyapplymethodsthatareappropriate
forthecontextandthenumbersinvolvedtomentallycalculatesumsand
differencesfornumberswithonlytensoronlyhundreds.
(3)Studentsrecognizetheneedforstandardunitsofmeasure(centimeter
andinch)andtheyuserulersandothermeasurementtoolswiththe
understandingthatlinearmeasureinvolvesaniterationofunits.They
recognizethatthesmallertheunit,themoreiterationstheyneedtocovera
givenlength.
(4)Studentsdescribeandanalyzeshapesbyexaminingtheirsidesand
angles.Studentsinvestigate,describe,andreasonaboutdecomposing
andcombiningshapestomakeothershapes.Throughbuilding,drawing,
andanalyzingtwo-andthree-dimensionalshapes,studentsdevelopa
foundationforunderstandingarea,volume,congruence,similarity,and
symmetryinlatergrades.

Common Core State StandardS for matHematICSG
ra
de
2 | 18
operations and algebraic thinking
• represent and solve problems involving addition and subtraction.
• add and subtract within 20.
• Work with equal groups of objects to gain foundations for multiplication.
number and operations in Base ten
• Understand place value.
• Use place value understanding and properties of operations to add and subtract.
measurement and data
• measure and estimate lengths in standard units.
• relate addition and subtraction to length.
• Work with time and money.
• represent and interpret data.
Geometry
• reason with shapes and their attributes.
mathematical Practices
1. Makesenseofproblemsandperseverein
solvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritique
thereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeated
reasoning.
Grade 2 overview

Common Core State StandardS for matHematICSG
ra
de
2 | 19
operations and algebraic thinking 2.oa
Represent and solve problems involving addition and subtraction.
1. Useadditionandsubtractionwithin100tosolveone-andtwo-stepwordproblemsinvolvingsituationsofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions, e.g.,byusingdrawingsandequationswithasymbolfortheunknownnumbertorepresenttheproblem.1
Add and subtract within 20.
2. Fluentlyaddandsubtractwithin20usingmentalstrategies.2ByendofGrade2,knowfrommemoryallsumsoftwoone-digitnumbers.
Work with equal groups of objects to gain foundations for multiplication.
3. Determinewhetheragroupofobjects(upto20)hasanoddorevennumberofmembers,e.g.,bypairingobjectsorcountingthemby2s;writeanequationtoexpressanevennumberasasumoftwoequaladdends.
4. Useadditiontofindthetotalnumberofobjectsarrangedinrectangulararrayswithupto5rowsandupto5columns;writeanequationtoexpressthetotalasasumofequaladdends.
number and operations in Base ten 2.nBt
Understand place value.
1. Understandthatthethreedigitsofathree-digitnumberrepresentamountsofhundreds,tens,andones;e.g.,706equals7hundreds,0tens,and6ones.Understandthefollowingasspecialcases:
a. 100canbethoughtofasabundleoftentens—calleda“hundred.”
b. Thenumbers100,200,300,400,500,600,700,800,900refertoone,two,three,four,five,six,seven,eight,orninehundreds(and0tensand0ones).
2. Countwithin1000;skip-countby5s,10s,and100s.
3. Readandwritenumbersto1000usingbase-tennumerals,numbernames,andexpandedform.
4. Comparetwothree-digitnumbersbasedonmeaningsofthehundreds,tens,andonesdigits,using>,=,and<symbolstorecordtheresultsofcomparisons.
Use place value understanding and properties of operations to add and subtract.
5. Fluentlyaddandsubtractwithin100usingstrategiesbasedonplacevalue,propertiesofoperations,and/ortherelationshipbetweenadditionandsubtraction.
6. Adduptofourtwo-digitnumbersusingstrategiesbasedonplacevalueandpropertiesofoperations.
7. Addandsubtractwithin1000,usingconcretemodelsordrawingsandstrategiesbasedonplacevalue,propertiesofoperations,and/ortherelationshipbetweenadditionandsubtraction;relatethestrategytoawrittenmethod.Understandthatinaddingorsubtractingthree-digitnumbers,oneaddsorsubtractshundredsandhundreds,tensandtens,onesandones;andsometimesitisnecessarytocomposeordecomposetensorhundreds.
8. Mentallyadd10or100toagivennumber100–900,andmentallysubtract10or100fromagivennumber100–900.
9. Explainwhyadditionandsubtractionstrategieswork,usingplacevalueandthepropertiesofoperations.3
1SeeGlossary,Table1.2Seestandard1.OA.6foralistofmentalstrategies.3Explanationsmaybesupportedbydrawingsorobjects.

Common Core State StandardS for matHematICSG
ra
de
2 | 20
measurement and data 2.md
Measure and estimate lengths in standard units.
1. Measurethelengthofanobjectbyselectingandusingappropriatetoolssuchasrulers,yardsticks,metersticks,andmeasuringtapes.
2. Measurethelengthofanobjecttwice,usinglengthunitsofdifferentlengthsforthetwomeasurements;describehowthetwomeasurementsrelatetothesizeoftheunitchosen.
3. Estimatelengthsusingunitsofinches,feet,centimeters,andmeters.
4. Measuretodeterminehowmuchlongeroneobjectisthananother,expressingthelengthdifferenceintermsofastandardlengthunit.
Relate addition and subtraction to length.
5. Useadditionandsubtractionwithin100tosolvewordproblemsinvolvinglengthsthataregiveninthesameunits,e.g.,byusingdrawings(suchasdrawingsofrulers)andequationswithasymbolfortheunknownnumbertorepresenttheproblem.
6. Representwholenumbersaslengthsfrom0onanumberlinediagramwithequallyspacedpointscorrespondingtothenumbers0,1,2,...,andrepresentwhole-numbersumsanddifferenceswithin100onanumberlinediagram.
Work with time and money.
7. Tellandwritetimefromanaloganddigitalclockstothenearestfiveminutes,usinga.m.andp.m.
8. Solvewordproblemsinvolvingdollarbills,quarters,dimes,nickels,andpennies,using$and¢symbolsappropriately.Example: If you have 2 dimes and 3 pennies, how many cents do you have?
Represent and interpret data.
9. Generatemeasurementdatabymeasuringlengthsofseveralobjectstothenearestwholeunit,orbymakingrepeatedmeasurementsofthesameobject.Showthemeasurementsbymakingalineplot,wherethehorizontalscaleismarkedoffinwhole-numberunits.
10. Drawapicturegraphandabargraph(withsingle-unitscale)torepresentadatasetwithuptofourcategories.Solvesimpleput-together,take-apart,andcompareproblems4usinginformationpresentedinabargraph.
Geometry 2.G
Reason with shapes and their attributes.
1. Recognizeanddrawshapeshavingspecifiedattributes,suchasagivennumberofanglesoragivennumberofequalfaces.5Identifytriangles,quadrilaterals,pentagons,hexagons,andcubes.
2. Partitionarectangleintorowsandcolumnsofsame-sizesquaresandcounttofindthetotalnumberofthem.
3. Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,half of,a third of,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.
4SeeGlossary,Table1.5Sizesarecompareddirectlyorvisually,notcomparedbymeasuring.

Common Core State StandardS for matHematICSG
ra
de
3 | 2
1
Mathematics|Grade3
InGrade3,instructionaltimeshouldfocusonfourcriticalareas:(1)
developingunderstandingofmultiplicationanddivisionandstrategies
formultiplicationanddivisionwithin100;(2)developingunderstanding
offractions,especiallyunitfractions(fractionswithnumerator1);(3)
developingunderstandingofthestructureofrectangulararraysandof
area;and(4)describingandanalyzingtwo-dimensionalshapes.
(1)Studentsdevelopanunderstandingofthemeaningsofmultiplication
anddivisionofwholenumbersthroughactivitiesandproblemsinvolving
equal-sizedgroups,arrays,andareamodels;multiplicationisfinding
anunknownproduct,anddivisionisfindinganunknownfactorinthese
situations.Forequal-sizedgroupsituations,divisioncanrequirefinding
theunknownnumberofgroupsortheunknowngroupsize.Studentsuse
propertiesofoperationstocalculateproductsofwholenumbers,using
increasinglysophisticatedstrategiesbasedonthesepropertiestosolve
multiplicationanddivisionproblemsinvolvingsingle-digitfactors.By
comparingavarietyofsolutionstrategies,studentslearntherelationship
betweenmultiplicationanddivision.
(2)Studentsdevelopanunderstandingoffractions,beginningwith
unitfractions.Studentsviewfractionsingeneralasbeingbuiltoutof
unitfractions,andtheyusefractionsalongwithvisualfractionmodels
torepresentpartsofawhole.Studentsunderstandthatthesizeofa
fractionalpartisrelativetothesizeofthewhole.Forexample,1/2ofthe
paintinasmallbucketcouldbelesspaintthan1/3ofthepaintinalarger
bucket,but1/3ofaribbonislongerthan1/5ofthesameribbonbecause
whentheribbonisdividedinto3equalparts,thepartsarelongerthan
whentheribbonisdividedinto5equalparts.Studentsareabletouse
fractionstorepresentnumbersequalto,lessthan,andgreaterthanone.
Theysolveproblemsthatinvolvecomparingfractionsbyusingvisual
fractionmodelsandstrategiesbasedonnoticingequalnumeratorsor
denominators.
(3)Studentsrecognizeareaasanattributeoftwo-dimensionalregions.
Theymeasuretheareaofashapebyfindingthetotalnumberofsame-
sizeunitsofarearequiredtocovertheshapewithoutgapsoroverlaps,
asquarewithsidesofunitlengthbeingthestandardunitformeasuring
area.Studentsunderstandthatrectangulararrayscanbedecomposedinto
identicalrowsorintoidenticalcolumns.Bydecomposingrectanglesinto
rectangulararraysofsquares,studentsconnectareatomultiplication,and
justifyusingmultiplicationtodeterminetheareaofarectangle.
(4)Studentsdescribe,analyze,andcomparepropertiesoftwo-
dimensionalshapes.Theycompareandclassifyshapesbytheirsidesand
angles,andconnectthesewithdefinitionsofshapes.Studentsalsorelate
theirfractionworktogeometrybyexpressingtheareaofpartofashape
asaunitfractionofthewhole.

Common Core State StandardS for matHematICSG
ra
de
3 | 2
2
operations and algebraic thinking
• represent and solve problems involving multiplication and division.
• Understand properties of multiplication and the relationship between multiplication and division.
• multiply and divide within 100.
• Solve problems involving the four operations, and identify and explain patterns in arithmetic.
number and operations in Base ten
• Use place value understanding and properties of operations to perform multi-digit arithmetic.
number and operations—fractions
• develop understanding of fractions as numbers.
measurement and data
• Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.
• represent and interpret data.
• Geometric measurement: understand concepts of area and relate area to multiplication and to addition.
• Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.
Geometry
• reason with shapes and their attributes.
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
Grade 3 overviewmathematical Practices
1. Makesenseofproblemsandperseverein
solvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritique
thereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeated
reasoning.

Common Core State StandardS for matHematICSG
ra
de
3 | 2
3
operations and algebraic thinking 3.oa
Represent and solve problems involving multiplication and division.
1. Interpretproductsofwholenumbers,e.g.,interpret5×7asthetotalnumberofobjectsin5groupsof7objectseach.For example, describe a context in which a total number of objects can be expressed as 5 × 7.
2. Interpretwhole-numberquotientsofwholenumbers,e.g.,interpret56÷8asthenumberofobjectsineachsharewhen56objectsarepartitionedequallyinto8shares,orasanumberofshareswhen56objectsarepartitionedintoequalsharesof8objectseach.For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8.
3. Usemultiplicationanddivisionwithin100tosolvewordproblemsinsituationsinvolvingequalgroups,arrays,andmeasurementquantities,e.g.,byusingdrawingsandequationswithasymbolfortheunknownnumbertorepresenttheproblem.1
4. Determinetheunknownwholenumberinamultiplicationordivisionequationrelatingthreewholenumbers.For example, determine the unknown number that makes the equation true in each of the equations 8 × ? = 48, 5 = � ÷ 3, 6 × 6 = ?.
Understand properties of multiplication and the relationship between multiplication and division.
5. Applypropertiesofoperationsasstrategiestomultiplyanddivide.2Examples: If 6 × 4 = 24 is known, then 4 × 6 = 24 is also known. (Commutative property of multiplication.) 3 × 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30, or by 5 × 2 = 10, then 3 × 10 = 30. (Associative property of multiplication.) Knowing that 8 × 5 = 40 and 8 × 2 = 16, one can find 8 × 7 as 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56. (Distributive property.)
6. Understanddivisionasanunknown-factorproblem.For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.
Multiply and divide within 100.
7. Fluentlymultiplyanddividewithin100,usingstrategiessuchastherelationshipbetweenmultiplicationanddivision(e.g.,knowingthat8×5=40,oneknows40÷5=8)orpropertiesofoperations.BytheendofGrade3,knowfrommemoryallproductsoftwoone-digitnumbers.
Solve problems involving the four operations, and identify and explain patterns in arithmetic.
8. Solvetwo-stepwordproblemsusingthefouroperations.Representtheseproblemsusingequationswithaletterstandingfortheunknownquantity.Assessthereasonablenessofanswersusingmentalcomputationandestimationstrategiesincludingrounding.3
9. Identifyarithmeticpatterns(includingpatternsintheadditiontableormultiplicationtable),andexplainthemusingpropertiesofoperations.For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.
1SeeGlossary,Table2.2Studentsneednotuseformaltermsfortheseproperties.3Thisstandardislimitedtoproblemsposedwithwholenumbersandhavingwhole-numberanswers;studentsshouldknowhowtoperformoperationsintheconven-tionalorderwhentherearenoparenthesestospecifyaparticularorder(OrderofOperations).

Common Core State StandardS for matHematICSG
ra
de
3 | 2
4
number and operations in Base ten 3.nBt
Use place value understanding and properties of operations to perform multi-digit arithmetic.4
1. Useplacevalueunderstandingtoroundwholenumberstothenearest10or100.
2. Fluentlyaddandsubtractwithin1000usingstrategiesandalgorithmsbasedonplacevalue,propertiesofoperations,and/ortherelationshipbetweenadditionandsubtraction.
3. Multiplyone-digitwholenumbersbymultiplesof10intherange10–90(e.g.,9×80,5×60)usingstrategiesbasedonplacevalueandpropertiesofoperations.
number and operations—fractions5 3.nf
Develop understanding of fractions as numbers.
1. Understandafraction1/basthequantityformedby1partwhenawholeispartitionedintob equalparts;understandafractiona/basthequantityformedbyapartsofsize1/b.
2. Understandafractionasanumberonthenumberline;representfractionsonanumberlinediagram.
a. Representafraction1/bonanumberlinediagrambydefiningtheintervalfrom0to1asthewholeandpartitioningitintobequalparts.Recognizethateachparthassize1/bandthattheendpointofthepartbasedat0locatesthenumber1/bonthenumberline.
b. Representafractiona/bonanumberlinediagrambymarkingoffalengths1/bfrom0.Recognizethattheresultingintervalhassizea/bandthatitsendpointlocatesthenumbera/bonthenumberline.
3. Explainequivalenceoffractionsinspecialcases,andcomparefractionsbyreasoningabouttheirsize.
a. Understandtwofractionsasequivalent(equal)iftheyarethesamesize,orthesamepointonanumberline.
b. Recognizeandgeneratesimpleequivalentfractions,e.g.,1/2=2/4,4/6=2/3).Explainwhythefractionsareequivalent,e.g.,byusingavisualfractionmodel.
c. Expresswholenumbersasfractions,andrecognizefractionsthatareequivalenttowholenumbers.Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.
d. Comparetwofractionswiththesamenumeratororthesamedenominatorbyreasoningabouttheirsize.Recognizethatcomparisonsarevalidonlywhenthetwofractionsrefertothesamewhole.Recordtheresultsofcomparisonswiththesymbols>,=,or<,andjustifytheconclusions,e.g.,byusingavisualfractionmodel.
measurement and data 3.md
Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.
1. Tellandwritetimetothenearestminuteandmeasuretimeintervalsinminutes.Solvewordproblemsinvolvingadditionandsubtractionoftimeintervalsinminutes,e.g.,byrepresentingtheproblemonanumberlinediagram.
4Arangeofalgorithmsmaybeused.5Grade3expectationsinthisdomainarelimitedtofractionswithdenominators2,3,4,6,and8.

Common Core State StandardS for matHematICSG
ra
de
3 | 2
5
2. Measureandestimateliquidvolumesandmassesofobjectsusingstandardunitsofgrams(g),kilograms(kg),andliters(l).6Add,subtract,multiply,ordividetosolveone-stepwordproblemsinvolvingmassesorvolumesthataregiveninthesameunits,e.g.,byusingdrawings(suchasabeakerwithameasurementscale)torepresenttheproblem.7
Represent and interpret data.
3. Drawascaledpicturegraphandascaledbargraphtorepresentadatasetwithseveralcategories.Solveone-andtwo-step“howmanymore”and“howmanyless”problemsusinginformationpresentedinscaledbargraphs.For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
4. Generatemeasurementdatabymeasuringlengthsusingrulersmarkedwithhalvesandfourthsofaninch.Showthedatabymakingalineplot,wherethehorizontalscaleismarkedoffinappropriateunits—wholenumbers,halves,orquarters.
Geometric measurement: understand concepts of area and relate area to multiplication and to addition.
5. Recognizeareaasanattributeofplanefiguresandunderstandconceptsofareameasurement.
a. Asquarewithsidelength1unit,called“aunitsquare,”issaidtohave“onesquareunit”ofarea,andcanbeusedtomeasurearea.
b. Aplanefigurewhichcanbecoveredwithoutgapsoroverlapsbynunitsquaresissaidtohaveanareaofnsquareunits.
6. Measureareasbycountingunitsquares(squarecm,squarem,squarein,squareft,andimprovisedunits).
7. Relateareatotheoperationsofmultiplicationandaddition.
a. Findtheareaofarectanglewithwhole-numbersidelengthsbytilingit,andshowthattheareaisthesameaswouldbefoundbymultiplyingthesidelengths.
b. Multiplysidelengthstofindareasofrectangleswithwhole-numbersidelengthsinthecontextofsolvingrealworldandmathematicalproblems,andrepresentwhole-numberproductsasrectangularareasinmathematicalreasoning.
c. Usetilingtoshowinaconcretecasethattheareaofarectanglewithwhole-numbersidelengthsaandb+cisthesumofa×banda×c.Useareamodelstorepresentthedistributivepropertyinmathematicalreasoning.
d. Recognizeareaasadditive.Findareasofrectilinearfiguresbydecomposingthemintonon-overlappingrectanglesandaddingtheareasofthenon-overlappingparts,applyingthistechniquetosolverealworldproblems.
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.
8. Solverealworldandmathematicalproblemsinvolvingperimetersofpolygons,includingfindingtheperimetergiventhesidelengths,findinganunknownsidelength,andexhibitingrectangleswiththesameperimeteranddifferentareasorwiththesameareaanddifferentperimeters.
6Excludescompoundunitssuchascm3andfindingthegeometricvolumeofacontainer.7Excludesmultiplicativecomparisonproblems(problemsinvolvingnotionsof“timesasmuch”;seeGlossary,Table2).

Common Core State StandardS for matHematICSG
ra
de
3 | 2
6
Geometry 3.G
Reason with shapes and their attributes.
1. Understandthatshapesindifferentcategories(e.g.,rhombuses,rectangles,andothers)mayshareattributes(e.g.,havingfoursides),andthatthesharedattributescandefinealargercategory(e.g.,quadrilaterals).Recognizerhombuses,rectangles,andsquaresasexamplesofquadrilaterals,anddrawexamplesofquadrilateralsthatdonotbelongtoanyofthesesubcategories.
2. Partitionshapesintopartswithequalareas.Expresstheareaofeachpartasaunitfractionofthewhole.For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.

Common Core State StandardS for matHematICSG
ra
de
4 | 2
7
mathematics | Grade 4InGrade4,instructionaltimeshouldfocusonthreecriticalareas:(1)
developingunderstandingandfluencywithmulti-digitmultiplication,
anddevelopingunderstandingofdividingtofindquotientsinvolving
multi-digitdividends;(2)developinganunderstandingoffraction
equivalence,additionandsubtractionoffractionswithlikedenominators,
andmultiplicationoffractionsbywholenumbers;(3)understanding
thatgeometricfigurescanbeanalyzedandclassifiedbasedontheir
properties,suchashavingparallelsides,perpendicularsides,particular
anglemeasures,andsymmetry.
(1)Studentsgeneralizetheirunderstandingofplacevalueto1,000,000,
understandingtherelativesizesofnumbersineachplace.Theyapplytheir
understandingofmodelsformultiplication(equal-sizedgroups,arrays,
areamodels),placevalue,andpropertiesofoperations,inparticularthe
distributiveproperty,astheydevelop,discuss,anduseefficient,accurate,
andgeneralizablemethodstocomputeproductsofmulti-digitwhole
numbers.Dependingonthenumbersandthecontext,theyselectand
accuratelyapplyappropriatemethodstoestimateormentallycalculate
products.Theydevelopfluencywithefficientproceduresformultiplying
wholenumbers;understandandexplainwhytheproceduresworkbasedon
placevalueandpropertiesofoperations;andusethemtosolveproblems.
Studentsapplytheirunderstandingofmodelsfordivision,placevalue,
propertiesofoperations,andtherelationshipofdivisiontomultiplication
astheydevelop,discuss,anduseefficient,accurate,andgeneralizable
procedurestofindquotientsinvolvingmulti-digitdividends.Theyselect
andaccuratelyapplyappropriatemethodstoestimateandmentally
calculatequotients,andinterpretremaindersbaseduponthecontext.
(2)Studentsdevelopunderstandingoffractionequivalenceand
operationswithfractions.Theyrecognizethattwodifferentfractionscan
beequal(e.g.,15/9=5/3),andtheydevelopmethodsforgeneratingand
recognizingequivalentfractions.Studentsextendpreviousunderstandings
abouthowfractionsarebuiltfromunitfractions,composingfractions
fromunitfractions,decomposingfractionsintounitfractions,andusing
themeaningoffractionsandthemeaningofmultiplicationtomultiplya
fractionbyawholenumber.
(3)Studentsdescribe,analyze,compare,andclassifytwo-dimensional
shapes.Throughbuilding,drawing,andanalyzingtwo-dimensionalshapes,
studentsdeepentheirunderstandingofpropertiesoftwo-dimensional
objectsandtheuseofthemtosolveproblemsinvolvingsymmetry.

Common Core State StandardS for matHematICSG
ra
de
4 | 2
8
Grade 4 overviewoperations and algebraic thinking
• Use the four operations with whole numbers to solve problems.
• Gain familiarity with factors and multiples.
• Generate and analyze patterns.
number and operations in Base ten
• Generalize place value understanding for multi-digit whole numbers.
• Use place value understanding and properties of operations to perform multi-digit arithmetic.
number and operations—fractions
• extend understanding of fraction equivalence and ordering.
• Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
• Understand decimal notation for fractions, and compare decimal fractions.
measurement and data
• Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
• represent and interpret data.
• Geometric measurement: understand concepts of angle and measure angles.
Geometry
• draw and identify lines and angles, and classify shapes by properties of their lines and angles.
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.

Common Core State StandardS for matHematICSG
ra
de
4 | 2
9
operations and algebraic thinking 4.oa
Use the four operations with whole numbers to solve problems.
1. Interpretamultiplicationequationasacomparison,e.g.,interpret35=5×7asastatementthat35is5timesasmanyas7and7timesasmanyas5.Representverbalstatementsofmultiplicativecomparisonsasmultiplicationequations.
2. Multiplyordividetosolvewordproblemsinvolvingmultiplicativecomparison,e.g.,byusingdrawingsandequationswithasymbolfortheunknownnumbertorepresenttheproblem,distinguishingmultiplicativecomparisonfromadditivecomparison.1
3. Solvemultistepwordproblemsposedwithwholenumbersandhavingwhole-numberanswersusingthefouroperations,includingproblemsinwhichremaindersmustbeinterpreted.Representtheseproblemsusingequationswithaletterstandingfortheunknownquantity.Assessthereasonablenessofanswersusingmentalcomputationandestimationstrategiesincludingrounding.
Gain familiarity with factors and multiples.
4. Findallfactorpairsforawholenumberintherange1–100.Recognizethatawholenumberisamultipleofeachofitsfactors.Determinewhetheragivenwholenumberintherange1–100isamultipleofagivenone-digitnumber.Determinewhetheragivenwholenumberintherange1–100isprimeorcomposite.
Generate and analyze patterns.
5. Generateanumberorshapepatternthatfollowsagivenrule.Identifyapparentfeaturesofthepatternthatwerenotexplicitintheruleitself.For example, given the rule “Add 3” and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.
number and operations in Base ten2 4.nBt
Generalize place value understanding for multi-digit whole numbers.
1. Recognizethatinamulti-digitwholenumber,adigitinoneplacerepresentstentimeswhatitrepresentsintheplacetoitsright.For example, recognize that 700 ÷ 70 = 10 by applying concepts of place value and division.
2. Readandwritemulti-digitwholenumbersusingbase-tennumerals,numbernames,andexpandedform.Comparetwomulti-digitnumbersbasedonmeaningsofthedigitsineachplace,using>,=,and<symbolstorecordtheresultsofcomparisons.
3. Useplacevalueunderstandingtoroundmulti-digitwholenumberstoanyplace.
Use place value understanding and properties of operations to perform multi-digit arithmetic.
4. Fluentlyaddandsubtractmulti-digitwholenumbersusingthestandardalgorithm.
5. Multiplyawholenumberofuptofourdigitsbyaone-digitwholenumber,andmultiplytwotwo-digitnumbers,usingstrategiesbasedonplacevalueandthepropertiesofoperations.Illustrateandexplainthecalculationbyusingequations,rectangulararrays,and/orareamodels.
1SeeGlossary,Table2.2Grade4expectationsinthisdomainarelimitedtowholenumberslessthanorequalto1,000,000.

Common Core State StandardS for matHematICSG
ra
de
4 | 3
0
6. Findwhole-numberquotientsandremainderswithuptofour-digitdividendsandone-digitdivisors,usingstrategiesbasedonplacevalue,thepropertiesofoperations,and/ortherelationshipbetweenmultiplicationanddivision.Illustrateandexplainthecalculationbyusingequations,rectangulararrays,and/orareamodels.
number and operations—fractions3 4.nf
Extend understanding of fraction equivalence and ordering.
1. Explainwhyafractiona/bisequivalenttoafraction(n×a)/(n×b)byusingvisualfractionmodels,withattentiontohowthenumberandsizeofthepartsdiffereventhoughthetwofractionsthemselvesarethesamesize.Usethisprincipletorecognizeandgenerateequivalentfractions.
2. Comparetwofractionswithdifferentnumeratorsanddifferentdenominators,e.g.,bycreatingcommondenominatorsornumerators,orbycomparingtoabenchmarkfractionsuchas1/2.Recognizethatcomparisonsarevalidonlywhenthetwofractionsrefertothesamewhole.Recordtheresultsofcomparisonswithsymbols>,=,or<,andjustifytheconclusions,e.g.,byusingavisualfractionmodel.
Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
3. Understandafractiona/bwitha>1asasumoffractions1/b.
a. Understandadditionandsubtractionoffractionsasjoiningandseparatingpartsreferringtothesamewhole.
b. Decomposeafractionintoasumoffractionswiththesamedenominatorinmorethanoneway,recordingeachdecompositionbyanequation.Justifydecompositions,e.g.,byusingavisualfractionmodel.Examples: 3/8 = 1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8.
c. Addandsubtractmixednumberswithlikedenominators,e.g.,byreplacingeachmixednumberwithanequivalentfraction,and/orbyusingpropertiesofoperationsandtherelationshipbetweenadditionandsubtraction.
d. Solvewordproblemsinvolvingadditionandsubtractionoffractionsreferringtothesamewholeandhavinglikedenominators,e.g.,byusingvisualfractionmodelsandequationstorepresenttheproblem.
4. Applyandextendpreviousunderstandingsofmultiplicationtomultiplyafractionbyawholenumber.
a. Understandafractiona/basamultipleof1/b.For example, use a visual fraction model to represent 5/4 as the product 5 × (1/4), recording the conclusion by the equation 5/4 = 5 × (1/4).
b. Understandamultipleofa/basamultipleof1/b,andusethisunderstandingtomultiplyafractionbyawholenumber.For example, use a visual fraction model to express 3 × (2/5) as 6 × (1/5), recognizing this product as 6/5. (In general, n × (a/b) = (n × a)/b.)
c. Solvewordproblemsinvolvingmultiplicationofafractionbyawholenumber,e.g.,byusingvisualfractionmodelsandequationstorepresenttheproblem.For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
3Grade4expectationsinthisdomainarelimitedtofractionswithdenominators2,3,4,5,6,8,10,12,and100.

Common Core State StandardS for matHematICSG
ra
de
4 | 3
1
Understand decimal notation for fractions, and compare decimal fractions.
5. Expressafractionwithdenominator10asanequivalentfractionwithdenominator100,andusethistechniquetoaddtwofractionswithrespectivedenominators10and100.4For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100.
6. Usedecimalnotationforfractionswithdenominators10or100.For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.
7. Comparetwodecimalstohundredthsbyreasoningabouttheirsize.Recognizethatcomparisonsarevalidonlywhenthetwodecimalsrefertothesamewhole.Recordtheresultsofcomparisonswiththesymbols>,=,or<,andjustifytheconclusions,e.g.,byusingavisualmodel.
measurement and data 4.md
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
1. Knowrelativesizesofmeasurementunitswithinonesystemofunitsincludingkm,m,cm;kg,g;lb,oz.;l,ml;hr,min,sec.Withinasinglesystemofmeasurement,expressmeasurementsinalargerunitintermsofasmallerunit.Recordmeasurementequivalentsinatwo-columntable.For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
2. Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquidvolumes,massesofobjects,andmoney,includingproblemsinvolvingsimplefractionsordecimals,andproblemsthatrequireexpressingmeasurementsgiveninalargerunitintermsofasmallerunit.Representmeasurementquantitiesusingdiagramssuchasnumberlinediagramsthatfeatureameasurementscale.
3. Applytheareaandperimeterformulasforrectanglesinrealworldandmathematicalproblems.For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.
Represent and interpret data.
4. Makealineplottodisplayadatasetofmeasurementsinfractionsofaunit(1/2,1/4,1/8).Solveproblemsinvolvingadditionandsubtractionoffractionsbyusinginformationpresentedinlineplots.For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.
Geometric measurement: understand concepts of angle and measure angles.
5. Recognizeanglesasgeometricshapesthatareformedwherevertworaysshareacommonendpoint,andunderstandconceptsofanglemeasurement:
a. Anangleismeasuredwithreferencetoacirclewithitscenteratthecommonendpointoftherays,byconsideringthefractionofthecirculararcbetweenthepointswherethetworaysintersectthecircle.Ananglethatturnsthrough1/360ofacircleiscalleda“one-degreeangle,”andcanbeusedtomeasureangles.
b. Ananglethatturnsthroughnone-degreeanglesissaidtohaveananglemeasureofndegrees.
4Studentswhocangenerateequivalentfractionscandevelopstrategiesforaddingfractionswithunlikedenominatorsingeneral.Butadditionandsubtractionwithun-likedenominatorsingeneralisnotarequirementatthisgrade.

Common Core State StandardS for matHematICSG
ra
de
4 | 3
2
6. Measureanglesinwhole-numberdegreesusingaprotractor.Sketchanglesofspecifiedmeasure.
7. Recognizeanglemeasureasadditive.Whenanangleisdecomposedintonon-overlappingparts,theanglemeasureofthewholeisthesumoftheanglemeasuresoftheparts.Solveadditionandsubtractionproblemstofindunknownanglesonadiagraminrealworldandmathematicalproblems,e.g.,byusinganequationwithasymbolfortheunknownanglemeasure.
Geometry 4.G
Draw and identify lines and angles, and classify shapes by properties of their lines and angles.
1. Drawpoints,lines,linesegments,rays,angles(right,acute,obtuse),andperpendicularandparallellines.Identifytheseintwo-dimensionalfigures.
2. Classifytwo-dimensionalfiguresbasedonthepresenceorabsenceofparallelorperpendicularlines,orthepresenceorabsenceofanglesofaspecifiedsize.Recognizerighttrianglesasacategory,andidentifyrighttriangles.
3. Recognizealineofsymmetryforatwo-dimensionalfigureasalineacrossthefiguresuchthatthefigurecanbefoldedalongthelineintomatchingparts.Identifyline-symmetricfiguresanddrawlinesofsymmetry.

Common Core State StandardS for matHematICSG
ra
de
5 | 33
mathematics | Grade 5InGrade5,instructionaltimeshouldfocusonthreecriticalareas:(1)
developingfluencywithadditionandsubtractionoffractions,and
developingunderstandingofthemultiplicationoffractionsandofdivision
offractionsinlimitedcases(unitfractionsdividedbywholenumbersand
wholenumbersdividedbyunitfractions);(2)extendingdivisionto2-digit
divisors,integratingdecimalfractionsintotheplacevaluesystemand
developingunderstandingofoperationswithdecimalstohundredths,and
developingfluencywithwholenumberanddecimaloperations;and(3)
developingunderstandingofvolume.
(1)Studentsapplytheirunderstandingoffractionsandfractionmodelsto
representtheadditionandsubtractionoffractionswithunlikedenominators
asequivalentcalculationswithlikedenominators.Theydevelopfluency
incalculatingsumsanddifferencesoffractions,andmakereasonable
estimatesofthem.Studentsalsousethemeaningoffractions,of
multiplicationanddivision,andtherelationshipbetweenmultiplicationand
divisiontounderstandandexplainwhytheproceduresformultiplyingand
dividingfractionsmakesense.(Note:thisislimitedtothecaseofdividing
unitfractionsbywholenumbersandwholenumbersbyunitfractions.)
(2)Studentsdevelopunderstandingofwhydivisionprocedureswork
basedonthemeaningofbase-tennumeralsandpropertiesofoperations.
Theyfinalizefluencywithmulti-digitaddition,subtraction,multiplication,
anddivision.Theyapplytheirunderstandingsofmodelsfordecimals,
decimalnotation,andpropertiesofoperationstoaddandsubtract
decimalstohundredths.Theydevelopfluencyinthesecomputations,and
makereasonableestimatesoftheirresults.Studentsusetherelationship
betweendecimalsandfractions,aswellastherelationshipbetween
finitedecimalsandwholenumbers(i.e.,afinitedecimalmultipliedbyan
appropriatepowerof10isawholenumber),tounderstandandexplain
whytheproceduresformultiplyinganddividingfinitedecimalsmake
sense.Theycomputeproductsandquotientsofdecimalstohundredths
efficientlyandaccurately.
(3)Studentsrecognizevolumeasanattributeofthree-dimensional
space.Theyunderstandthatvolumecanbemeasuredbyfindingthetotal
numberofsame-sizeunitsofvolumerequiredtofillthespacewithout
gapsoroverlaps.Theyunderstandthata1-unitby1-unitby1-unitcube
isthestandardunitformeasuringvolume.Theyselectappropriateunits,
strategies,andtoolsforsolvingproblemsthatinvolveestimatingand
measuringvolume.Theydecomposethree-dimensionalshapesandfind
volumesofrightrectangularprismsbyviewingthemasdecomposedinto
layersofarraysofcubes.Theymeasurenecessaryattributesofshapesin
ordertodeterminevolumestosolverealworldandmathematicalproblems.

Common Core State StandardS for matHematICSG
ra
de
5 | 34
operations and algebraic thinking
• Write and interpret numerical expressions.
• analyze patterns and relationships.
number and operations in Base ten
• Understand the place value system.
• Perform operations with multi-digit whole numbers and with decimals to hundredths.
number and operations—fractions
• Use equivalent fractions as a strategy to add and subtract fractions.
• apply and extend previous understandings of multiplication and division to multiply and divide fractions.
measurement and data
• Convert like measurement units within a given measurement system.
• represent and interpret data.
• Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
Geometry
• Graph points on the coordinate plane to solve real-world and mathematical problems.
• Classify two-dimensional figures into categories based on their properties.
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
Grade 5 overview

Common Core State StandardS for matHematICSG
ra
de
5 | 35
operations and algebraic thinking 5.oa
Write and interpret numerical expressions.
1. Useparentheses,brackets,orbracesinnumericalexpressions,andevaluateexpressionswiththesesymbols.
2. Writesimpleexpressionsthatrecordcalculationswithnumbers,andinterpretnumericalexpressionswithoutevaluatingthem.For example, express the calculation “add 8 and 7, then multiply by 2” as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.
Analyze patterns and relationships.
3. Generatetwonumericalpatternsusingtwogivenrules.Identifyapparentrelationshipsbetweencorrespondingterms.Formorderedpairsconsistingofcorrespondingtermsfromthetwopatterns,andgraphtheorderedpairsonacoordinateplane.For example, given the rule “Add 3” and the starting number 0, and given the rule “Add 6” and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.
number and operations in Base ten 5.nBt
Understand the place value system.
1. Recognizethatinamulti-digitnumber,adigitinoneplacerepresents10timesasmuchasitrepresentsintheplacetoitsrightand1/10ofwhatitrepresentsintheplacetoitsleft.
2. Explainpatternsinthenumberofzerosoftheproductwhenmultiplyinganumberbypowersof10,andexplainpatternsintheplacementofthedecimalpointwhenadecimalismultipliedordividedbyapowerof10.Usewhole-numberexponentstodenotepowersof10.
3. Read,write,andcomparedecimalstothousandths.
a. Readandwritedecimalstothousandthsusingbase-tennumerals,numbernames,andexpandedform,e.g.,347.392=3×100+4×10+7×1+3×(1/10)+9×(1/100)+2×(1/1000).
b. Comparetwodecimalstothousandthsbasedonmeaningsofthedigitsineachplace,using>,=,and<symbolstorecordtheresultsofcomparisons.
4. Useplacevalueunderstandingtorounddecimalstoanyplace.
Perform operations with multi-digit whole numbers and with decimals to hundredths.
5. Fluentlymultiplymulti-digitwholenumbersusingthestandardalgorithm.
6. Findwhole-numberquotientsofwholenumberswithuptofour-digitdividendsandtwo-digitdivisors,usingstrategiesbasedonplacevalue,thepropertiesofoperations,and/ortherelationshipbetweenmultiplicationanddivision.Illustrateandexplainthecalculationbyusingequations,rectangulararrays,and/orareamodels.
7. Add,subtract,multiply,anddividedecimalstohundredths,usingconcretemodelsordrawingsandstrategiesbasedonplacevalue,propertiesofoperations,and/ortherelationshipbetweenadditionandsubtraction;relatethestrategytoawrittenmethodandexplainthereasoningused.

Common Core State StandardS for matHematICSG
ra
de
5 | 36
number and operations—fractions 5.nf
Use equivalent fractions as a strategy to add and subtract fractions.
1. Addandsubtractfractionswithunlikedenominators(includingmixednumbers)byreplacinggivenfractionswithequivalentfractionsinsuchawayastoproduceanequivalentsumordifferenceoffractionswithlikedenominators.For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.)
2. Solvewordproblemsinvolvingadditionandsubtractionoffractionsreferringtothesamewhole,includingcasesofunlikedenominators,e.g.,byusingvisualfractionmodelsorequationstorepresenttheproblem.Usebenchmarkfractionsandnumbersenseoffractionstoestimatementallyandassessthereasonablenessofanswers.For example, recognize an incorrect result 2/5 + 1/2 = 3/7, by observing that 3/7 < 1/2.
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
3. Interpretafractionasdivisionofthenumeratorbythedenominator(a/b=a÷b).Solvewordproblemsinvolvingdivisionofwholenumbersleadingtoanswersintheformoffractionsormixednumbers,e.g.,byusingvisualfractionmodelsorequationstorepresenttheproblem.For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?
4. Applyandextendpreviousunderstandingsofmultiplicationtomultiplyafractionorwholenumberbyafraction.
a. Interprettheproduct(a/b)×qasapartsofapartitionofqintobequalparts;equivalently,astheresultofasequenceofoperationsa×q÷b.For example, use a visual fraction model to show (2/3) × 4 = 8/3, and create a story context for this equation. Do the same with (2/3) × (4/5) = 8/15. (In general, (a/b) × (c/d) = ac/bd.)
b. Findtheareaofarectanglewithfractionalsidelengthsbytilingitwithunitsquaresoftheappropriateunitfractionsidelengths,andshowthattheareaisthesameaswouldbefoundbymultiplyingthesidelengths.Multiplyfractionalsidelengthstofindareasofrectangles,andrepresentfractionproductsasrectangularareas.
5. Interpretmultiplicationasscaling(resizing),by:
a. Comparingthesizeofaproducttothesizeofonefactoronthebasisofthesizeoftheotherfactor,withoutperformingtheindicatedmultiplication.
b. Explainingwhymultiplyingagivennumberbyafractiongreaterthan1resultsinaproductgreaterthanthegivennumber(recognizingmultiplicationbywholenumbersgreaterthan1asafamiliarcase);explainingwhymultiplyingagivennumberbyafractionlessthan1resultsinaproductsmallerthanthegivennumber;andrelatingtheprincipleoffractionequivalencea/b=(n×a)/(n×b)totheeffectofmultiplyinga/bby1.
6. Solverealworldproblemsinvolvingmultiplicationoffractionsandmixednumbers,e.g.,byusingvisualfractionmodelsorequationstorepresenttheproblem.
7. Applyandextendpreviousunderstandingsofdivisiontodivideunitfractionsbywholenumbersandwholenumbersbyunitfractions.1
a. Interpretdivisionofaunitfractionbyanon-zerowholenumber,
1Studentsabletomultiplyfractionsingeneralcandevelopstrategiestodividefrac-tionsingeneral,byreasoningabouttherelationshipbetweenmultiplicationanddivision.Butdivisionofafractionbyafractionisnotarequirementatthisgrade.

Common Core State StandardS for matHematICSG
ra
de
5 | 37
andcomputesuchquotients.For example, create a story context for (1/3) ÷ 4, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) ÷ 4 = 1/12 because (1/12) × 4 = 1/3.
b. Interpretdivisionofawholenumberbyaunitfraction,andcomputesuchquotients.For example, create a story context for 4 ÷ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4.
c. Solverealworldproblemsinvolvingdivisionofunitfractionsbynon-zerowholenumbersanddivisionofwholenumbersbyunitfractions,e.g.,byusingvisualfractionmodelsandequationstorepresenttheproblem.For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?
measurement and data 5.md
Convert like measurement units within a given measurement system.
1. Convertamongdifferent-sizedstandardmeasurementunitswithinagivenmeasurementsystem(e.g.,convert5cmto0.05m),andusetheseconversionsinsolvingmulti-step,realworldproblems.
Represent and interpret data.
2. Makealineplottodisplayadatasetofmeasurementsinfractionsofaunit(1/2,1/4,1/8).Useoperationsonfractionsforthisgradetosolveproblemsinvolvinginformationpresentedinlineplots.For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.
Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
3. Recognizevolumeasanattributeofsolidfiguresandunderstandconceptsofvolumemeasurement.
a. Acubewithsidelength1unit,calleda“unitcube,”issaidtohave“onecubicunit”ofvolume,andcanbeusedtomeasurevolume.
b. Asolidfigurewhichcanbepackedwithoutgapsoroverlapsusingnunitcubesissaidtohaveavolumeofncubicunits.
4. Measurevolumesbycountingunitcubes,usingcubiccm,cubicin,cubicft,andimprovisedunits.
5. Relatevolumetotheoperationsofmultiplicationandadditionandsolverealworldandmathematicalproblemsinvolvingvolume.
a. Findthevolumeofarightrectangularprismwithwhole-numbersidelengthsbypackingitwithunitcubes,andshowthatthevolumeisthesameaswouldbefoundbymultiplyingtheedgelengths,equivalentlybymultiplyingtheheightbytheareaofthebase.Representthreefoldwhole-numberproductsasvolumes,e.g.,torepresenttheassociativepropertyofmultiplication.
b. ApplytheformulasV=l×w×handV=b×hforrectangularprismstofindvolumesofrightrectangularprismswithwhole-numberedgelengthsinthecontextofsolvingrealworldandmathematicalproblems.
c. Recognizevolumeasadditive.Findvolumesofsolidfigurescomposedoftwonon-overlappingrightrectangularprismsbyaddingthevolumesofthenon-overlappingparts,applyingthistechniquetosolverealworldproblems.

Common Core State StandardS for matHematICSG
ra
de
5 | 38
Geometry 5.G
Graph points on the coordinate plane to solve real-world and mathematical problems.
1. Useapairofperpendicularnumberlines,calledaxes,todefineacoordinatesystem,withtheintersectionofthelines(theorigin)arrangedtocoincidewiththe0oneachlineandagivenpointintheplanelocatedbyusinganorderedpairofnumbers,calleditscoordinates.Understandthatthefirstnumberindicateshowfartotravelfromtheorigininthedirectionofoneaxis,andthesecondnumberindicateshowfartotravelinthedirectionofthesecondaxis,withtheconventionthatthenamesofthetwoaxesandthecoordinatescorrespond(e.g.,x-axisandx-coordinate,y-axisandy-coordinate).
2. Representrealworldandmathematicalproblemsbygraphingpointsinthefirstquadrantofthecoordinateplane,andinterpretcoordinatevaluesofpointsinthecontextofthesituation.
Classify two-dimensional figures into categories based on their properties.
3. Understandthatattributesbelongingtoacategoryoftwo-dimensionalfiguresalsobelongtoallsubcategoriesofthatcategory.For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
4. Classifytwo-dimensionalfiguresinahierarchybasedonproperties.

Common Core State StandardS for matHematICSG
ra
de
6 | 3
9
mathematics | Grade 6InGrade6,instructionaltimeshouldfocusonfourcriticalareas:(1)
connectingratioandratetowholenumbermultiplicationanddivision
andusingconceptsofratioandratetosolveproblems;(2)completing
understandingofdivisionoffractionsandextendingthenotionofnumber
tothesystemofrationalnumbers,whichincludesnegativenumbers;
(3)writing,interpreting,andusingexpressionsandequations;and(4)
developingunderstandingofstatisticalthinking.
(1)Studentsusereasoningaboutmultiplicationanddivisiontosolve
ratioandrateproblemsaboutquantities.Byviewingequivalentratios
andratesasderivingfrom,andextending,pairsofrows(orcolumns)in
themultiplicationtable,andbyanalyzingsimpledrawingsthatindicate
therelativesizeofquantities,studentsconnecttheirunderstandingof
multiplicationanddivisionwithratiosandrates.Thusstudentsexpandthe
scopeofproblemsforwhichtheycanusemultiplicationanddivisionto
solveproblems,andtheyconnectratiosandfractions.Studentssolvea
widevarietyofproblemsinvolvingratiosandrates.
(2)Studentsusethemeaningoffractions,themeaningsofmultiplication
anddivision,andtherelationshipbetweenmultiplicationanddivisionto
understandandexplainwhytheproceduresfordividingfractionsmake
sense.Studentsusetheseoperationstosolveproblems.Studentsextend
theirpreviousunderstandingsofnumberandtheorderingofnumbers
tothefullsystemofrationalnumbers,whichincludesnegativerational
numbers,andinparticularnegativeintegers.Theyreasonabouttheorder
andabsolutevalueofrationalnumbersandaboutthelocationofpointsin
allfourquadrantsofthecoordinateplane.
(3)Studentsunderstandtheuseofvariablesinmathematicalexpressions.
Theywriteexpressionsandequationsthatcorrespondtogivensituations,
evaluateexpressions,anduseexpressionsandformulastosolveproblems.
Studentsunderstandthatexpressionsindifferentformscanbeequivalent,
andtheyusethepropertiesofoperationstorewriteexpressionsin
equivalentforms.Studentsknowthatthesolutionsofanequationarethe
valuesofthevariablesthatmaketheequationtrue.Studentsuseproperties
ofoperationsandtheideaofmaintainingtheequalityofbothsidesof
anequationtosolvesimpleone-stepequations.Studentsconstructand
analyzetables,suchastablesofquantitiesthatareinequivalentratios,
andtheyuseequations(suchas3x=y)todescriberelationshipsbetween
quantities.
(4)Buildingonandreinforcingtheirunderstandingofnumber,students
begintodeveloptheirabilitytothinkstatistically.Studentsrecognizethata
datadistributionmaynothaveadefinitecenterandthatdifferentwaysto
measurecenteryielddifferentvalues.Themedianmeasurescenterinthe
sensethatitisroughlythemiddlevalue.Themeanmeasurescenterinthe
sensethatitisthevaluethateachdatapointwouldtakeonifthetotalof
thedatavalueswereredistributedequally,andalsointhesensethatitisa
balancepoint.Studentsrecognizethatameasureofvariability(interquartile
rangeormeanabsolutedeviation)canalsobeusefulforsummarizing
databecausetwoverydifferentsetsofdatacanhavethesamemeanand

Common Core State StandardS for matHematICSG
ra
de
6 | 4
0
medianyetbedistinguishedbytheirvariability.Studentslearntodescribe
andsummarizenumericaldatasets,identifyingclusters,peaks,gaps,and
symmetry,consideringthecontextinwhichthedatawerecollected.
StudentsinGrade6alsobuildontheirworkwithareainelementary
schoolbyreasoningaboutrelationshipsamongshapestodeterminearea,
surfacearea,andvolume.Theyfindareasofrighttriangles,othertriangles,
andspecialquadrilateralsbydecomposingtheseshapes,rearranging
orremovingpieces,andrelatingtheshapestorectangles.Usingthese
methods,studentsdiscuss,develop,andjustifyformulasforareasof
trianglesandparallelograms.Studentsfindareasofpolygonsandsurface
areasofprismsandpyramidsbydecomposingthemintopieceswhose
areatheycandetermine.Theyreasonaboutrightrectangularprisms
withfractionalsidelengthstoextendformulasforthevolumeofaright
rectangularprismtofractionalsidelengths.Theyprepareforworkon
scaledrawingsandconstructionsinGrade7bydrawingpolygonsinthe
coordinateplane.

Common Core State StandardS for matHematICS
ratios and Proportional relationships
• Understand ratio concepts and use ratio reasoning to solve problems.
the number System
• apply and extend previous understandings of multiplication and division to divide fractions by fractions.
• Compute fluently with multi-digit numbers and find common factors and multiples.
• apply and extend previous understandings of numbers to the system of rational numbers.
expressions and equations
• apply and extend previous understandings of arithmetic to algebraic expressions.
• reason about and solve one-variable equations and inequalities.
• represent and analyze quantitative relationships between dependent and independent variables.
Geometry
• Solve real-world and mathematical problems involving area, surface area, and volume.
Statistics and Probability
• develop understanding of statistical variability.
• Summarize and describe distributions.
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
Grade 6 overview

Common Core State StandardS for matHematICSG
ra
de
6 | 4
2
ratios and Proportional relationships 6.rP
Understand ratio concepts and use ratio reasoning to solve problems.
1. Understandtheconceptofaratioanduseratiolanguagetodescribearatiorelationshipbetweentwoquantities.For example, “The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak.” “For every vote candidate A received, candidate C received nearly three votes.”
2. Understandtheconceptofaunitratea/bassociatedwitharatioa:bwithb≠0,anduseratelanguageinthecontextofaratiorelationship.For example, “This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar.” “We paid $75 for 15 hamburgers, which is a rate of $5 per hamburger.”1
3. Useratioandratereasoningtosolvereal-worldandmathematicalproblems,e.g.,byreasoningabouttablesofequivalentratios,tapediagrams,doublenumberlinediagrams,orequations.
a. Maketablesofequivalentratiosrelatingquantitieswithwhole-numbermeasurements,findmissingvaluesinthetables,andplotthepairsofvaluesonthecoordinateplane.Usetablestocompareratios.
b. Solveunitrateproblemsincludingthoseinvolvingunitpricingandconstantspeed.For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
c. Findapercentofaquantityasarateper100(e.g.,30%ofaquantitymeans30/100timesthequantity);solveproblemsinvolvingfindingthewhole,givenapartandthepercent.
d. Useratioreasoningtoconvertmeasurementunits;manipulateandtransformunitsappropriatelywhenmultiplyingordividingquantities.
the number System 6.nS
Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
1. Interpretandcomputequotientsoffractions,andsolvewordproblemsinvolvingdivisionoffractionsbyfractions,e.g.,byusingvisualfractionmodelsandequationstorepresenttheproblem.For example, create a story context for (2/3) ÷ (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that (2/3) ÷ (3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In general, (a/b) ÷ (c/d) = ad/bc.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?
Compute fluently with multi-digit numbers and find common factors and multiples.
2. Fluentlydividemulti-digitnumbersusingthestandardalgorithm.
3. Fluentlyadd,subtract,multiply,anddividemulti-digitdecimalsusingthestandardalgorithmforeachoperation.
4. Findthegreatestcommonfactoroftwowholenumberslessthanorequalto100andtheleastcommonmultipleoftwowholenumberslessthanorequalto12.Usethedistributivepropertytoexpressasumoftwowholenumbers1–100withacommonfactorasamultipleofasumoftwowholenumberswithnocommonfactor.For example, express 36 + 8 as 4 (9 + 2).
1Expectationsforunitratesinthisgradearelimitedtonon-complexfractions.

Common Core State StandardS for matHematICSG
ra
de
6 | 4
3
Apply and extend previous understandings of numbers to the system of rational numbers.
5. Understandthatpositiveandnegativenumbersareusedtogethertodescribequantitieshavingoppositedirectionsorvalues(e.g.,temperatureabove/belowzero,elevationabove/belowsealevel,credits/debits,positive/negativeelectriccharge);usepositiveandnegativenumberstorepresentquantitiesinreal-worldcontexts,explainingthemeaningof0ineachsituation.
6. Understandarationalnumberasapointonthenumberline.Extendnumberlinediagramsandcoordinateaxesfamiliarfrompreviousgradestorepresentpointsonthelineandintheplanewithnegativenumbercoordinates.
a. Recognizeoppositesignsofnumbersasindicatinglocationsonoppositesidesof0onthenumberline;recognizethattheoppositeoftheoppositeofanumberisthenumberitself,e.g.,–(–3)=3,andthat0isitsownopposite.
b. Understandsignsofnumbersinorderedpairsasindicatinglocationsinquadrantsofthecoordinateplane;recognizethatwhentwoorderedpairsdifferonlybysigns,thelocationsofthepointsarerelatedbyreflectionsacrossoneorbothaxes.
c. Findandpositionintegersandotherrationalnumbersonahorizontalorverticalnumberlinediagram;findandpositionpairsofintegersandotherrationalnumbersonacoordinateplane.
7. Understandorderingandabsolutevalueofrationalnumbers.
a. Interpretstatementsofinequalityasstatementsabouttherelativepositionoftwonumbersonanumberlinediagram.For example, interpret –3 > –7 as a statement that –3 is located to the right of –7 on a number line oriented from left to right.
b. Write,interpret,andexplainstatementsoforderforrationalnumbersinreal-worldcontexts.For example, write –3 oC > –7 oC to express the fact that –3 oC is warmer than –7 oC.
c. Understandtheabsolutevalueofarationalnumberasitsdistancefrom0onthenumberline;interpretabsolutevalueasmagnitudeforapositiveornegativequantityinareal-worldsituation.For example, for an account balance of –30 dollars, write |–30| = 30 to describe the size of the debt in dollars.
d. Distinguishcomparisonsofabsolutevaluefromstatementsaboutorder.For example, recognize that an account balance less than –30 dollars represents a debt greater than 30 dollars.
8. Solvereal-worldandmathematicalproblemsbygraphingpointsinallfourquadrantsofthecoordinateplane.Includeuseofcoordinatesandabsolutevaluetofinddistancesbetweenpointswiththesamefirstcoordinateorthesamesecondcoordinate.
expressions and equations 6.ee
Apply and extend previous understandings of arithmetic to algebraic expressions.
1. Writeandevaluatenumericalexpressionsinvolvingwhole-numberexponents.
2. Write,read,andevaluateexpressionsinwhichlettersstandfornumbers.
a. Writeexpressionsthatrecordoperationswithnumbersandwithlettersstandingfornumbers.For example, express the calculation “Subtract y from 5” as 5 – y.

Common Core State StandardS for matHematICSG
ra
de
6 | 4
4
b. Identifypartsofanexpressionusingmathematicalterms(sum,term,product,factor,quotient,coefficient);viewoneormorepartsofanexpressionasasingleentity.For example, describe the expression 2 (8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms.
c. Evaluateexpressionsatspecificvaluesoftheirvariables.Includeexpressionsthatarisefromformulasusedinreal-worldproblems.Performarithmeticoperations,includingthoseinvolvingwhole-numberexponents,intheconventionalorderwhentherearenoparenthesestospecifyaparticularorder(OrderofOperations).For example, use the formulas V = s3 and A = 6 s2 to find the volume and surface area of a cube with sides of length s = 1/2.
3. Applythepropertiesofoperationstogenerateequivalentexpressions. For example, apply the distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.
4. Identifywhentwoexpressionsareequivalent(i.e.,whenthetwoexpressionsnamethesamenumberregardlessofwhichvalueissubstitutedintothem).For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.
Reason about and solve one-variable equations and inequalities.
5. Understandsolvinganequationorinequalityasaprocessofansweringaquestion:whichvaluesfromaspecifiedset,ifany,maketheequationorinequalitytrue?Usesubstitutiontodeterminewhetheragivennumberinaspecifiedsetmakesanequationorinequalitytrue.
6. Usevariablestorepresentnumbersandwriteexpressionswhensolvingareal-worldormathematicalproblem;understandthatavariablecanrepresentanunknownnumber,or,dependingonthepurposeathand,anynumberinaspecifiedset.
7. Solvereal-worldandmathematicalproblemsbywritingandsolvingequationsoftheformx+p=qandpx=qforcasesinwhichp,qandxareallnonnegativerationalnumbers.
8. Writeaninequalityoftheformx>corx <c torepresentaconstraintorconditioninareal-worldormathematicalproblem.Recognizethatinequalitiesoftheformx>corx<chaveinfinitelymanysolutions;representsolutionsofsuchinequalitiesonnumberlinediagrams.
Represent and analyze quantitative relationships between dependent and independent variables.
9. Usevariablestorepresenttwoquantitiesinareal-worldproblemthatchangeinrelationshiptooneanother;writeanequationtoexpressonequantity,thoughtofasthedependentvariable,intermsoftheotherquantity,thoughtofastheindependentvariable.Analyzetherelationshipbetweenthedependentandindependentvariablesusinggraphsandtables,andrelatethesetotheequation.For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.
Geometry 6.G
Solve real-world and mathematical problems involving area, surface area, and volume.
1. Findtheareaofrighttriangles,othertriangles,specialquadrilaterals,andpolygonsbycomposingintorectanglesordecomposingintotrianglesandothershapes;applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

Common Core State StandardS for matHematICSG
ra
de
6 | 4
5
2. Findthevolumeofarightrectangularprismwithfractionaledgelengthsbypackingitwithunitcubesoftheappropriateunitfractionedgelengths,andshowthatthevolumeisthesameaswouldbefoundbymultiplyingtheedgelengthsoftheprism.ApplytheformulasV = l w h and V = b htofindvolumesofrightrectangularprismswithfractionaledgelengthsinthecontextofsolvingreal-worldandmathematicalproblems.
3. Drawpolygonsinthecoordinateplanegivencoordinatesforthevertices;usecoordinatestofindthelengthofasidejoiningpointswiththesamefirstcoordinateorthesamesecondcoordinate.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.
4. Representthree-dimensionalfiguresusingnetsmadeupofrectanglesandtriangles,andusethenetstofindthesurfaceareaofthesefigures.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.
Statistics and Probability 6.SP
Develop understanding of statistical variability.
1. Recognizeastatisticalquestionasonethatanticipatesvariabilityinthedatarelatedtothequestionandaccountsforitintheanswers.For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a statistical question because one anticipates variability in students’ ages.
2. Understandthatasetofdatacollectedtoanswerastatisticalquestionhasadistributionwhichcanbedescribedbyitscenter,spread,andoverallshape.
3. Recognizethatameasureofcenterforanumericaldatasetsummarizesallofitsvalueswithasinglenumber,whileameasureofvariationdescribeshowitsvaluesvarywithasinglenumber.
Summarize and describe distributions.
4. Displaynumericaldatainplotsonanumberline,includingdotplots,histograms,andboxplots.
5. Summarizenumericaldatasetsinrelationtotheircontext,suchasby:
a. Reportingthenumberofobservations.
b. Describingthenatureoftheattributeunderinvestigation,includinghowitwasmeasuredanditsunitsofmeasurement.
c. Givingquantitativemeasuresofcenter(medianand/ormean)andvariability(interquartilerangeand/ormeanabsolutedeviation),aswellasdescribinganyoverallpatternandanystrikingdeviationsfromtheoverallpatternwithreferencetothecontextinwhichthedataweregathered.
d. Relatingthechoiceofmeasuresofcenterandvariabilitytotheshapeofthedatadistributionandthecontextinwhichthedataweregathered.

Common Core State StandardS for matHematICSG
ra
de
7 | 46
mathematics | Grade 7InGrade7,instructionaltimeshouldfocusonfourcriticalareas:(1)
developingunderstandingofandapplyingproportionalrelationships;
(2)developingunderstandingofoperationswithrationalnumbersand
workingwithexpressionsandlinearequations;(3)solvingproblems
involvingscaledrawingsandinformalgeometricconstructions,and
workingwithtwo-andthree-dimensionalshapestosolveproblems
involvingarea,surfacearea,andvolume;and(4)drawinginferencesabout
populationsbasedonsamples.
(1)Studentsextendtheirunderstandingofratiosanddevelop
understandingofproportionalitytosolvesingle-andmulti-stepproblems.
Studentsusetheirunderstandingofratiosandproportionalitytosolve
awidevarietyofpercentproblems,includingthoseinvolvingdiscounts,
interest,taxes,tips,andpercentincreaseordecrease.Studentssolve
problemsaboutscaledrawingsbyrelatingcorrespondinglengthsbetween
theobjectsorbyusingthefactthatrelationshipsoflengthswithinan
objectarepreservedinsimilarobjects.Studentsgraphproportional
relationshipsandunderstandtheunitrateinformallyasameasureofthe
steepnessoftherelatedline,calledtheslope.Theydistinguishproportional
relationshipsfromotherrelationships.
(2)Studentsdevelopaunifiedunderstandingofnumber,recognizing
fractions,decimals(thathaveafiniteorarepeatingdecimal
representation),andpercentsasdifferentrepresentationsofrational
numbers.Studentsextendaddition,subtraction,multiplication,anddivision
toallrationalnumbers,maintainingthepropertiesofoperationsandthe
relationshipsbetweenadditionandsubtraction,andmultiplicationand
division.Byapplyingtheseproperties,andbyviewingnegativenumbers
intermsofeverydaycontexts(e.g.,amountsowedortemperaturesbelow
zero),studentsexplainandinterprettherulesforadding,subtracting,
multiplying,anddividingwithnegativenumbers.Theyusethearithmetic
ofrationalnumbersastheyformulateexpressionsandequationsinone
variableandusetheseequationstosolveproblems.
(3)StudentscontinuetheirworkwithareafromGrade6,solvingproblems
involvingtheareaandcircumferenceofacircleandsurfaceareaofthree-
dimensionalobjects.Inpreparationforworkoncongruenceandsimilarity
inGrade8theyreasonaboutrelationshipsamongtwo-dimensionalfigures
usingscaledrawingsandinformalgeometricconstructions,andtheygain
familiaritywiththerelationshipsbetweenanglesformedbyintersecting
lines.Studentsworkwiththree-dimensionalfigures,relatingthemtotwo-
dimensionalfiguresbyexaminingcross-sections.Theysolvereal-world
andmathematicalproblemsinvolvingarea,surfacearea,andvolumeof
two-andthree-dimensionalobjectscomposedoftriangles,quadrilaterals,
polygons,cubesandrightprisms.
(4)Studentsbuildontheirpreviousworkwithsingledatadistributionsto
comparetwodatadistributionsandaddressquestionsaboutdifferences
betweenpopulations.Theybegininformalworkwithrandomsampling
togeneratedatasetsandlearnabouttheimportanceofrepresentative
samplesfordrawinginferences.

Common Core State StandardS for matHematICSG
ra
de
7 | 47
ratios and Proportional relationships
• analyze proportional relationships and use them to solve real-world and mathematical problems.
the number System
• apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
expressions and equations
• Use properties of operations to generate equivalent expressions.
• Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
Geometry
• draw, construct and describe geometrical figures and describe the relationships between them.
• Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
Statistics and Probability
• Use random sampling to draw inferences about a population.
• draw informal comparative inferences about two populations.
• Investigate chance processes and develop, use, and evaluate probability models.
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
Grade 7 overview

Common Core State StandardS for matHematICSG
ra
de
7 | 48
ratios and Proportional relationships 7.rP
Analyze proportional relationships and use them to solve real-world and mathematical problems.
1. Computeunitratesassociatedwithratiosoffractions,includingratiosoflengths,areasandotherquantitiesmeasuredinlikeordifferentunits.For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour.
2. Recognizeandrepresentproportionalrelationshipsbetweenquantities.
a. Decidewhethertwoquantitiesareinaproportionalrelationship,e.g.,bytestingforequivalentratiosinatableorgraphingonacoordinateplaneandobservingwhetherthegraphisastraightlinethroughtheorigin.
b. Identifytheconstantofproportionality(unitrate)intables,graphs,equations,diagrams,andverbaldescriptionsofproportionalrelationships.
c. Representproportionalrelationshipsbyequations.For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.
d. Explainwhatapoint (x, y) onthegraphofaproportionalrelationshipmeansintermsofthesituation,withspecialattentiontothepoints(0,0)and(1, r) where r istheunitrate.
3. Useproportionalrelationshipstosolvemultistepratioandpercentproblems.Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
the number System 7.nS
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
1. Applyandextendpreviousunderstandingsofadditionandsubtractiontoaddandsubtractrationalnumbers;representadditionandsubtractiononahorizontalorverticalnumberlinediagram.
a. Describesituationsinwhichoppositequantitiescombinetomake0.For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
b. Understandp+qasthenumberlocatedadistance|q|fromp,inthepositiveornegativedirectiondependingonwhetherqispositiveornegative.Showthatanumberanditsoppositehaveasumof0(areadditiveinverses).Interpretsumsofrationalnumbersbydescribingreal-worldcontexts.
c. Understandsubtractionofrationalnumbersasaddingtheadditiveinverse,p–q=p+(–q).Showthatthedistancebetweentworationalnumbersonthenumberlineistheabsolutevalueoftheirdifference,andapplythisprincipleinreal-worldcontexts.
d. Applypropertiesofoperationsasstrategiestoaddandsubtractrationalnumbers.
2. Applyandextendpreviousunderstandingsofmultiplicationanddivisionandoffractionstomultiplyanddividerationalnumbers.
a. Understandthatmultiplicationisextendedfromfractionstorationalnumbersbyrequiringthatoperationscontinuetosatisfythepropertiesofoperations,particularlythedistributiveproperty,leadingtoproductssuchas(–1)(–1)=1andtherulesformultiplyingsignednumbers.Interpretproductsofrationalnumbersbydescribingreal-worldcontexts.

Common Core State StandardS for matHematICSG
ra
de
7 | 49
b. Understandthatintegerscanbedivided,providedthatthedivisorisnotzero,andeveryquotientofintegers(withnon-zerodivisor)isarationalnumber.Ifpandqareintegers,then–(p/q)=(–p)/q=p/(–q).Interpretquotientsofrationalnumbersbydescribingreal-worldcontexts.
c. Applypropertiesofoperationsasstrategiestomultiplyanddividerationalnumbers.
d. Convertarationalnumbertoadecimalusinglongdivision;knowthatthedecimalformofarationalnumberterminatesin0soreventuallyrepeats.
3. Solvereal-worldandmathematicalproblemsinvolvingthefouroperationswithrationalnumbers.1
expressions and equations 7.ee
Use properties of operations to generate equivalent expressions.
1. Applypropertiesofoperationsasstrategiestoadd,subtract,factor,andexpandlinearexpressionswithrationalcoefficients.
2. Understandthatrewritinganexpressionindifferentformsinaproblemcontextcanshedlightontheproblemandhowthequantitiesinitarerelated.For example, a + 0.05a = 1.05a means that “increase by 5%” is the same as “multiply by 1.05.”
Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
3. Solvemulti-stepreal-lifeandmathematicalproblemsposedwithpositiveandnegativerationalnumbersinanyform(wholenumbers,fractions,anddecimals),usingtoolsstrategically.Applypropertiesofoperationstocalculatewithnumbersinanyform;convertbetweenformsasappropriate;andassessthereasonablenessofanswersusingmentalcomputationandestimationstrategies.For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
4. Usevariablestorepresentquantitiesinareal-worldormathematicalproblem,andconstructsimpleequationsandinequalitiestosolveproblemsbyreasoningaboutthequantities.
a. Solvewordproblemsleadingtoequationsoftheformpx+q=randp(x+q)=r,wherep,q,andrarespecificrationalnumbers.Solveequationsoftheseformsfluently.Compareanalgebraicsolutiontoanarithmeticsolution,identifyingthesequenceoftheoperationsusedineachapproach.For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
b. Solvewordproblemsleadingtoinequalitiesoftheformpx+q>rorpx+q<r,wherep,q,andrarespecificrationalnumbers.Graphthesolutionsetoftheinequalityandinterpretitinthecontextoftheproblem.For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.
Geometry 7.G
Draw, construct, and describe geometrical figures and describe the relationships between them.
1. Solveproblemsinvolvingscaledrawingsofgeometricfigures,includingcomputingactuallengthsandareasfromascaledrawingandreproducingascaledrawingatadifferentscale.
1Computationswithrationalnumbersextendtherulesformanipulatingfractionstocomplexfractions.

Common Core State StandardS for matHematICSG
ra
de
7 | 50
2. Draw(freehand,withrulerandprotractor,andwithtechnology)geometricshapeswithgivenconditions.Focusonconstructingtrianglesfromthreemeasuresofanglesorsides,noticingwhentheconditionsdetermineauniquetriangle,morethanonetriangle,ornotriangle.
3. Describethetwo-dimensionalfiguresthatresultfromslicingthree-dimensionalfigures,asinplanesectionsofrightrectangularprismsandrightrectangularpyramids.
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
4. Knowtheformulasfortheareaandcircumferenceofacircleandusethemtosolveproblems;giveaninformalderivationoftherelationshipbetweenthecircumferenceandareaofacircle.
5. Usefactsaboutsupplementary,complementary,vertical,andadjacentanglesinamulti-stepproblemtowriteandsolvesimpleequationsforanunknownangleinafigure.
6. Solvereal-worldandmathematicalproblemsinvolvingarea,volumeandsurfaceareaoftwo-andthree-dimensionalobjectscomposedoftriangles,quadrilaterals,polygons,cubes,andrightprisms.
Statistics and Probability 7.SP
Use random sampling to draw inferences about a population.
1. Understandthatstatisticscanbeusedtogaininformationaboutapopulationbyexaminingasampleofthepopulation;generalizationsaboutapopulationfromasamplearevalidonlyifthesampleisrepresentativeofthatpopulation.Understandthatrandomsamplingtendstoproducerepresentativesamplesandsupportvalidinferences.
2. Usedatafromarandomsampletodrawinferencesaboutapopulationwithanunknowncharacteristicofinterest.Generatemultiplesamples(orsimulatedsamples)ofthesamesizetogaugethevariationinestimatesorpredictions.For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.
Draw informal comparative inferences about two populations.
3. Informallyassessthedegreeofvisualoverlapoftwonumericaldatadistributionswithsimilarvariabilities,measuringthedifferencebetweenthecentersbyexpressingitasamultipleofameasureofvariability.For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
4. Usemeasuresofcenterandmeasuresofvariabilityfornumericaldatafromrandomsamplestodrawinformalcomparativeinferencesabouttwopopulations.For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.
Investigate chance processes and develop, use, and evaluate probability models.
5. Understandthattheprobabilityofachanceeventisanumberbetween0and1thatexpressesthelikelihoodoftheeventoccurring.Largernumbersindicategreaterlikelihood.Aprobabilitynear0indicatesanunlikelyevent,aprobabilityaround1/2indicatesaneventthatisneitherunlikelynorlikely,andaprobabilitynear1indicatesalikelyevent.

Common Core State StandardS for matHematICSG
ra
de
7 | 51
6. Approximatetheprobabilityofachanceeventbycollectingdataonthechanceprocessthatproducesitandobservingitslong-runrelativefrequency,andpredicttheapproximaterelativefrequencygiventheprobability.For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
7. Developaprobabilitymodelanduseittofindprobabilitiesofevents.Compareprobabilitiesfromamodeltoobservedfrequencies;iftheagreementisnotgood,explainpossiblesourcesofthediscrepancy.
a. Developauniformprobabilitymodelbyassigningequalprobabilitytoalloutcomes,andusethemodeltodetermineprobabilitiesofevents.For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
b. Developaprobabilitymodel(whichmaynotbeuniform)byobservingfrequenciesindatageneratedfromachanceprocess.For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
8. Findprobabilitiesofcompoundeventsusingorganizedlists,tables,treediagrams,andsimulation.
a. Understandthat,justaswithsimpleevents,theprobabilityofacompoundeventisthefractionofoutcomesinthesamplespaceforwhichthecompoundeventoccurs.
b. Representsamplespacesforcompoundeventsusingmethodssuchasorganizedlists,tablesandtreediagrams.Foraneventdescribedineverydaylanguage(e.g.,“rollingdoublesixes”),identifytheoutcomesinthesamplespacewhichcomposetheevent.
c. Designanduseasimulationtogeneratefrequenciesforcompoundevents.For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

Common Core State StandardS for matHematICSG
ra
de
8 | 5
2
mathematics | Grade 8InGrade8,instructionaltimeshouldfocusonthreecriticalareas:(1)formulating
andreasoningaboutexpressionsandequations,includingmodelinganassociation
inbivariatedatawithalinearequation,andsolvinglinearequationsandsystems
oflinearequations;(2)graspingtheconceptofafunctionandusingfunctions
todescribequantitativerelationships;(3)analyzingtwo-andthree-dimensional
spaceandfiguresusingdistance,angle,similarity,andcongruence,and
understandingandapplyingthePythagoreanTheorem.
(1)Studentsuselinearequationsandsystemsoflinearequationstorepresent,
analyze,andsolveavarietyofproblems.Studentsrecognizeequationsfor
proportions(y/x=mory=mx)asspeciallinearequations(y=mx+b),
understandingthattheconstantofproportionality(m)istheslope,andthegraphs
arelinesthroughtheorigin.Theyunderstandthattheslope(m)ofalineisa
constantrateofchange,sothatiftheinputorx-coordinatechangesbyanamount
A,theoutputory-coordinatechangesbytheamountm·A.Studentsalsousealinear
equationtodescribetheassociationbetweentwoquantitiesinbivariatedata(such
asarmspanvs.heightforstudentsinaclassroom).Atthisgrade,fittingthemodel,
andassessingitsfittothedataaredoneinformally.Interpretingthemodelinthe
contextofthedatarequiresstudentstoexpressarelationshipbetweenthetwo
quantitiesinquestionandtointerpretcomponentsoftherelationship(suchasslope
andy-intercept)intermsofthesituation.
Studentsstrategicallychooseandefficientlyimplementprocedurestosolvelinear
equationsinonevariable,understandingthatwhentheyusethepropertiesof
equalityandtheconceptoflogicalequivalence,theymaintainthesolutionsofthe
originalequation.Studentssolvesystemsoftwolinearequationsintwovariables
andrelatethesystemstopairsoflinesintheplane;theseintersect,areparallel,or
arethesameline.Studentsuselinearequations,systemsoflinearequations,linear
functions,andtheirunderstandingofslopeofalinetoanalyzesituationsandsolve
problems.
(2)Studentsgrasptheconceptofafunctionasarulethatassignstoeachinput
exactlyoneoutput.Theyunderstandthatfunctionsdescribesituationswhereone
quantitydeterminesanother.Theycantranslateamongrepresentationsandpartial
representationsoffunctions(notingthattabularandgraphicalrepresentations
maybepartialrepresentations),andtheydescribehowaspectsofthefunctionare
reflectedinthedifferentrepresentations.
(3)Studentsuseideasaboutdistanceandangles,howtheybehaveunder
translations,rotations,reflections,anddilations,andideasaboutcongruenceand
similaritytodescribeandanalyzetwo-dimensionalfiguresandtosolveproblems.
Studentsshowthatthesumoftheanglesinatriangleistheangleformedbya
straightline,andthatvariousconfigurationsoflinesgiverisetosimilartriangles
becauseoftheanglescreatedwhenatransversalcutsparallellines.Students
understandthestatementofthePythagoreanTheoremanditsconverse,andcan
explainwhythePythagoreanTheoremholds,forexample,bydecomposinga
squareintwodifferentways.TheyapplythePythagoreanTheoremtofinddistances
betweenpointsonthecoordinateplane,tofindlengths,andtoanalyzepolygons.
Studentscompletetheirworkonvolumebysolvingproblemsinvolvingcones,
cylinders,andspheres.

Common Core State StandardS for matHematICSG
ra
de
8 | 5
3
the number System
• Know that there are numbers that are not rational, and approximate them by rational numbers.
expressions and equations
• Work with radicals and integer exponents.
• Understand the connections between proportional relationships, lines, and linear equations.
• analyze and solve linear equations and pairs of simultaneous linear equations.
functions
• define, evaluate, and compare functions.
• Use functions to model relationships between quantities.
Geometry
• Understand congruence and similarity using physical models, transparencies, or geometry software.
• Understand and apply the Pythagorean theorem.
• Solve real-world and mathematical problems involving volume of cylinders, cones and spheres.
Statistics and Probability
• Investigate patterns of association in bivariate data.
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
Grade 8 overview

Common Core State StandardS for matHematICSG
ra
de
8 | 5
4
the number System 8.nS
Know that there are numbers that are not rational, and approximate them by rational numbers.
1. Knowthatnumbersthatarenotrationalarecalledirrational.Understandinformallythateverynumberhasadecimalexpansion;forrationalnumbersshowthatthedecimalexpansionrepeatseventually,andconvertadecimalexpansionwhichrepeatseventuallyintoarationalnumber.
2. Userationalapproximationsofirrationalnumberstocomparethesizeofirrationalnumbers,locatethemapproximatelyonanumberlinediagram,andestimatethevalueofexpressions(e.g.,π2).For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
expressions and equations 8.ee
Work with radicals and integer exponents.
1. Knowandapplythepropertiesofintegerexponentstogenerateequivalentnumericalexpressions.For example, 32 × 3–5 = 3–3 = 1/33 = 1/27.
2. Usesquarerootandcuberootsymbolstorepresentsolutionstoequationsoftheformx2=pandx3=p,wherepisapositiverationalnumber.Evaluatesquarerootsofsmallperfectsquaresandcuberootsofsmallperfectcubes.Knowthat√2isirrational.
3. Usenumbersexpressedintheformofasingledigittimesanintegerpowerof10toestimateverylargeorverysmallquantities,andtoexpresshowmanytimesasmuchoneisthantheother.For example, estimate the population of the United States as 3 × 108 and the population of the world as 7 × 109, and determine that the world population is more than 20 times larger.
4. Performoperationswithnumbersexpressedinscientificnotation,includingproblemswherebothdecimalandscientificnotationareused.Usescientificnotationandchooseunitsofappropriatesizeformeasurementsofverylargeorverysmallquantities(e.g.,usemillimetersperyearforseafloorspreading).Interpretscientificnotationthathasbeengeneratedbytechnology.
Understand the connections between proportional relationships, lines, and linear equations.
5. Graphproportionalrelationships,interpretingtheunitrateastheslopeofthegraph.Comparetwodifferentproportionalrelationshipsrepresentedindifferentways.For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
6. Usesimilartrianglestoexplainwhytheslopemisthesamebetweenanytwodistinctpointsonanon-verticallineinthecoordinateplane;derivetheequationy=mxforalinethroughtheoriginandtheequationy=mx+bforalineinterceptingtheverticalaxisatb.
Analyze and solve linear equations and pairs of simultaneous linear equations.
7. Solvelinearequationsinonevariable.
a. Giveexamplesoflinearequationsinonevariablewithonesolution,infinitelymanysolutions,ornosolutions.Showwhichofthesepossibilitiesisthecasebysuccessivelytransformingthegivenequationintosimplerforms,untilanequivalentequationoftheformx=a,a=a,ora=bresults(whereaandbaredifferentnumbers).
b. Solvelinearequationswithrationalnumbercoefficients,includingequationswhosesolutionsrequireexpandingexpressionsusingthedistributivepropertyandcollectingliketerms.

Common Core State StandardS for matHematICSG
ra
de
8 | 5
5
8. Analyzeandsolvepairsofsimultaneouslinearequations.
a. Understandthatsolutionstoasystemoftwolinearequationsintwovariablescorrespondtopointsofintersectionoftheirgraphs,becausepointsofintersectionsatisfybothequationssimultaneously.
b. Solvesystemsoftwolinearequationsintwovariablesalgebraically,andestimatesolutionsbygraphingtheequations.Solvesimplecasesbyinspection.For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.
c. Solvereal-worldandmathematicalproblemsleadingtotwolinearequationsintwovariables.For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
functions 8.f
Define, evaluate, and compare functions.
1. Understandthatafunctionisarulethatassignstoeachinputexactlyoneoutput.Thegraphofafunctionisthesetoforderedpairsconsistingofaninputandthecorrespondingoutput.1
2. Comparepropertiesoftwofunctionseachrepresentedinadifferentway(algebraically,graphically,numericallyintables,orbyverbaldescriptions).For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
3. Interprettheequationy=mx+basdefiningalinearfunction,whosegraphisastraightline;giveexamplesoffunctionsthatarenotlinear.For example, the function A = s2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
Use functions to model relationships between quantities.
4. Constructafunctiontomodelalinearrelationshipbetweentwoquantities.Determinetherateofchangeandinitialvalueofthefunctionfromadescriptionofarelationshiporfromtwo(x,y)values,includingreadingthesefromatableorfromagraph.Interprettherateofchangeandinitialvalueofalinearfunctionintermsofthesituationitmodels,andintermsofitsgraphoratableofvalues.
5. Describequalitativelythefunctionalrelationshipbetweentwoquantitiesbyanalyzingagraph(e.g.,wherethefunctionisincreasingordecreasing,linearornonlinear).Sketchagraphthatexhibitsthequalitativefeaturesofafunctionthathasbeendescribedverbally.
Geometry 8.G
Understand congruence and similarity using physical models, trans-parencies, or geometry software.
1. Verifyexperimentallythepropertiesofrotations,reflections,andtranslations:
a. Linesaretakentolines,andlinesegmentstolinesegmentsofthesamelength.
b. Anglesaretakentoanglesofthesamemeasure.
c. Parallellinesaretakentoparallellines.
2. Understandthatatwo-dimensionalfigureiscongruenttoanotherifthesecondcanbeobtainedfromthefirstbyasequenceofrotations,reflections,andtranslations;giventwocongruentfigures,describeasequencethatexhibitsthecongruencebetweenthem.
1FunctionnotationisnotrequiredinGrade8.

Common Core State StandardS for matHematICSG
ra
de
8 | 5
6
3. Describetheeffectofdilations,translations,rotations,andreflectionsontwo-dimensionalfiguresusingcoordinates.
4. Understandthatatwo-dimensionalfigureissimilartoanotherifthesecondcanbeobtainedfromthefirstbyasequenceofrotations,reflections,translations,anddilations;giventwosimilartwo-dimensionalfigures,describeasequencethatexhibitsthesimilaritybetweenthem.
5. Useinformalargumentstoestablishfactsabouttheanglesumandexteriorangleoftriangles,abouttheanglescreatedwhenparallellinesarecutbyatransversal,andtheangle-anglecriterionforsimilarityoftriangles.For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
Understand and apply the Pythagorean Theorem.
6. ExplainaproofofthePythagoreanTheoremanditsconverse.
7. ApplythePythagoreanTheoremtodetermineunknownsidelengthsinrighttrianglesinreal-worldandmathematicalproblemsintwoandthreedimensions.
8. ApplythePythagoreanTheoremtofindthedistancebetweentwopointsinacoordinatesystem.
Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
9. Knowtheformulasforthevolumesofcones,cylinders,andspheresandusethemtosolvereal-worldandmathematicalproblems.
Statistics and Probability 8.SP
Investigate patterns of association in bivariate data.
1. Constructandinterpretscatterplotsforbivariatemeasurementdatatoinvestigatepatternsofassociationbetweentwoquantities.Describepatternssuchasclustering,outliers,positiveornegativeassociation,linearassociation,andnonlinearassociation.
2. Knowthatstraightlinesarewidelyusedtomodelrelationshipsbetweentwoquantitativevariables.Forscatterplotsthatsuggestalinearassociation,informallyfitastraightline,andinformallyassessthemodelfitbyjudgingtheclosenessofthedatapointstotheline.
3. Usetheequationofalinearmodeltosolveproblemsinthecontextofbivariatemeasurementdata,interpretingtheslopeandintercept.For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
4. Understandthatpatternsofassociationcanalsobeseeninbivariatecategoricaldatabydisplayingfrequenciesandrelativefrequenciesinatwo-waytable.Constructandinterpretatwo-waytablesummarizingdataontwocategoricalvariablescollectedfromthesamesubjects.Userelativefrequenciescalculatedforrowsorcolumnstodescribepossibleassociationbetweenthetwovariables.For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
| 57
mathematics Standards for High SchoolThehighschoolstandardsspecifythemathematicsthatallstudentsshould
studyinordertobecollegeandcareerready.Additionalmathematicsthat
studentsshouldlearninordertotakeadvancedcoursessuchascalculus,
advancedstatistics,ordiscretemathematicsisindicatedby(+),asinthis
example:
(+)Representcomplexnumbersonthecomplexplaneinrectangular
andpolarform(includingrealandimaginarynumbers).
Allstandardswithouta(+)symbolshouldbeinthecommonmathematics
curriculumforallcollegeandcareerreadystudents.Standardswitha(+)
symbolmayalsoappearincoursesintendedforallstudents.
Thehighschoolstandardsarelistedinconceptualcategories:
• NumberandQuantity
• Algebra
• Functions
• Modeling
• Geometry
• StatisticsandProbability
Conceptualcategoriesportrayacoherentviewofhighschool
mathematics;astudent’sworkwithfunctions,forexample,crossesa
numberoftraditionalcourseboundaries,potentiallyupthroughand
includingcalculus.
Modelingisbestinterpretednotasacollectionofisolatedtopicsbutin
relationtootherstandards.MakingmathematicalmodelsisaStandardfor
MathematicalPractice,andspecificmodelingstandardsappearthroughout
thehighschoolstandardsindicatedbyastarsymbol(★).Thestarsymbol
sometimesappearsontheheadingforagroupofstandards;inthatcase,it
shouldbeunderstoodtoapplytoallstandardsinthatgroup.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— n
Um
be
r a
nd
qU
an
tIt
y | 5
8
mathematics | High School—number and QuantityNumbers and Number Systems.Duringtheyearsfromkindergartentoeighth
grade,studentsmustrepeatedlyextendtheirconceptionofnumber.Atfirst,
“number”means“countingnumber”:1,2,3...Soonafterthat,0isusedtorepresent
“none”andthewholenumbersareformedbythecountingnumberstogether
withzero.Thenextextensionisfractions.Atfirst,fractionsarebarelynumbers
andtiedstronglytopictorialrepresentations.Yetbythetimestudentsunderstand
divisionoffractions,theyhaveastrongconceptoffractionsasnumbersandhave
connectedthem,viatheirdecimalrepresentations,withthebase-tensystemused
torepresentthewholenumbers.Duringmiddleschool,fractionsareaugmentedby
negativefractionstoformtherationalnumbers.InGrade8,studentsextendthis
systemoncemore,augmentingtherationalnumberswiththeirrationalnumbers
toformtherealnumbers.Inhighschool,studentswillbeexposedtoyetanother
extensionofnumber,whentherealnumbersareaugmentedbytheimaginary
numberstoformthecomplexnumbers.
Witheachextensionofnumber,themeaningsofaddition,subtraction,
multiplication,anddivisionareextended.Ineachnewnumbersystem—integers,
rationalnumbers,realnumbers,andcomplexnumbers—thefouroperationsstay
thesameintwoimportantways:Theyhavethecommutative,associative,and
distributivepropertiesandtheirnewmeaningsareconsistentwiththeirprevious
meanings.
Extendingthepropertiesofwhole-numberexponentsleadstonewandproductive
notation.Forexample,propertiesofwhole-numberexponentssuggestthat(51/3)3
shouldbe5(1/3)3=51=5andthat51/3shouldbethecuberootof5.
Calculators,spreadsheets,andcomputeralgebrasystemscanprovidewaysfor
studentstobecomebetteracquaintedwiththesenewnumbersystemsandtheir
notation.Theycanbeusedtogeneratedatafornumericalexperiments,tohelp
understandtheworkingsofmatrix,vector,andcomplexnumberalgebra,andto
experimentwithnon-integerexponents.
Quantities.Inrealworldproblems,theanswersareusuallynotnumbersbut
quantities:numberswithunits,whichinvolvesmeasurement.Intheirworkin
measurementupthroughGrade8,studentsprimarilymeasurecommonlyused
attributessuchaslength,area,andvolume.Inhighschool,studentsencountera
widervarietyofunitsinmodeling,e.g.,acceleration,currencyconversions,derived
quantitiessuchasperson-hoursandheatingdegreedays,socialscienceratessuch
asper-capitaincome,andratesineverydaylifesuchaspointsscoredpergameor
battingaverages.Theyalsoencounternovelsituationsinwhichtheythemselves
mustconceivetheattributesofinterest.Forexample,tofindagoodmeasureof
overallhighwaysafety,theymightproposemeasuressuchasfatalitiesperyear,
fatalitiesperyearperdriver,orfatalitiespervehicle-miletraveled.Suchaconceptual
processissometimescalledquantification.Quantificationisimportantforscience,
aswhensurfaceareasuddenly“standsout”asanimportantvariableinevaporation.
Quantificationisalsoimportantforcompanies,whichmustconceptualizerelevant
attributesandcreateorchoosesuitablemeasuresforthem.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— n
Um
be
r a
nd
qU
an
tIt
y | 5
9
The Real Number System
• extend the properties of exponents to rational exponents
• Use properties of rational and irrational numbers.
Quantities
• reason quantitatively and use units to solve problems
The Complex Number System
• Perform arithmetic operations with complex numbers
• represent complex numbers and their operations on the complex plane
• Use complex numbers in polynomial identities and equations
Vector and Matrix Quantities
• represent and model with vector quantities.
• Perform operations on vectors.
• Perform operations on matrices and use matrices in applications.
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
number and Quantity overview

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— n
Um
be
r a
nd
qU
an
tIt
y | 6
0
the real number System n-rn
Extend the properties of exponents to rational exponents.
1. Explainhowthedefinitionofthemeaningofrationalexponentsfollowsfromextendingthepropertiesofintegerexponentstothosevalues,allowingforanotationforradicalsintermsofrationalexponents.For example, we define 51/3 to be the cube root of 5 because we want (51/3)3 = 5(1/3)3 to hold, so (51/3)3 must equal 5.
2. Rewriteexpressionsinvolvingradicalsandrationalexponentsusingthepropertiesofexponents.
Use properties of rational and irrational numbers.
3. Explainwhythesumorproductoftworationalnumbersisrational;thatthesumofarationalnumberandanirrationalnumberisirrational;andthattheproductofanonzerorationalnumberandanirrationalnumberisirrational.
Quantities★ n-Q
Reason quantitatively and use units to solve problems.
1. Useunitsasawaytounderstandproblemsandtoguidethesolutionofmulti-stepproblems;chooseandinterpretunitsconsistentlyinformulas;chooseandinterpretthescaleandtheoriginingraphsanddatadisplays.
2. Defineappropriatequantitiesforthepurposeofdescriptivemodeling.
3. Choosealevelofaccuracyappropriatetolimitationsonmeasurementwhenreportingquantities.
the Complex number System n-Cn
Perform arithmetic operations with complex numbers.
1. Knowthereisacomplexnumberisuchthati2=–1,andeverycomplexnumberhastheforma +bi withaandbreal.
2. Usetherelationi2=–1andthecommutative,associative,anddistributivepropertiestoadd,subtract,andmultiplycomplexnumbers.
3. (+)Findtheconjugateofacomplexnumber;useconjugatestofindmoduliandquotientsofcomplexnumbers.
Represent complex numbers and their operations on the complex plane.
4. (+)Representcomplexnumbersonthecomplexplaneinrectangularandpolarform(includingrealandimaginarynumbers),andexplainwhytherectangularandpolarformsofagivencomplexnumberrepresentthesamenumber.
5. (+)Representaddition,subtraction,multiplication,andconjugationofcomplexnumbersgeometricallyonthecomplexplane;usepropertiesofthisrepresentationforcomputation.For example, (–1+√3i)3=8because(–1+√3i)has modulus2and argument120°.
6. (+)Calculatethedistancebetweennumbersinthecomplexplaneasthemodulusofthedifference,andthemidpointofasegmentastheaverageofthenumbersatitsendpoints.
Use complex numbers in polynomial identities and equations.
7. Solvequadraticequationswithrealcoefficientsthathavecomplexsolutions.
8. (+)Extendpolynomialidentitiestothecomplexnumbers.For example, rewrite x2+4as(x+2i)(x–2i).
9. (+)KnowtheFundamentalTheoremofAlgebra;showthatitistrueforquadraticpolynomials.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— n
Um
be
r a
nd
qU
an
tIt
y | 6
1
Vector and matrix Quantities n-Vm
Represent and model with vector quantities.
1. (+)Recognizevectorquantitiesashavingbothmagnitudeanddirection.Representvectorquantitiesbydirectedlinesegments,anduseappropriatesymbolsforvectorsandtheirmagnitudes(e.g.,v,|v|,||v||,v).
2. (+)Findthecomponentsofavectorbysubtractingthecoordinatesofaninitialpointfromthecoordinatesofaterminalpoint.
3. (+)Solveproblemsinvolvingvelocityandotherquantitiesthatcanberepresentedbyvectors.
Perform operations on vectors.
4. (+)Addandsubtractvectors.
a. Addvectorsend-to-end,component-wise,andbytheparallelogramrule.Understandthatthemagnitudeofasumoftwovectorsistypicallynotthesumofthemagnitudes.
b. Giventwovectorsinmagnitudeanddirectionform,determinethemagnitudeanddirectionoftheirsum.
c. Understandvectorsubtractionv–wasv+(–w),where–wistheadditiveinverseofw,withthesamemagnitudeaswandpointingintheoppositedirection.Representvectorsubtractiongraphicallybyconnectingthetipsintheappropriateorder,andperformvectorsubtractioncomponent-wise.
5. (+)Multiplyavectorbyascalar.
a. Representscalarmultiplicationgraphicallybyscalingvectorsandpossiblyreversingtheirdirection;performscalarmultiplicationcomponent-wise,e.g.,asc(v
x,v
y)=(cv
x,cv
y).
b. Computethemagnitudeofascalarmultiplecvusing||cv||=|c|v.Computethedirectionofcvknowingthatwhen|c|v≠0,thedirectionofcviseitheralongv(forc>0)oragainstv(forc<0).
Perform operations on matrices and use matrices in applications.
6. (+)Usematricestorepresentandmanipulatedata,e.g.,torepresentpayoffsorincidencerelationshipsinanetwork.
7. (+)Multiplymatricesbyscalarstoproducenewmatrices,e.g.,aswhenallofthepayoffsinagamearedoubled.
8. (+)Add,subtract,andmultiplymatricesofappropriatedimensions.
9. (+)Understandthat,unlikemultiplicationofnumbers,matrixmultiplicationforsquarematricesisnotacommutativeoperation,butstillsatisfiestheassociativeanddistributiveproperties.
10. (+)Understandthatthezeroandidentitymatricesplayaroleinmatrixadditionandmultiplicationsimilartotheroleof0and1intherealnumbers.Thedeterminantofasquarematrixisnonzeroifandonlyifthematrixhasamultiplicativeinverse.
11. (+)Multiplyavector(regardedasamatrixwithonecolumn)byamatrixofsuitabledimensionstoproduceanothervector.Workwithmatricesastransformationsofvectors.
12. (+)Workwith2×2matricesastransformationsoftheplane,andinterprettheabsolutevalueofthedeterminantintermsofarea.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— a
lGe
br
a | 6
2
mathematics | High School—algebraExpressions.Anexpressionisarecordofacomputationwithnumbers,symbolsthatrepresentnumbers,arithmeticoperations,exponentiation,and,atmoreadvancedlevels,theoperationofevaluatingafunction.Conventionsabouttheuseofparenthesesandtheorderofoperationsassurethateachexpressionisunambiguous.Creatinganexpressionthatdescribesacomputationinvolvingageneralquantityrequirestheabilitytoexpressthecomputationingeneralterms,abstractingfromspecificinstances.
Readinganexpressionwithcomprehensioninvolvesanalysisofitsunderlyingstructure.Thismaysuggestadifferentbutequivalentwayofwritingtheexpressionthatexhibitssomedifferentaspectofitsmeaning.Forexample,p+0.05pcanbeinterpretedastheadditionofa5%taxtoapricep.Rewritingp+0.05pas1.05pshowsthataddingataxisthesameasmultiplyingthepricebyaconstantfactor.
Algebraicmanipulationsaregovernedbythepropertiesofoperationsandexponents,andtheconventionsofalgebraicnotation.Attimes,anexpressionistheresultofapplyingoperationstosimplerexpressions.Forexample,p+0.05pisthesumofthesimplerexpressionspand0.05p.Viewinganexpressionastheresultofoperationonsimplerexpressionscansometimesclarifyitsunderlyingstructure.
Aspreadsheetoracomputeralgebrasystem(CAS)canbeusedtoexperimentwithalgebraicexpressions,performcomplicatedalgebraicmanipulations,andunderstandhowalgebraicmanipulationsbehave.
Equations and inequalities.Anequationisastatementofequalitybetweentwoexpressions,oftenviewedasaquestionaskingforwhichvaluesofthevariablestheexpressionsoneithersideareinfactequal.Thesevaluesarethesolutionstotheequation.Anidentity,incontrast,istrueforallvaluesofthevariables;identitiesareoftendevelopedbyrewritinganexpressioninanequivalentform.
Thesolutionsofanequationinonevariableformasetofnumbers;thesolutionsofanequationintwovariablesformasetoforderedpairsofnumbers,whichcanbeplottedinthecoordinateplane.Twoormoreequationsand/orinequalitiesformasystem.Asolutionforsuchasystemmustsatisfyeveryequationandinequalityinthesystem.
Anequationcanoftenbesolvedbysuccessivelydeducingfromitoneormoresimplerequations.Forexample,onecanaddthesameconstanttobothsideswithoutchangingthesolutions,butsquaringbothsidesmightleadtoextraneoussolutions.Strategiccompetenceinsolvingincludeslookingaheadforproductivemanipulationsandanticipatingthenatureandnumberofsolutions.
Someequationshavenosolutionsinagivennumbersystem,buthaveasolutioninalargersystem.Forexample,thesolutionofx+1=0isaninteger,notawholenumber;thesolutionof2x+1=0isarationalnumber,notaninteger;thesolutionsofx2–2=0arerealnumbers,notrationalnumbers;andthesolutionsofx2+2=0arecomplexnumbers,notrealnumbers.
Thesamesolutiontechniquesusedtosolveequationscanbeusedtorearrangeformulas.Forexample,theformulafortheareaofatrapezoid,A=((b
1+b
2)/2)h,can
besolvedforhusingthesamedeductiveprocess.
Inequalitiescanbesolvedbyreasoningaboutthepropertiesofinequality.Many,butnotall,ofthepropertiesofequalitycontinuetoholdforinequalitiesandcanbeusefulinsolvingthem.
Connections to Functions and Modeling. Expressionscandefinefunctions,andequivalentexpressionsdefinethesamefunction.Askingwhentwofunctionshavethesamevalueforthesameinputleadstoanequation;graphingthetwofunctionsallowsforfindingapproximatesolutionsoftheequation.Convertingaverbaldescriptiontoanequation,inequality,orsystemoftheseisanessentialskillinmodeling.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— a
lGe
br
a | 6
3
Seeing Structure in Expressions
• Interpret the structure of expressions
• Write expressions in equivalent forms to solve problems
Arithmetic with Polynomials and Rational Expressions
• Perform arithmetic operations on polynomials
• Understand the relationship between zeros and factors of polynomials
• Use polynomial identities to solve problems
• rewrite rational expressions
Creating Equations
• Create equations that describe numbers or relationships
Reasoning with Equations and Inequalities
• Understand solving equations as a process of reasoning and explain the reasoning
• Solve equations and inequalities in one variable
• Solve systems of equations
• represent and solve equations and inequalities graphically
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
algebra overview

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— a
lGe
br
a | 6
4
Seeing Structure in expressions a-SSe
Interpret the structure of expressions
1. Interpretexpressionsthatrepresentaquantityintermsofitscontext.★
a. Interpretpartsofanexpression,suchasterms,factors,andcoefficients.
b. Interpretcomplicatedexpressionsbyviewingoneormoreoftheirpartsasasingleentity.For example, interpretP(1+r)nas the product of P and a factor not depending on P.
2. Usethestructureofanexpressiontoidentifywaystorewriteit.For example, see x4–y4as(x2)2–(y2)2,thus recognizing it as a difference of squares that can be factored as(x2–y2)(x2+y2).
Write expressions in equivalent forms to solve problems
3. Chooseandproduceanequivalentformofanexpressiontorevealandexplainpropertiesofthequantityrepresentedbytheexpression.★
a. Factoraquadraticexpressiontorevealthezerosofthefunctionitdefines.
b. Completethesquareinaquadraticexpressiontorevealthemaximumorminimumvalueofthefunctionitdefines.
c. Usethepropertiesofexponentstotransformexpressionsforexponentialfunctions. For example the expression1.15tcan be rewritten as(1.151/12)12t≈1.01212tto reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
4. Derivetheformulaforthesumofafinitegeometricseries(whenthecommonratioisnot1),andusetheformulatosolveproblems.For example, calculate mortgage payments.★
arithmetic with Polynomials and rational expressions a-aPr
Perform arithmetic operations on polynomials
1. Understandthatpolynomialsformasystemanalogoustotheintegers,namely,theyareclosedundertheoperationsofaddition,subtraction,andmultiplication;add,subtract,andmultiplypolynomials.
Understand the relationship between zeros and factors of polynomials
2. KnowandapplytheRemainderTheorem:Forapolynomialp(x)andanumbera,theremainderondivisionbyx–aisp(a),sop(a)=0ifandonlyif(x–a)isafactorofp(x).
3. Identifyzerosofpolynomialswhensuitablefactorizationsareavailable,andusethezerostoconstructaroughgraphofthefunctiondefinedbythepolynomial.
Use polynomial identities to solve problems
4. Provepolynomialidentitiesandusethemtodescribenumericalrelationships.For example, the polynomial identity(x2+y2)2=(x2–y2)2+(2xy)2can be used to generate Pythagorean triples.
5. (+)KnowandapplytheBinomialTheoremfortheexpansionof(x+y)ninpowersofxandyforapositiveintegern,wherexandyareanynumbers,withcoefficientsdeterminedforexamplebyPascal’sTriangle.1
1TheBinomialTheoremcanbeprovedbymathematicalinductionorbyacom-binatorialargument.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— a
lGe
br
a | 6
5
Rewrite rational expressions
6. Rewritesimplerationalexpressionsindifferentforms;writea(x)/b(x)intheformq(x)+r(x)/b(x),wherea(x),b(x),q(x),andr(x)arepolynomialswiththedegreeofr(x)lessthanthedegreeofb(x),usinginspection,longdivision,or,forthemorecomplicatedexamples,acomputeralgebrasystem.
7. (+)Understandthatrationalexpressionsformasystemanalogoustotherationalnumbers,closedunderaddition,subtraction,multiplication,anddivisionbyanonzerorationalexpression;add,subtract,multiply,anddividerationalexpressions.
Creating equations★ a-Ced
Create equations that describe numbers or relationships
1. Createequationsandinequalitiesinonevariableandusethemtosolveproblems.Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
2. Createequationsintwoormorevariablestorepresentrelationshipsbetweenquantities;graphequationsoncoordinateaxeswithlabelsandscales.
3. Representconstraintsbyequationsorinequalities,andbysystemsofequationsand/orinequalities,andinterpretsolutionsasviableornon-viableoptionsinamodelingcontext.For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
4. Rearrangeformulastohighlightaquantityofinterest,usingthesamereasoningasinsolvingequations.For example, rearrange Ohm’s law V = IR to highlight resistance R.
reasoning with equations and Inequalities a-reI
Understand solving equations as a process of reasoning and explain the reasoning
1. Explaineachstepinsolvingasimpleequationasfollowingfromtheequalityofnumbersassertedatthepreviousstep,startingfromtheassumptionthattheoriginalequationhasasolution.Constructaviableargumenttojustifyasolutionmethod.
2. Solvesimplerationalandradicalequationsinonevariable,andgiveexamplesshowinghowextraneoussolutionsmayarise.
Solve equations and inequalities in one variable
3. Solvelinearequationsandinequalitiesinonevariable,includingequationswithcoefficientsrepresentedbyletters.
4. Solvequadraticequationsinonevariable.
a. Usethemethodofcompletingthesquaretotransformanyquadraticequationinxintoanequationoftheform(x–p)2=qthathasthesamesolutions.Derivethequadraticformulafromthisform.
b. Solvequadraticequationsbyinspection(e.g.,forx2=49),takingsquareroots,completingthesquare,thequadraticformulaandfactoring,asappropriatetotheinitialformoftheequation.Recognizewhenthequadraticformulagivescomplexsolutionsandwritethemasa±biforrealnumbersaandb.
Solve systems of equations
5. Provethat,givenasystemoftwoequationsintwovariables,replacingoneequationbythesumofthatequationandamultipleoftheotherproducesasystemwiththesamesolutions.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— a
lGe
br
a | 6
6
6. Solvesystemsoflinearequationsexactlyandapproximately(e.g.,withgraphs),focusingonpairsoflinearequationsintwovariables.
7. Solveasimplesystemconsistingofalinearequationandaquadraticequationintwovariablesalgebraicallyandgraphically.For example, find the points of intersection between the line y=–3xandthecirclex2+y2=3.
8. (+)Representasystemoflinearequationsasasinglematrixequationinavectorvariable.
9. (+)Findtheinverseofamatrixifitexistsanduseittosolvesystemsoflinearequations(usingtechnologyformatricesofdimension3×3orgreater).
Represent and solve equations and inequalities graphically
10. Understandthatthegraphofanequationintwovariablesisthesetofallitssolutionsplottedinthecoordinateplane,oftenformingacurve(whichcouldbealine).
11. Explainwhythex-coordinatesofthepointswherethegraphsoftheequationsy=f(x)andy=g(x)intersectarethesolutionsoftheequationf(x)=g(x);findthesolutionsapproximately,e.g.,usingtechnologytographthefunctions,maketablesofvalues,orfindsuccessiveapproximations.Includecaseswheref(x)and/org(x)arelinear,polynomial,rational,absolutevalue,exponential,andlogarithmicfunctions.★
12. Graphthesolutionstoalinearinequalityintwovariablesasahalf-plane(excludingtheboundaryinthecaseofastrictinequality),andgraphthesolutionsettoasystemoflinearinequalitiesintwovariablesastheintersectionofthecorrespondinghalf-planes.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— f
Un
Ct
Ion
S | 6
7
mathematics | High School—functionsFunctionsdescribesituationswhereonequantitydeterminesanother.Forexample,thereturnon$10,000investedatanannualizedpercentagerateof4.25%isafunctionofthelengthoftimethemoneyisinvested.Becausewecontinuallymaketheoriesaboutdependenciesbetweenquantitiesinnatureandsociety,functionsareimportanttoolsintheconstructionofmathematicalmodels.
Inschoolmathematics,functionsusuallyhavenumericalinputsandoutputsandareoftendefinedbyanalgebraicexpression.Forexample,thetimeinhoursittakesforacartodrive100milesisafunctionofthecar’sspeedinmilesperhour,v;theruleT(v)=100/vexpressesthisrelationshipalgebraicallyanddefinesafunctionwhosenameisT.
Thesetofinputstoafunctioniscalleditsdomain.Weofteninferthedomaintobeallinputsforwhichtheexpressiondefiningafunctionhasavalue,orforwhichthefunctionmakessenseinagivencontext.
Afunctioncanbedescribedinvariousways,suchasbyagraph(e.g.,thetraceofaseismograph);byaverbalrule,asin,“I’llgiveyouastate,yougivemethecapitalcity;”byanalgebraicexpressionlikef(x)=a+bx;orbyarecursiverule.Thegraphofafunctionisoftenausefulwayofvisualizingtherelationshipofthefunctionmodels,andmanipulatingamathematicalexpressionforafunctioncanthrowlightonthefunction’sproperties.
Functionspresentedasexpressionscanmodelmanyimportantphenomena.Twoimportantfamiliesoffunctionscharacterizedbylawsofgrowtharelinearfunctions,whichgrowataconstantrate,andexponentialfunctions,whichgrowataconstantpercentrate.Linearfunctionswithaconstanttermofzerodescribeproportionalrelationships.
Agraphingutilityoracomputeralgebrasystemcanbeusedtoexperimentwithpropertiesofthesefunctionsandtheirgraphsandtobuildcomputationalmodelsoffunctions,includingrecursivelydefinedfunctions.
Connections to Expressions, Equations, Modeling, and Coordinates.
Determininganoutputvalueforaparticularinputinvolvesevaluatinganexpression;findinginputsthatyieldagivenoutputinvolvessolvinganequation.Questionsaboutwhentwofunctionshavethesamevalueforthesameinputleadtoequations,whosesolutionscanbevisualizedfromtheintersectionoftheirgraphs.Becausefunctionsdescriberelationshipsbetweenquantities,theyarefrequentlyusedinmodeling.Sometimesfunctionsaredefinedbyarecursiveprocess,whichcanbedisplayedeffectivelyusingaspreadsheetorothertechnology.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— f
Un
Ct
Ion
S | 6
8
Interpreting Functions
• Understand the concept of a function and use function notation
• Interpret functions that arise in applications in terms of the context
• analyze functions using different representations
Building Functions
• Build a function that models a relationship between two quantities
• Build new functions from existing functions
Linear, Quadratic, and Exponential Models
• Construct and compare linear, quadratic, and exponential models and solve problems
• Interpret expressions for functions in terms of the situation they model
Trigonometric Functions
• extend the domain of trigonometric functions using the unit circle
• model periodic phenomena with trigonometric functions
• Prove and apply trigonometric identities
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
functions overview

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— f
Un
Ct
Ion
S | 6
9
Interpreting functions f-If
Understand the concept of a function and use function notation
1. Understandthatafunctionfromoneset(calledthedomain)toanotherset(calledtherange)assignstoeachelementofthedomainexactlyoneelementoftherange.Iffisafunctionandxisanelementofitsdomain,thenf(x)denotestheoutputoffcorrespondingtotheinputx.Thegraphoffisthegraphoftheequationy=f(x).
2. Usefunctionnotation,evaluatefunctionsforinputsintheirdomains,andinterpretstatementsthatusefunctionnotationintermsofacontext.
3. Recognizethatsequencesarefunctions,sometimesdefinedrecursively,whosedomainisasubsetoftheintegers.For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1.
Interpret functions that arise in applications in terms of the context
4. Forafunctionthatmodelsarelationshipbetweentwoquantities,interpretkeyfeaturesofgraphsandtablesintermsofthequantities,andsketchgraphsshowingkeyfeaturesgivenaverbaldescriptionoftherelationship.Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★
5. Relatethedomainofafunctiontoitsgraphand,whereapplicable,tothequantitativerelationshipitdescribes.For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.★
6. Calculateandinterprettheaveragerateofchangeofafunction(presentedsymbolicallyorasatable)overaspecifiedinterval.Estimatetherateofchangefromagraph.★
Analyze functions using different representations
7. Graphfunctionsexpressedsymbolicallyandshowkeyfeaturesofthegraph,byhandinsimplecasesandusingtechnologyformorecomplicatedcases.★
a. Graphlinearandquadraticfunctionsandshowintercepts,maxima,andminima.
b. Graphsquareroot,cuberoot,andpiecewise-definedfunctions,includingstepfunctionsandabsolutevaluefunctions.
c. Graphpolynomialfunctions,identifyingzeroswhensuitablefactorizationsareavailable,andshowingendbehavior.
d. (+)Graphrationalfunctions,identifyingzerosandasymptoteswhensuitablefactorizationsareavailable,andshowingendbehavior.
e. Graphexponentialandlogarithmicfunctions,showinginterceptsandendbehavior,andtrigonometricfunctions,showingperiod,midline,andamplitude.
8. Writeafunctiondefinedbyanexpressionindifferentbutequivalentformstorevealandexplaindifferentpropertiesofthefunction.
a. Usetheprocessoffactoringandcompletingthesquareinaquadraticfunctiontoshowzeros,extremevalues,andsymmetryofthegraph,andinterprettheseintermsofacontext.
b. Usethepropertiesofexponentstointerpretexpressionsforexponentialfunctions.For example, identify percent rate of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, y = (1.2)t/10, and classify them as representing exponential growth or decay.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— f
Un
Ct
Ion
S | 7
0
9. Comparepropertiesoftwofunctionseachrepresentedinadifferentway(algebraically,graphically,numericallyintables,orbyverbaldescriptions).For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Building functions f-Bf
Build a function that models a relationship between two quantities
1. Writeafunctionthatdescribesarelationshipbetweentwoquantities.★
a. Determineanexplicitexpression,arecursiveprocess,orstepsforcalculationfromacontext.
b. Combinestandardfunctiontypesusingarithmeticoperations.For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
c. (+)Composefunctions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.
2. Writearithmeticandgeometricsequencesbothrecursivelyandwithanexplicitformula,usethemtomodelsituations,andtranslatebetweenthetwoforms.★
Build new functions from existing functions
3. Identifytheeffectonthegraphofreplacingf(x)byf(x)+k,kf(x),f(kx),andf(x+k)forspecificvaluesofk(bothpositiveandnegative);findthevalueofkgiventhegraphs.Experimentwithcasesandillustrateanexplanationoftheeffectsonthegraphusingtechnology.Include recognizing even and odd functions from their graphs and algebraic expressions for them.
4. Findinversefunctions.
a. Solveanequationoftheformf(x)=cforasimplefunctionfthathasaninverseandwriteanexpressionfortheinverse.For example, f(x) =2 x3 or f(x) = (x+1)/(x–1) for x ≠ 1.
b. (+)Verifybycompositionthatonefunctionistheinverseofanother.
c. (+)Readvaluesofaninversefunctionfromagraphoratable,giventhatthefunctionhasaninverse.
d. (+)Produceaninvertiblefunctionfromanon-invertiblefunctionbyrestrictingthedomain.
5. (+)Understandtheinverserelationshipbetweenexponentsandlogarithmsandusethisrelationshiptosolveproblemsinvolvinglogarithmsandexponents.
Linear, Quadratic, and exponential models★ f-Le
Construct and compare linear, quadratic, and exponential models and solve problems
1. Distinguishbetweensituationsthatcanbemodeledwithlinearfunctionsandwithexponentialfunctions.
a. Provethatlinearfunctionsgrowbyequaldifferencesoverequalintervals,andthatexponentialfunctionsgrowbyequalfactorsoverequalintervals.
b. Recognizesituationsinwhichonequantitychangesataconstantrateperunitintervalrelativetoanother.
c. Recognizesituationsinwhichaquantitygrowsordecaysbyaconstantpercentrateperunitintervalrelativetoanother.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— f
Un
Ct
Ion
S | 7
1
2. Constructlinearandexponentialfunctions,includingarithmeticandgeometricsequences,givenagraph,adescriptionofarelationship,ortwoinput-outputpairs(includereadingthesefromatable).
3. Observeusinggraphsandtablesthataquantityincreasingexponentiallyeventuallyexceedsaquantityincreasinglinearly,quadratically,or(moregenerally)asapolynomialfunction.
4. Forexponentialmodels,expressasalogarithmthesolutiontoabct=dwherea,c,anddarenumbersandthebasebis2,10,ore;evaluatethelogarithmusingtechnology.
Interpret expressions for functions in terms of the situation they model
5. Interprettheparametersinalinearorexponentialfunctionintermsofacontext.
trigonometric functions f-tf
Extend the domain of trigonometric functions using the unit circle
1. Understandradianmeasureofanangleasthelengthofthearcontheunitcirclesubtendedbytheangle.
2. Explainhowtheunitcircleinthecoordinateplaneenablestheextensionoftrigonometricfunctionstoallrealnumbers,interpretedasradianmeasuresofanglestraversedcounterclockwisearoundtheunitcircle.
3. (+)Usespecialtrianglestodeterminegeometricallythevaluesofsine,cosine,tangentforπ/3,π/4andπ/6,andusetheunitcircletoexpressthevaluesofsine,cosine,andtangentforπ–x,π+x,and2π–xintermsoftheirvaluesforx,wherexisanyrealnumber.
4. (+)Usetheunitcircletoexplainsymmetry(oddandeven)andperiodicityoftrigonometricfunctions.
Model periodic phenomena with trigonometric functions
5. Choosetrigonometricfunctionstomodelperiodicphenomenawithspecifiedamplitude,frequency,andmidline.★
6. (+)Understandthatrestrictingatrigonometricfunctiontoadomainonwhichitisalwaysincreasingoralwaysdecreasingallowsitsinversetobeconstructed.
7. (+)Useinversefunctionstosolvetrigonometricequationsthatariseinmodelingcontexts;evaluatethesolutionsusingtechnology,andinterpretthemintermsofthecontext.★
Prove and apply trigonometric identities
8. ProvethePythagoreanidentitysin2(θ)+cos2(θ)=1anduseittofindsin(θ),cos(θ),ortan(θ)givensin(θ),cos(θ),ortan(θ)andthequadrantoftheangle.
9. (+)Provetheadditionandsubtractionformulasforsine,cosine,andtangentandusethemtosolveproblems.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— m
od
el
InG
| 72
mathematics | High School—modelingModelinglinksclassroommathematicsandstatisticstoeverydaylife,work,anddecision-making.Modelingistheprocessofchoosingandusingappropriatemathematicsandstatisticstoanalyzeempiricalsituations,tounderstandthembetter,andtoimprovedecisions.Quantitiesandtheirrelationshipsinphysical,economic,publicpolicy,social,andeverydaysituationscanbemodeledusingmathematicalandstatisticalmethods.Whenmakingmathematicalmodels,technologyisvaluableforvaryingassumptions,exploringconsequences,andcomparingpredictionswithdata.
Amodelcanbeverysimple,suchaswritingtotalcostasaproductofunitpriceandnumberbought,orusingageometricshapetodescribeaphysicalobjectlikeacoin.Evensuchsimplemodelsinvolvemakingchoices.Itisuptouswhethertomodelacoinasathree-dimensionalcylinder,orwhetheratwo-dimensionaldiskworkswellenoughforourpurposes.Othersituations—modelingadeliveryroute,aproductionschedule,oracomparisonofloanamortizations—needmoreelaboratemodelsthatuseothertoolsfromthemathematicalsciences.Real-worldsituationsarenotorganizedandlabeledforanalysis;formulatingtractablemodels,representingsuchmodels,andanalyzingthemisappropriatelyacreativeprocess.Likeeverysuchprocess,thisdependsonacquiredexpertiseaswellascreativity.
Someexamplesofsuchsituationsmightinclude:
• Estimatinghowmuchwaterandfoodisneededforemergencyreliefinadevastatedcityof3millionpeople,andhowitmightbedistributed.
• Planningatabletennistournamentfor7playersataclubwith4tables,whereeachplayerplaysagainsteachotherplayer.
• Designingthelayoutofthestallsinaschoolfairsoastoraiseasmuchmoneyaspossible.
• Analyzingstoppingdistanceforacar.
• Modelingsavingsaccountbalance,bacterialcolonygrowth,orinvestmentgrowth.
• Engagingincriticalpathanalysis,e.g.,appliedtoturnaroundofanaircraftatanairport.
• Analyzingriskinsituationssuchasextremesports,pandemics,andterrorism.
• Relatingpopulationstatisticstoindividualpredictions.
Insituationslikethese,themodelsdeviseddependonanumberoffactors:Howpreciseananswerdowewantorneed?Whataspectsofthesituationdowemostneedtounderstand,control,oroptimize?Whatresourcesoftimeandtoolsdowehave?Therangeofmodelsthatwecancreateandanalyzeisalsoconstrainedbythelimitationsofourmathematical,statistical,andtechnicalskills,andourabilitytorecognizesignificantvariablesandrelationshipsamongthem.Diagramsofvariouskinds,spreadsheetsandothertechnology,andalgebraarepowerfultoolsforunderstandingandsolvingproblemsdrawnfromdifferenttypesofreal-worldsituations.
Oneoftheinsightsprovidedbymathematicalmodelingisthatessentiallythesamemathematicalorstatisticalstructurecansometimesmodelseeminglydifferentsituations.Modelscanalsoshedlightonthemathematicalstructuresthemselves,forexample,aswhenamodelofbacterialgrowthmakesmorevividtheexplosivegrowthoftheexponentialfunction.
Thebasicmodelingcycleissummarizedinthediagram.Itinvolves(1)identifyingvariablesinthesituationandselectingthosethatrepresentessentialfeatures,(2)formulatingamodelbycreatingandselectinggeometric,graphical,tabular,algebraic,orstatisticalrepresentationsthatdescriberelationshipsbetweenthevariables,(3)analyzingandperformingoperationsontheserelationshipstodrawconclusions,(4)interpretingtheresultsofthemathematicsintermsoftheoriginalsituation,(5)validatingtheconclusionsbycomparingthemwiththesituation,andtheneitherimprovingthemodelor,ifit

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— m
od
el
InG
| 73
isacceptable,(6)reportingontheconclusionsandthereasoningbehindthem.Choices,assumptions,andapproximationsarepresentthroughoutthiscycle.
Indescriptivemodeling,amodelsimplydescribesthephenomenaorsummarizestheminacompactform.Graphsofobservationsareafamiliardescriptivemodel—forexample,graphsofglobaltemperatureandatmosphericCO
2overtime.
Analyticmodelingseekstoexplaindataonthebasisofdeepertheoreticalideas,albeitwithparametersthatareempiricallybased;forexample,exponentialgrowthofbacterialcolonies(untilcut-offmechanismssuchaspollutionorstarvationintervene)followsfromaconstantreproductionrate.Functionsareanimportanttoolforanalyzingsuchproblems.
Graphingutilities,spreadsheets,computeralgebrasystems,anddynamicgeometrysoftwarearepowerfultoolsthatcanbeusedtomodelpurelymathematicalphenomena(e.g.,thebehaviorofpolynomials)aswellasphysicalphenomena.
modeling Standards Modeling is best interpreted not as a collection of isolated topics but rather in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (★).

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— G
eo
me
tr
y | 74
mathematics | High School—GeometryAnunderstandingoftheattributesandrelationshipsofgeometricobjectscanbeappliedindiversecontexts—interpretingaschematicdrawing,estimatingtheamountofwoodneededtoframeaslopingroof,renderingcomputergraphics,ordesigningasewingpatternforthemostefficientuseofmaterial.
Althoughtherearemanytypesofgeometry,schoolmathematicsisdevotedprimarilytoplaneEuclideangeometry,studiedbothsynthetically(withoutcoordinates)andanalytically(withcoordinates).EuclideangeometryischaracterizedmostimportantlybytheParallelPostulate,thatthroughapointnotonagivenlinethereisexactlyoneparallelline.(Sphericalgeometry,incontrast,hasnoparallellines.)
Duringhighschool,studentsbegintoformalizetheirgeometryexperiencesfromelementaryandmiddleschool,usingmoreprecisedefinitionsanddevelopingcarefulproofs.LaterincollegesomestudentsdevelopEuclideanandothergeometriescarefullyfromasmallsetofaxioms.
Theconceptsofcongruence,similarity,andsymmetrycanbeunderstoodfromtheperspectiveofgeometrictransformation.Fundamentalaretherigidmotions:translations,rotations,reflections,andcombinationsofthese,allofwhicharehereassumedtopreservedistanceandangles(andthereforeshapesgenerally).Reflectionsandrotationseachexplainaparticulartypeofsymmetry,andthesymmetriesofanobjectofferinsightintoitsattributes—aswhenthereflectivesymmetryofanisoscelestriangleassuresthatitsbaseanglesarecongruent.
Intheapproachtakenhere,twogeometricfiguresaredefinedtobecongruentifthereisasequenceofrigidmotionsthatcarriesoneontotheother.Thisistheprincipleofsuperposition.Fortriangles,congruencemeanstheequalityofallcorrespondingpairsofsidesandallcorrespondingpairsofangles.Duringthemiddlegrades,throughexperiencesdrawingtrianglesfromgivenconditions,studentsnoticewaystospecifyenoughmeasuresinatriangletoensurethatalltrianglesdrawnwiththosemeasuresarecongruent.Oncethesetrianglecongruencecriteria(ASA,SAS,andSSS)areestablishedusingrigidmotions,theycanbeusedtoprovetheoremsabouttriangles,quadrilaterals,andothergeometricfigures.
Similaritytransformations(rigidmotionsfollowedbydilations)definesimilarityinthesamewaythatrigidmotionsdefinecongruence,therebyformalizingthesimilarityideasof"sameshape"and"scalefactor"developedinthemiddlegrades.Thesetransformationsleadtothecriterionfortrianglesimilaritythattwopairsofcorrespondinganglesarecongruent.
Thedefinitionsofsine,cosine,andtangentforacuteanglesarefoundedonrighttrianglesandsimilarity,and,withthePythagoreanTheorem,arefundamentalinmanyreal-worldandtheoreticalsituations.ThePythagoreanTheoremisgeneralizedtonon-righttrianglesbytheLawofCosines.Together,theLawsofSinesandCosinesembodythetrianglecongruencecriteriaforthecaseswherethreepiecesofinformationsufficetocompletelysolveatriangle.Furthermore,theselawsyieldtwopossiblesolutionsintheambiguouscase,illustratingthatSide-Side-Angleisnotacongruencecriterion.
Analyticgeometryconnectsalgebraandgeometry,resultinginpowerfulmethodsofanalysisandproblemsolving.Justasthenumberlineassociatesnumberswithlocationsinonedimension,apairofperpendicularaxesassociatespairsofnumberswithlocationsintwodimensions.Thiscorrespondencebetweennumericalcoordinatesandgeometricpointsallowsmethodsfromalgebratobeappliedtogeometryandviceversa.Thesolutionsetofanequationbecomesageometriccurve,makingvisualizationatoolfordoingandunderstandingalgebra.Geometricshapescanbedescribedbyequations,makingalgebraicmanipulationintoatoolforgeometricunderstanding,modeling,andproof.Geometrictransformationsofthegraphsofequationscorrespondtoalgebraicchangesintheirequations.
Dynamicgeometryenvironmentsprovidestudentswithexperimentalandmodelingtoolsthatallowthemtoinvestigategeometricphenomenainmuchthesamewayascomputeralgebrasystemsallowthemtoexperimentwithalgebraicphenomena.
Connections to Equations. Thecorrespondencebetweennumericalcoordinatesandgeometricpointsallowsmethodsfromalgebratobeappliedtogeometryandviceversa.Thesolutionsetofanequationbecomesageometriccurve,makingvisualizationatoolfordoingandunderstandingalgebra.Geometricshapescanbedescribedbyequations,makingalgebraicmanipulationintoatoolforgeometricunderstanding,modeling,andproof.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— G
eo
me
tr
y | 7
5
Congruence
• experiment with transformations in the plane
• Understand congruence in terms of rigid motions
• Prove geometric theorems
• make geometric constructions
Similarity, Right Triangles, and Trigonometry
• Understand similarity in terms of similarity transformations
• Prove theorems involving similarity
• define trigonometric ratios and solve problems involving right triangles
• apply trigonometry to general triangles
Circles
• Understand and apply theorems about circles
• find arc lengths and areas of sectors of circles
Expressing Geometric Properties with Equations
• translate between the geometric description and the equation for a conic section
• Use coordinates to prove simple geometric theorems algebraically
Geometric Measurement and Dimension
• explain volume formulas and use them to solve problems
• Visualize relationships between two-dimensional and three-dimensional objects
Modeling with Geometry
• apply geometric concepts in modeling situations
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
Geometry overview

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— G
eo
me
tr
y | 7
6
Congruence G-Co
Experiment with transformations in the plane
1. Knowprecisedefinitionsofangle,circle,perpendicularline,parallelline,andlinesegment,basedontheundefinednotionsofpoint,line,distancealongaline,anddistancearoundacirculararc.
2. Representtransformationsintheplaneusing,e.g.,transparenciesandgeometrysoftware;describetransformationsasfunctionsthattakepointsintheplaneasinputsandgiveotherpointsasoutputs.Comparetransformationsthatpreservedistanceandangletothosethatdonot(e.g.,translationversushorizontalstretch).
3. Givenarectangle,parallelogram,trapezoid,orregularpolygon,describetherotationsandreflectionsthatcarryitontoitself.
4. Developdefinitionsofrotations,reflections,andtranslationsintermsofangles,circles,perpendicularlines,parallellines,andlinesegments.
5. Givenageometricfigureandarotation,reflection,ortranslation,drawthetransformedfigureusing,e.g.,graphpaper,tracingpaper,orgeometrysoftware.Specifyasequenceoftransformationsthatwillcarryagivenfigureontoanother.
Understand congruence in terms of rigid motions
6. Usegeometricdescriptionsofrigidmotionstotransformfiguresandtopredicttheeffectofagivenrigidmotiononagivenfigure;giventwofigures,usethedefinitionofcongruenceintermsofrigidmotionstodecideiftheyarecongruent.
7. Usethedefinitionofcongruenceintermsofrigidmotionstoshowthattwotrianglesarecongruentifandonlyifcorrespondingpairsofsidesandcorrespondingpairsofanglesarecongruent.
8. Explainhowthecriteriafortrianglecongruence(ASA,SAS,andSSS)followfromthedefinitionofcongruenceintermsofrigidmotions.
Prove geometric theorems
9. Provetheoremsaboutlinesandangles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
10. Provetheoremsabouttriangles.Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
11. Provetheoremsaboutparallelograms.Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Make geometric constructions
12. Makeformalgeometricconstructionswithavarietyoftoolsandmethods(compassandstraightedge,string,reflectivedevices,paperfolding,dynamicgeometricsoftware,etc.).Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
13. Constructanequilateraltriangle,asquare,andaregularhexagoninscribedinacircle.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— G
eo
me
tr
y | 7
7
Similarity, right triangles, and trigonometry G-Srt
Understand similarity in terms of similarity transformations
1. Verifyexperimentallythepropertiesofdilationsgivenbyacenterandascalefactor:
a. Adilationtakesalinenotpassingthroughthecenterofthedilationtoaparallelline,andleavesalinepassingthroughthecenterunchanged.
b. Thedilationofalinesegmentislongerorshorterintheratiogivenbythescalefactor.
2. Giventwofigures,usethedefinitionofsimilarityintermsofsimilaritytransformations todecideiftheyaresimilar;explainusingsimilaritytransformationsthemeaningofsimilarityfortrianglesastheequalityofallcorrespondingpairsofanglesandtheproportionalityofallcorrespondingpairsofsides.
3. UsethepropertiesofsimilaritytransformationstoestablishtheAAcriterionfortwotrianglestobesimilar.
Prove theorems involving similarity
4. Provetheoremsabouttriangles.Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
5. Usecongruenceandsimilaritycriteriafortrianglestosolveproblemsandtoproverelationshipsingeometricfigures.
Define trigonometric ratios and solve problems involving right triangles
6. Understandthatbysimilarity,sideratiosinrighttrianglesarepropertiesoftheanglesinthetriangle,leadingtodefinitionsoftrigonometricratiosforacuteangles.
7. Explainandusetherelationshipbetweenthesineandcosineofcomplementaryangles.
8. UsetrigonometricratiosandthePythagoreanTheoremtosolverighttrianglesinappliedproblems.★
Apply trigonometry to general triangles
9. (+)DerivetheformulaA=1/2absin(C)fortheareaofatrianglebydrawinganauxiliarylinefromavertexperpendiculartotheoppositeside.
10. (+)ProvetheLawsofSinesandCosinesandusethemtosolveproblems.
11. (+)UnderstandandapplytheLawofSinesandtheLawofCosinestofindunknownmeasurementsinrightandnon-righttriangles(e.g.,surveyingproblems,resultantforces).
Circles G-C
Understand and apply theorems about circles
1. Provethatallcirclesaresimilar.
2. Identifyanddescriberelationshipsamonginscribedangles,radii,andchords.Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
3. Constructtheinscribedandcircumscribedcirclesofatriangle,andprovepropertiesofanglesforaquadrilateralinscribedinacircle.
4. (+)Constructatangentlinefromapointoutsideagivencircletothecircle.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— G
eo
me
tr
y | 7
8
Find arc lengths and areas of sectors of circles
5. Deriveusingsimilaritythefactthatthelengthofthearcinterceptedbyanangleisproportionaltotheradius,anddefinetheradianmeasureoftheangleastheconstantofproportionality;derivetheformulafortheareaofasector.
expressing Geometric Properties with equations G-GPe
Translate between the geometric description and the equation for a conic section
1. DerivetheequationofacircleofgivencenterandradiususingthePythagoreanTheorem;completethesquaretofindthecenterandradiusofacirclegivenbyanequation.
2. Derivetheequationofaparabolagivenafocusanddirectrix.
3. (+)Derivetheequationsofellipsesandhyperbolasgiventhefoci,usingthefactthatthesumordifferenceofdistancesfromthefociisconstant.
Use coordinates to prove simple geometric theorems algebraically
4. Usecoordinatestoprovesimplegeometrictheoremsalgebraically.For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
5. Provetheslopecriteriaforparallelandperpendicularlinesandusethemtosolvegeometricproblems(e.g.,findtheequationofalineparallelorperpendiculartoagivenlinethatpassesthroughagivenpoint).
6. Findthepointonadirectedlinesegmentbetweentwogivenpointsthatpartitionsthesegmentinagivenratio.
7. Usecoordinatestocomputeperimetersofpolygonsandareasoftrianglesandrectangles,e.g.,usingthedistanceformula.★
Geometric measurement and dimension G-Gmd
Explain volume formulas and use them to solve problems
1. Giveaninformalargumentfortheformulasforthecircumferenceofacircle,areaofacircle,volumeofacylinder,pyramid,andcone.Use dissection arguments, Cavalieri’s principle, and informal limit arguments.
2. (+)GiveaninformalargumentusingCavalieri’sprinciplefortheformulasforthevolumeofasphereandothersolidfigures.
3. Usevolumeformulasforcylinders,pyramids,cones,andspherestosolveproblems.★
Visualize relationships between two-dimensional and three-dimensional objects
4. Identifytheshapesoftwo-dimensionalcross-sectionsofthree-dimensionalobjects,andidentifythree-dimensionalobjectsgeneratedbyrotationsoftwo-dimensionalobjects.
modeling with Geometry G-mG
Apply geometric concepts in modeling situations
1. Usegeometricshapes,theirmeasures,andtheirpropertiestodescribeobjects(e.g.,modelingatreetrunkorahumantorsoasacylinder).★
2. Applyconceptsofdensitybasedonareaandvolumeinmodelingsituations(e.g.,personspersquaremile,BTUspercubicfoot).★
3. Applygeometricmethodstosolvedesignproblems(e.g.,designinganobjectorstructuretosatisfyphysicalconstraintsorminimizecost;workingwithtypographicgridsystemsbasedonratios).★

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— S
tat
ISt
ICS
| 79
mathematics | High School—Statistics and Probability★
Decisionsorpredictionsareoftenbasedondata—numbersincontext.Thesedecisionsorpredictionswouldbeeasyifthedataalwayssentaclearmessage,butthemessageisoftenobscuredbyvariability.Statisticsprovidestoolsfordescribingvariabilityindataandformakinginformeddecisionsthattakeitintoaccount.
Dataaregathered,displayed,summarized,examined,andinterpretedtodiscoverpatternsanddeviationsfrompatterns.Quantitativedatacanbedescribedintermsofkeycharacteristics:measuresofshape,center,andspread.Theshapeofadatadistributionmightbedescribedassymmetric,skewed,flat,orbellshaped,anditmightbesummarizedbyastatisticmeasuringcenter(suchasmeanormedian)andastatisticmeasuringspread(suchasstandarddeviationorinterquartilerange).Differentdistributionscanbecomparednumericallyusingthesestatisticsorcomparedvisuallyusingplots.Knowledgeofcenterandspreadarenotenoughtodescribeadistribution.Whichstatisticstocompare,whichplotstouse,andwhattheresultsofacomparisonmightmean,dependonthequestiontobeinvestigatedandthereal-lifeactionstobetaken.
Randomizationhastwoimportantusesindrawingstatisticalconclusions.First,collectingdatafromarandomsampleofapopulationmakesitpossibletodrawvalidconclusionsaboutthewholepopulation,takingvariabilityintoaccount.Second,randomlyassigningindividualstodifferenttreatmentsallowsafaircomparisonoftheeffectivenessofthosetreatments.Astatisticallysignificantoutcomeisonethatisunlikelytobeduetochancealone,andthiscanbeevaluatedonlyundertheconditionofrandomness.Theconditionsunderwhichdataarecollectedareimportantindrawingconclusionsfromthedata;incriticallyreviewingusesofstatisticsinpublicmediaandotherreports,itisimportanttoconsiderthestudydesign,howthedataweregathered,andtheanalysesemployedaswellasthedatasummariesandtheconclusionsdrawn.
Randomprocessescanbedescribedmathematicallybyusingaprobabilitymodel:alistordescriptionofthepossibleoutcomes(thesamplespace),eachofwhichisassignedaprobability.Insituationssuchasflippingacoin,rollinganumbercube,ordrawingacard,itmightbereasonabletoassumevariousoutcomesareequallylikely.Inaprobabilitymodel,samplepointsrepresentoutcomesandcombinetomakeupevents;probabilitiesofeventscanbecomputedbyapplyingtheAdditionandMultiplicationRules.Interpretingtheseprobabilitiesreliesonanunderstandingofindependenceandconditionalprobability,whichcanbeapproachedthroughtheanalysisoftwo-waytables.
Technologyplaysanimportantroleinstatisticsandprobabilitybymakingitpossibletogenerateplots,regressionfunctions,andcorrelationcoefficients,andtosimulatemanypossibleoutcomesinashortamountoftime.
Connections to Functions and Modeling.Functionsmaybeusedtodescribedata;ifthedatasuggestalinearrelationship,therelationshipcanbemodeledwitharegressionline,anditsstrengthanddirectioncanbeexpressedthroughacorrelationcoefficient.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— S
tat
ISt
ICS
| 80
Interpreting Categorical and Quantitative Data
• Summarize, represent, and interpret data on a single count or measurement variable
• Summarize, represent, and interpret data on two categorical and quantitative variables
• Interpret linear models
Making Inferences and Justifying Conclusions
• Understand and evaluate random processes underlying statistical experiments
• make inferences and justify conclusions from sample surveys, experiments and observational studies
Conditional Probability and the Rules of Prob-ability
• Understand independence and conditional probability and use them to interpret data
• Use the rules of probability to compute probabilities of compound events in a uniform probability model
Using Probability to Make Decisions
• Calculate expected values and use them to solve problems
• Use probability to evaluate outcomes of decisions
mathematical Practices
1. Makesenseofproblemsandpersevereinsolvingthem.
2. Reasonabstractlyandquantitatively.
3. Constructviableargumentsandcritiquethereasoningofothers.
4. Modelwithmathematics.
5. Useappropriatetoolsstrategically.
6. Attendtoprecision.
7. Lookforandmakeuseofstructure.
8. Lookforandexpressregularityinrepeatedreasoning.
Statistics and Probability overview

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— S
tat
ISt
ICS
| 81
Interpreting Categorical and Quantitative data S-Id
Summarize, represent, and interpret data on a single count or measurement variable
1. Representdatawithplotsontherealnumberline(dotplots,histograms,andboxplots).
2. Usestatisticsappropriatetotheshapeofthedatadistributiontocomparecenter(median,mean)andspread(interquartilerange,standarddeviation)oftwoormoredifferentdatasets.
3. Interpretdifferencesinshape,center,andspreadinthecontextofthedatasets,accountingforpossibleeffectsofextremedatapoints(outliers).
4. Usethemeanandstandarddeviationofadatasettofitittoanormaldistributionandtoestimatepopulationpercentages.Recognizethattherearedatasetsforwhichsuchaprocedureisnotappropriate.Usecalculators,spreadsheets,andtablestoestimateareasunderthenormalcurve.
Summarize, represent, and interpret data on two categorical and quantitative variables
5. Summarizecategoricaldatafortwocategoriesintwo-wayfrequencytables.Interpretrelativefrequenciesinthecontextofthedata(includingjoint,marginal,andconditionalrelativefrequencies).Recognizepossibleassociationsandtrendsinthedata.
6. Representdataontwoquantitativevariablesonascatterplot,anddescribehowthevariablesarerelated.
a. Fitafunctiontothedata;usefunctionsfittedtodatatosolveproblemsinthecontextofthedata.Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
b. Informallyassessthefitofafunctionbyplottingandanalyzingresiduals.
c. Fitalinearfunctionforascatterplotthatsuggestsalinearassociation.
Interpret linear models
7. Interprettheslope(rateofchange)andtheintercept(constantterm)ofalinearmodelinthecontextofthedata.
8. Compute(usingtechnology)andinterpretthecorrelationcoefficientofalinearfit.
9. Distinguishbetweencorrelationandcausation.
making Inferences and Justifying Conclusions S-IC
Understand and evaluate random processes underlying statistical experiments
1. Understandstatisticsasaprocessformakinginferencesaboutpopulationparametersbasedonarandomsamplefromthatpopulation.
2. Decideifaspecifiedmodelisconsistentwithresultsfromagivendata-generatingprocess,e.g.,usingsimulation.For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?
Make inferences and justify conclusions from sample surveys, experiments, and observational studies
3. Recognizethepurposesofanddifferencesamongsamplesurveys,experiments,andobservationalstudies;explainhowrandomizationrelatestoeach.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— S
tat
ISt
ICS
| 82
4. Usedatafromasamplesurveytoestimateapopulationmeanorproportion;developamarginoferrorthroughtheuseofsimulationmodelsforrandomsampling.
5. Usedatafromarandomizedexperimenttocomparetwotreatments;usesimulationstodecideifdifferencesbetweenparametersaresignificant.
6. Evaluatereportsbasedondata.
Conditional Probability and the rules of Probability S-CP
Understand independence and conditional probability and use them to interpret data
1. Describeeventsassubsetsofasamplespace(thesetofoutcomes)usingcharacteristics(orcategories)oftheoutcomes,orasunions,intersections,orcomplementsofotherevents(“or,”“and,”“not”).
2. UnderstandthattwoeventsAandBareindependentiftheprobabilityofAandBoccurringtogetheristheproductoftheirprobabilities,andusethischaracterizationtodetermineiftheyareindependent.
3. UnderstandtheconditionalprobabilityofAgivenBas P(AandB)/P(B),andinterpretindependenceofAandBassayingthattheconditionalprobabilityof Agiven BisthesameastheprobabilityofA,andtheconditionalprobabilityofBgivenAisthesameastheprobabilityofB.
4. Constructandinterprettwo-wayfrequencytablesofdatawhentwocategoriesareassociatedwitheachobjectbeingclassified.Usethetwo-waytableasasamplespacetodecideifeventsareindependentandtoapproximateconditionalprobabilities.For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.
5. Recognizeandexplaintheconceptsofconditionalprobabilityandindependenceineverydaylanguageandeverydaysituations.For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.
Use the rules of probability to compute probabilities of compound events in a uniform probability model
6. FindtheconditionalprobabilityofAgivenBasthefractionofB’soutcomesthatalsobelongtoA,andinterprettheanswerintermsofthemodel.
7. ApplytheAdditionRule,P(AorB)=P(A)+P(B)–P(AandB),andinterprettheanswerintermsofthemodel.
8. (+)ApplythegeneralMultiplicationRuleinauniformprobabilitymodel,P(AandB)=P(A)P(B|A)=P(B)P(A|B),andinterprettheanswerintermsofthemodel.
9. (+)Usepermutationsandcombinationstocomputeprobabilitiesofcompoundeventsandsolveproblems.
Using Probability to make decisions S-md
Calculate expected values and use them to solve problems
1. (+)Definearandomvariableforaquantityofinterestbyassigninganumericalvaluetoeacheventinasamplespace;graphthecorrespondingprobabilitydistributionusingthesamegraphicaldisplaysasfordatadistributions.
2. (+)Calculatetheexpectedvalueofarandomvariable;interpretitasthemeanoftheprobabilitydistribution.

Common Core State StandardS for matHematICSH
IGH
SC
Ho
ol
— S
tat
ISt
ICS
| 83
3. (+)Developaprobabilitydistributionforarandomvariabledefinedforasamplespaceinwhichtheoreticalprobabilitiescanbecalculated;findtheexpectedvalue.For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
4. (+)Developaprobabilitydistributionforarandomvariabledefinedforasamplespaceinwhichprobabilitiesareassignedempirically;findtheexpectedvalue.For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?
Use probability to evaluate outcomes of decisions
5. (+)Weighthepossibleoutcomesofadecisionbyassigningprobabilitiestopayoffvaluesandfindingexpectedvalues.
a. Findtheexpectedpayoffforagameofchance.For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.
b. Evaluateandcomparestrategiesonthebasisofexpectedvalues.For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.
6. (+)Useprobabilitiestomakefairdecisions(e.g.,drawingbylots,usingarandomnumbergenerator).
7. (+)Analyzedecisionsandstrategiesusingprobabilityconcepts(e.g.,producttesting,medicaltesting,pullingahockeygoalieattheendofagame).

Common Core State StandardS for matHematICS8
4
note on courses and transitions
ThehighschoolportionoftheStandardsforMathematicalContentspecifiesthemathematicsallstudentsshouldstudyforcollegeandcareerreadiness.Thesestandardsdonotmandatethesequenceofhighschoolcourses.However,theorganizationofhighschoolcoursesisacriticalcomponenttoimplementationofthestandards.Tothatend,samplehighschoolpathwaysformathematics–inbothatraditionalcoursesequence(AlgebraI,Geometry,andAlgebraII)aswellasanintegratedcoursesequence(Mathematics1,Mathematics2,Mathematics3)–willbemadeavailableshortlyafterthereleaseofthefinalCommonCoreStateStandards.Itisexpectedthatadditionalmodelpathwaysbasedonthesestandardswillbecomeavailableaswell.
Thestandardsthemselvesdonotdictatecurriculum,pedagogy,ordeliveryofcontent.Inparticular,statesmayhandlethetransitiontohighschoolindifferentways.Forexample,manystudentsintheU.S.todaytakeAlgebraIinthe8thgrade,andinsomestatesthisisarequirement.TheK-7standardscontaintheprerequisitestopreparestudentsforAlgebraIby8thgrade,andthestandardsaredesignedtopermitstatestocontinueexistingpoliciesconcerningAlgebraIin8thgrade.
Asecondmajortransitionisthetransitionfromhighschooltopost-secondaryeducationforcollegeandcareers.Theevidenceconcerningcollegeandcareerreadinessshowsclearlythattheknowledge,skills,andpracticesimportantforreadinessincludeagreatdealofmathematicspriortotheboundarydefinedby(+)symbolsinthesestandards.Indeed,someofthehighestprioritycontentforcollegeandcareerreadinesscomesfromGrades6-8.Thisbodyofmaterialincludespowerfullyusefulproficienciessuchasapplyingratioreasoninginreal-worldandmathematicalproblems,computingfluentlywithpositiveandnegativefractionsanddecimals,andsolvingreal-worldandmathematicalproblemsinvolvinganglemeasure,area,surfacearea,andvolume.Becauseimportantstandardsforcollegeandcareerreadinessaredistributedacrossgradesandcourses,systemsforevaluatingcollegeandcareerreadinessshouldreachasfarbackinthestandardsasGrades6-8.Itisimportanttonoteaswellthatcutscoresorotherinformationgeneratedbyassessmentsystemsforcollegeandcareerreadinessshouldbedevelopedincollaborationwithrepresentativesfromhighereducationandworkforcedevelopmentprograms,andshouldbevalidatedbysubsequentperformanceofstudentsincollegeandtheworkforce.

Common Core State StandardS for matHematICSG
loS
Sa
ry
| 85
Addition and subtraction within 5, 10, 20, 100, or 1000.Additionorsubtractionoftwowholenumberswithwholenumberanswers,andwithsumorminuendintherange0-5,0-10,0-20,or0-100,respectively.Example:8+2=10isanadditionwithin10,14–5=9isasubtractionwithin20,and55–18=37isasubtractionwithin100.
Additive inverses.Twonumberswhosesumis0areadditiveinversesofoneanother.Example:3/4and–3/4areadditiveinversesofoneanotherbecause3/4+(–3/4)=(–3/4)+3/4=0.
Associative property of addition.SeeTable3inthisGlossary.
Associative property of multiplication. SeeTable3inthisGlossary.
Bivariate data. Pairsoflinkednumericalobservations.Example:alistofheightsandweightsforeachplayeronafootballteam.
Box plot.Amethodofvisuallydisplayingadistributionofdatavaluesbyusingthemedian,quartiles,andextremesofthedataset.Aboxshowsthemiddle50%ofthedata.1
Commutative property.SeeTable3inthisGlossary.
Complex fraction.AfractionA/BwhereAand/orBarefractions(Bnonzero).
Computation algorithm.Asetofpredefinedstepsapplicabletoaclassofproblemsthatgivesthecorrectresultineverycasewhenthestepsarecarriedoutcorrectly.See also:computationstrategy.
Computation strategy.Purposefulmanipulationsthatmaybechosenforspecificproblems,maynothaveafixedorder,andmaybeaimedatconvertingoneproblemintoanother.See also:computationalgorithm.
Congruent.Twoplaneorsolidfiguresarecongruentifonecanbeobtainedfromtheotherbyrigidmotion(asequenceofrotations,reflections,andtranslations).
Counting on.Astrategyforfindingthenumberofobjectsinagroupwithouthavingtocounteverymemberofthegroup.Forexample,ifastackofbooksisknowntohave8booksand3morebooksareaddedtothetop,itisnotnecessarytocountthestackalloveragain.Onecanfindthetotalbycounting on—pointingtothetopbookandsaying“eight,”followingthiswith“nine,ten,eleven.Thereareelevenbooksnow.”
Dot plot. See: lineplot.
Dilation.Atransformationthatmoveseachpointalongtheraythroughthepointemanatingfromafixedcenter,andmultipliesdistancesfromthecenterbyacommonscalefactor.
Expanded form.Amulti-digitnumberisexpressedinexpandedformwhenitiswrittenasasumofsingle-digitmultiplesofpowersoften.Forexample,643=600+40+3.
Expected value. Forarandomvariable,theweightedaverageofitspossiblevalues,withweightsgivenbytheirrespectiveprobabilities.
First quartile. ForadatasetwithmedianM,thefirstquartileisthemedianofthedatavalueslessthanM.Example:Forthedataset{1,3,6,7,10,12,14,15,22,120},thefirstquartileis6.2See also:median,thirdquartile,interquartilerange.
Fraction.Anumberexpressibleintheforma/bwhereaisawholenumberandbisapositivewholenumber.(Thewordfractioninthesestandardsalwaysreferstoanon-negativenumber.)See also:rationalnumber.
Identity property of 0.SeeTable3inthisGlossary.
Independently combined probability models.Twoprobabilitymodelsaresaidtobecombinedindependentlyiftheprobabilityofeachorderedpairinthecombinedmodelequalstheproductoftheoriginalprobabilitiesofthetwoindividualoutcomesintheorderedpair.
1AdaptedfromWisconsinDepartmentofPublicInstruction,http://dpi.wi.gov/standards/mathglos.html,accessedMarch2,2010.2Manydifferentmethodsforcomputingquartilesareinuse.ThemethoddefinedhereissometimescalledtheMooreandMcCabemethod.SeeLangford,E.,“QuartilesinElementaryStatistics,”Journal of Statistics EducationVolume14,Number3(2006).
Glossary

Common Core State StandardS for matHematICSG
loS
Sa
ry
| 86
Integer.Anumberexpressibleintheformaor–aforsomewholenumbera.
Interquartile Range. Ameasureofvariationinasetofnumericaldata,theinterquartilerangeisthedistancebetweenthefirstandthirdquartilesofthedataset.Example:Forthedataset{1,3,6,7,10,12,14,15,22,120},theinterquartilerangeis15–6=9.See also:firstquartile,thirdquartile.
Line plot.Amethodofvisuallydisplayingadistributionofdatavalueswhereeachdatavalueisshownasadotormarkaboveanumberline.Alsoknownasadotplot.3
Mean.Ameasureofcenterinasetofnumericaldata,computedbyaddingthevaluesinalistandthendividingbythenumberofvaluesinthelist.4Example:Forthedataset{1,3,6,7,10,12,14,15,22,120},themeanis21.
Mean absolute deviation.Ameasureofvariationinasetofnumericaldata,computedbyaddingthedistancesbetweeneachdatavalueandthemean,thendividingbythenumberofdatavalues.Example:Forthedataset{2,3,6,7,10,12,14,15,22,120},themeanabsolutedeviationis20.
Median.Ameasureofcenterinasetofnumericaldata.Themedianofalistofvaluesisthevalueappearingatthecenterofasortedversionofthelist—orthemeanofthetwocentralvalues,ifthelistcontainsanevennumberofvalues.Example:Forthedataset{2,3,6,7,10,12,14,15,22,90},themedianis11.
Midline. Inthegraphofatrigonometricfunction,thehorizontallinehalfwaybetweenitsmaximumandminimumvalues.
Multiplication and division within 100.Multiplicationordivisionoftwowholenumberswithwholenumberanswers,andwithproductordividendintherange0-100.Example:72÷8=9.
Multiplicative inverses.Twonumberswhoseproductis1aremultiplicativeinversesofoneanother.Example:3/4and4/3aremultiplicativeinversesofoneanotherbecause3/4×4/3=4/3×3/4=1.
Number line diagram. Adiagramofthenumberlineusedtorepresentnumbersandsupportreasoningaboutthem.Inanumberlinediagramformeasurementquantities,theintervalfrom0to1onthediagramrepresentstheunitofmeasureforthequantity.
Percent rate of change.Arateofchangeexpressedasapercent.Example:ifapopulationgrowsfrom50to55inayear,itgrowsby5/50=10%peryear.
Probability distribution.Thesetofpossiblevaluesofarandomvariablewithaprobabilityassignedtoeach.
Properties of operations.SeeTable3inthisGlossary.
Properties of equality.SeeTable4inthisGlossary.
Properties of inequality.SeeTable5inthisGlossary.
Properties of operations.SeeTable3inthisGlossary.
Probability.Anumberbetween0and1usedtoquantifylikelihoodforprocessesthathaveuncertainoutcomes(suchastossingacoin,selectingapersonatrandomfromagroupofpeople,tossingaballatatarget,ortestingforamedicalcondition).
Probability model. Aprobabilitymodelisusedtoassignprobabilitiestooutcomesofachanceprocessbyexaminingthenatureoftheprocess.Thesetofalloutcomesiscalledthesamplespace,andtheirprobabilitiessumto1.See also: uniformprobabilitymodel.
Random variable. Anassignmentofanumericalvaluetoeachoutcomeinasamplespace.
Rational expression.Aquotientoftwopolynomialswithanon-zerodenominator.
Rational number.Anumberexpressibleintheforma/bor– a/bforsomefractiona/b.Therationalnumbersincludetheintegers.
Rectilinear figure. Apolygonallanglesofwhicharerightangles.
Rigid motion.Atransformationofpointsinspaceconsistingofasequenceof
3AdaptedfromWisconsinDepartmentofPublicInstruction,op. cit.4Tobemoreprecise,thisdefinesthearithmetic mean.

Common Core State StandardS for matHematICSG
loS
Sa
ry
| 87
oneormoretranslations,reflections,and/orrotations.Rigidmotionsarehereassumedtopreservedistancesandanglemeasures.
Repeating decimal.Thedecimalformofarationalnumber.See also:terminatingdecimal.
Sample space.Inaprobabilitymodelforarandomprocess,alistoftheindividualoutcomesthataretobeconsidered.
Scatter plot. Agraphinthecoordinateplanerepresentingasetofbivariatedata.Forexample,theheightsandweightsofagroupofpeoplecouldbedisplayedonascatterplot.5
Similarity transformation.Arigidmotionfollowedbyadilation.
Tape diagram.Adrawingthatlookslikeasegmentoftape,usedtoillustratenumberrelationships.Alsoknownasastripdiagram,barmodel,fractionstrip,orlengthmodel.
Terminating decimal. Adecimaliscalledterminatingifitsrepeatingdigitis0.
Third quartile.ForadatasetwithmedianM,thethirdquartileisthemedianofthedatavaluesgreaterthanM.Example:Forthedataset{2,3,6,7,10,12,14,15,22,120},thethirdquartileis15.See also:median,firstquartile,interquartilerange.
Transitivity principle for indirect measurement. IfthelengthofobjectAisgreaterthanthelengthofobjectB,andthelengthofobjectBisgreaterthanthelengthofobjectC,thenthelengthofobjectAisgreaterthanthelengthofobjectC.Thisprincipleappliestomeasurementofotherquantitiesaswell.
Uniform probability model.Aprobabilitymodelwhichassignsequalprobabilitytoalloutcomes.See also:probabilitymodel.
Vector. Aquantitywithmagnitudeanddirectionintheplaneorinspace,definedbyanorderedpairortripleofrealnumbers.
Visual fraction model. Atapediagram,numberlinediagram,orareamodel.
Whole numbers.Thenumbers0,1,2,3,….
5AdaptedfromWisconsinDepartmentofPublicInstruction,op. cit.

Common Core State StandardS for matHematICSG
loS
Sa
ry
| 88
Table 1.Commonadditionandsubtractionsituations.6
result Unknown Change Unknown Start Unknown
add to
Twobunniessatonthegrass.Threemorebunnieshoppedthere.Howmanybunniesareonthegrassnow?
2+3=?
Twobunniesweresittingonthegrass.Somemorebunnieshoppedthere.Thentherewerefivebunnies.Howmanybunnieshoppedovertothefirsttwo?
2+?=5
Somebunniesweresittingonthegrass.Threemorebunnieshoppedthere.Thentherewerefivebunnies.Howmanybunnieswereonthegrassbefore?
?+3=5
take from
Fiveappleswereonthetable.Iatetwoapples.Howmanyapplesareonthetablenow?
5–2=?
Fiveappleswereonthetable.Iatesomeapples.Thentherewerethreeapples.HowmanyapplesdidIeat?
5–?=3
Someappleswereonthetable.Iatetwoapples.Thentherewerethreeapples.Howmanyappleswereonthetablebefore?
?–2=3
total Unknown addend Unknown Both addends Unknown1
Put together/ take apart2
Threeredapplesandtwogreenapplesareonthetable.Howmanyapplesareonthetable?
3+2=?
Fiveapplesareonthetable.Threeareredandtherestaregreen.Howmanyapplesaregreen?
3+?=5,5–3=?
Grandmahasfiveflowers.Howmanycansheputinherredvaseandhowmanyinherbluevase?
5=0+5,5=5+0
5=1+4,5=4+1
5=2+3,5=3+2
difference Unknown Bigger Unknown Smaller Unknown
Compare3
(“Howmanymore?”version):
Lucyhastwoapples.Juliehasfiveapples.HowmanymoreapplesdoesJuliehavethanLucy?
(“Howmanyfewer?”version):
Lucyhastwoapples.Juliehasfiveapples.HowmanyfewerapplesdoesLucyhavethanJulie?
2+?=5,5–2=?
(Versionwith“more”):
JuliehasthreemoreapplesthanLucy.Lucyhastwoapples.HowmanyapplesdoesJuliehave?
(Versionwith“fewer”):
Lucyhas3fewerapplesthanJulie.Lucyhastwoapples.HowmanyapplesdoesJuliehave?
2+3=?,3+2=?
(Versionwith“more”):
JuliehasthreemoreapplesthanLucy.Juliehasfiveapples.HowmanyapplesdoesLucyhave?
(Versionwith“fewer”):
Lucyhas3fewerapplesthanJulie.Juliehasfiveapples.HowmanyapplesdoesLucyhave?
5–3=?,?+3=5
6AdaptedfromBox2-4ofMathematicsLearninginEarlyChildhood,NationalResearchCouncil(2009,pp.32,33).
1Thesetakeapartsituationscanbeusedtoshowallthedecompositionsofagivennumber.Theassociatedequations,whichhavethetotalontheleftoftheequalsign,helpchildrenunderstandthatthe=signdoesnotalwaysmeanmakesorresultsinbutalwaysdoesmeanisthesamenumberas.2Eitheraddendcanbeunknown,sotherearethreevariationsoftheseproblemsituations.BothAddendsUnknownisapro-ductiveextensionofthisbasicsituation,especiallyforsmallnumberslessthanorequalto10.3FortheBiggerUnknownorSmallerUnknownsituations,oneversiondirectsthecorrectoperation(theversionusingmoreforthebiggerunknownandusinglessforthesmallerunknown).Theotherversionsaremoredifficult.

Common Core State StandardS for matHematICSG
loS
Sa
ry
| 89
Table 2. Commonmultiplicationanddivisionsituations.7
Unknown ProductGroup Size Unknown
(“Howmanyineachgroup?”Division)
number of Groups Unknown(“Howmanygroups?”Division)
3 × 6 = ? 3 × ? = 18, and 18 ÷ 3 = ? ? × 6 = 18, and 18 ÷ 6 = ?
equal Groups
Thereare3bagswith6plumsineachbag.Howmanyplumsarethereinall?
Measurement example.Youneed3lengthsofstring,each6incheslong.Howmuchstringwillyouneedaltogether?
If18plumsaresharedequallyinto3bags,thenhowmanyplumswillbeineachbag?
Measurement example.Youhave18inchesofstring,whichyouwillcutinto3equalpieces.Howlongwilleachpieceofstringbe?
If18plumsaretobepacked6toabag,thenhowmanybagsareneeded?
Measurement example.Youhave18inchesofstring,whichyouwillcutintopiecesthatare6incheslong.Howmanypiecesofstringwillyouhave?
arrays,4 area5
Thereare3rowsofappleswith6applesineachrow.Howmanyapplesarethere?
Area example.Whatistheareaofa3cmby6cmrectangle?
If18applesarearrangedinto3equalrows,howmanyappleswillbeineachrow?
Area example.Arectanglehasarea18squarecentimeters.Ifonesideis3cmlong,howlongisasidenexttoit?
If18applesarearrangedintoequalrowsof6apples,howmanyrowswilltherebe?
Area example.Arectanglehasarea18squarecentimeters.Ifonesideis6cmlong,howlongisasidenexttoit?
Compare
Abluehatcosts$6.Aredhatcosts3timesasmuchasthebluehat.Howmuchdoestheredhatcost?
Measurement example.Arubberbandis6cmlong.Howlongwilltherubberbandbewhenitisstretchedtobe3timesaslong?
Aredhatcosts$18andthatis3timesasmuchasabluehatcosts.Howmuchdoesabluehatcost?
Measurement example.Arubberbandisstretchedtobe18cmlongandthatis3timesaslongasitwasatfirst.Howlongwastherubberbandatfirst?
Aredhatcosts$18andabluehatcosts$6.Howmanytimesasmuchdoestheredhatcostasthebluehat?
Measurement example.Arubberbandwas6cmlongatfirst.Nowitisstretchedtobe18cmlong.Howmanytimesaslongistherubberbandnowasitwasatfirst?
General a×b=? a×? =p,andp÷ a=? ?×b=p, and p÷ b =?
7Thefirstexamplesineachcellareexamplesofdiscretethings.Theseareeasierforstudentsandshouldbegivenbeforethemeasurementexamples.
4Thelanguageinthearrayexamplesshowstheeasiestformofarrayproblems.Aharderformistousethetermsrowsandcolumns:Theapplesinthegrocerywindowarein3rowsand6columns.Howmanyapplesareinthere?Bothformsarevaluable.5Areainvolvesarraysofsquaresthathavebeenpushedtogethersothattherearenogapsoroverlaps,soarrayproblemsincludetheseespeciallyimportantmeasurementsituations.

Common Core State StandardS for matHematICSG
loS
Sa
ry
| 90
Table 3.Thepropertiesofoperations.Herea,bandcstandforarbitrarynumbersinagivennumbersystem.Thepropertiesofoperationsapplytotherationalnumbersystem,therealnumbersystem,andthecomplexnumbersystem.
Associative property of addition
Commutative property of addition
Additive identity property of 0
Existence of additive inverses
Associative property of multiplication
Commutative property of multiplication
Multiplicative identity property of 1
Existence of multiplicative inverses
Distributive property of multiplication over addition
(a + b)+ c = a + (b + c)
a + b= b + a
a + 0 = 0+ a= a
Foreveryathereexists–asothata+(–a)= (–a)+a=0.
(a × b)× c = a × (b × c)
a × b= b × a
a × 1= 1×a= a
Foreverya≠0thereexists1/asothata×1/a=1/a× a=1.
a ×(b + c) = a × b + a × c
Table 4.Thepropertiesofequality.Herea,bandcstandforarbitrarynumbersintherational,real,orcomplexnumbersystems.
Reflexive property of equality
Symmetric property of equality
Transitive property of equality
Addition property of equality
Subtraction property of equality
Multiplication property of equality
Division property of equality
Substitution property of equality
a=a
If a = b,then b = a.
If a = b and b = c,then a = c.
If a = b,then a + c = b + c.
If a = b,then a – c = b – c.
If a = b,then a × c = b × c.
If a = b and c ≠ 0,then a ÷ c = b ÷ c.
Ifa=b,thenbmaybesubstitutedfora
inanyexpressioncontaininga.
Table 5.Thepropertiesofinequality.Herea,bandcstandforarbitrarynumbersintherationalorrealnumbersystems.
Exactlyoneofthefollowingistrue:a<b,a=b,a>b.
Ifa>bandb>cthena>c.
Ifa>b,thenb<a.
Ifa>b,then–a<–b.
If a>b,thena±c>b±c.
Ifa>bandc>0,thena ×c>b ×c.
Ifa>bandc<0,thena ×c<b ×c.
Ifa>bandc>0,thena ÷c>b ÷c.
Ifa>bandc<0,thena ÷c<b ÷c.

Common Core State StandardS for matHematICSw
or
KS
Co
nS
Ult
ed
| 91
Existingstatestandardsdocuments.
ResearchsummariesandbriefsprovidedtotheWorkingGroupbyresearchers.
NationalAssessmentGoverningBoard,Mathematics Framework for the 2009 National Assessment of Educational Progress.U.S.DepartmentofEducation,2008.
NAEPValidityStudiesPanel,ValidityStudyoftheNAEPMathematicsAssessment:Grades4and8.Daroetal.,2007.
Mathematicsdocumentsfrom:Alberta,Canada;Belgium;China;ChineseTaipei;Denmark;England;Finland;HongKong;India;Ireland;Japan;Korea;NewZealand;Singapore;Victoria(BritishColumbia).
AddingitUp:HelpingChildrenLearnMathematics.NationalResearchCouncil,MathematicsLearningStudyCommittee,2001.
BenchmarkingforSuccess:EnsuringU.S.StudentsReceiveaWorld-ClassEducation.NationalGovernorsAssociation,CouncilofChiefStateSchoolOfficers,andAchieve,Inc.,2008.
Crossroads in Mathematics(1995)andBeyond Crossroads (2006).AmericanMathematicalAssociationofTwo-YearColleges(AMATYC).
Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics: A Quest for Coherence.NationalCouncilofTeachersofMathematics,2006.
Focus in High School Mathematics: Reasoning and Sense Making.NationalCouncilofTeachersofMathematics.Reston,VA:NCTM.
Foundations for Success: The Final Report of the National Mathematics Advisory Panel. U.S.DepartmentofEducation:Washington,DC,2008.
Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report: A PreK-12 Curriculum Framework.
How People Learn: Brain, Mind, Experience, and School. Bransford,J.D.,Brown,A.L.,andCocking,R.R.,eds.CommitteeonDevelopmentsintheScienceofLearning,CommissiononBehavioralandSocialSciencesandEducation,NationalResearchCouncil,1999.
Mathematics and Democracy, The Case for Quantitative Literacy,Steen,L.A.(ed.).NationalCouncilonEducationandtheDisciplines,2001.
Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity. Cross,C.T.,Woods,T.A.,andSchweingruber,S.,eds.CommitteeonEarlyChildhoodMathematics,NationalResearchCouncil,2009.
The Opportunity Equation: Transforming Mathematics and Science Education for Citizenship and the Global Economy.TheCarnegieCorporationofNewYorkandtheInstituteforAdvancedStudy,2009.Online:http://www.opportunityequation.org/
Principles and Standards for School Mathematics.NationalCouncilofTeachersofMathematics,2000.
The Proficiency Illusion.Cronin,J.,Dahlin,M.,Adkins,D.,andKingsbury,G.G.;forewordbyC.E.Finn,Jr.,andM.J.Petrilli.ThomasB.FordhamInstitute,2007.
Ready or Not: Creating a High School Diploma That Counts.AmericanDiplomaProject,2004.
A Research Companion to Principles and Standards for School Mathematics.NationalCouncilofTeachersofMathematics,2003.
Sizing Up State Standards 2008.AmericanFederationofTeachers,2008.
A Splintered Vision: An Investigation of U.S. Science and Mathematics Education.Schmidt,W.H.,McKnight,C.C.,Raizen,S.A.,etal.U.S.NationalResearchCenterfortheThirdInternationalMathematicsandScienceStudy,MichiganStateUniversity,1997.
Stars By Which to Navigate? Scanning National and International Education Standards in 2009.Carmichael,S.B.,Wilson.W.S,Finn,Jr.,C.E.,Winkler,A.M.,andPalmieri,S.ThomasB.FordhamInstitute,2009.
Askey,R.,“KnowingandTeachingElementaryMathematics,”American Educator,Fall1999.
Aydogan,C.,Plummer,C.,Kang,S.J.,Bilbrey,C.,Farran,D.C.,&Lipsey,M.W.(2005).Aninvestigationofprekindergartencurricula:Influencesonclassroomcharacteristicsandchildengagement.PaperpresentedattheNAEYC.
Blum,W.,Galbraith,P.L.,Henn,H-W.andNiss,M.(Eds)Applications and Modeling in Mathematics Education,ICMIStudy14.Amsterdam:Springer.
Brosterman,N.(1997).Inventing kindergarten.NewYork:HarryN.Abrams.
Clements,D.H.,&Sarama,J.(2009).Learning and teaching early math: The learning trajectories approach.NewYork:Routledge.
Clements,D.H.,Sarama,J.,&DiBiase,A.-M.(2004).Clements,D.H.,Sarama,J.,&DiBiase,A.-M.(2004).Engaging young children in mathematics: Standards for early childhood mathematics education.Mahwah,NJ:LawrenceErlbaumAssociates.
CobbandMoore,“Mathematics,Statistics,andTeaching,”Amer. Math. Monthly104(9),pp.801-823,1997.
Confrey,J.,“TracingtheEvolutionofMathematicsContentStandardsintheUnitedStates:LookingBackandProjectingForward.”K12MathematicsCurriculumStandardsconferenceproceedings,February5-6,2007.
Conley,D.T.Knowledge and Skills for University Success,2008.
Conley,D.T.Toward a More Comprehensive Conception of College Readiness,2007.
Cuoco,A.,Goldenberg,E.P.,andMark,J.,“HabitsofMind:AnOrganizingPrincipleforaMathematicsCurriculum,”Journal of Mathematical Behavior,15(4),375-402,1996.
Carpenter,T.P.,Fennema,E.,Franke,M.L.,Levi,L.,&Empson,S.B.(1999).Children’s Mathematics: Cognitively Guided Instruction.Portsmouth,NH:Heinemann.
VandeWalle,J.A.,Karp,K.,&Bay-Williams,J.M.(2010).Elementary and Middle School Mathematics: Teaching Developmentally(Seventhed.).Boston:AllynandBacon.
Ginsburg,A.,Leinwand,S.,andDecker,K.,“InformingGrades1-6StandardsDevelopment:WhatCanBeLearnedfromHigh-PerformingHongKong,Korea,andSingapore?”AmericanInstitutesforResearch,2009.
Ginsburgetal.,“WhattheUnitedStatesCanLearnFromSingapore’sWorld-ClassMathematicsSystem(andwhatSingaporecanlearnfromtheUnitedStates),”AmericanInstitutesforResearch,2005.
Ginsburgetal.,“ReassessingU.S.InternationalMathematicsPerformance:NewFindingsfromthe2003TIMMSandPISA,”AmericanInstitutesforResearch,2005.
Ginsburg,H.P.,Lee,J.S.,&Stevenson-Boyd,J.(2008).Mathematicseducationforyoungchildren:Whatitisandhowtopromoteit.Social Policy Report,22(1),1-24.
SampleofWorksConsulted

Common Core State StandardS for matHematICSw
or
KS
Co
nS
Ult
ed
| 92
Harel,G.,“WhatisMathematics?APedagogicalAnswertoaPhilosophicalQuestion,”inR.B.GoldandR.Simons(eds.),Current Issues in the Philosophy of Mathematics from the Perspective of Mathematicians.MathematicalAssociationofAmerica,2008.
Henry,V.J.,&Brown,R.S.(2008).First-gradebasicfacts:Aninvestigationintoteachingandlearningofanaccelerated,high-demandmemorizationstandard.Journal for Research in Mathematics Education,39,153-183.
Howe,R.,“FromArithmetictoAlgebra.”
Howe,R.,“StartingOffRightinArithmetic,”http://math.arizona.edu/~ime/2008-09/MIME/BegArith.pdf.
Jordan,N.C.,Kaplan,D.,Ramineni,C.,andLocuniak,M.N.,“Earlymathmatters:kindergartennumbercompetenceandlatermathematicsoutcomes,”Dev. Psychol.45,850–867,2009.
Kader,G.,“MeansandMADS,”Mathematics Teaching in the Middle School,4(6),1999,pp.398-403.
Kilpatrick,J.,Mesa,V.,andSloane,F.,“U.S.AlgebraPerformanceinanInternationalContext,”inLoveless(ed.),Lessons Learned: What International Assessments Tell Us About Math Achievement.Washington,D.C.:BrookingsInstitutionPress,2007.
Leinwand,S.,andGinsburg,A.,“MeasuringUp:HowtheHighestPerformingState(Massachusetts)ComparestotheHighestPerformingCountry(HongKong)inGrade3Mathematics,”AmericanInstitutesforResearch,2009.
Niss,M.,“QuantitativeLiteracyandMathematicalCompetencies,”inQuantitative Literacy: Why Numeracy Matters for Schools and Colleges,Madison,B.L.,andSteen,L.A.(eds.),NationalCouncilonEducationandtheDisciplines.ProceedingsoftheNationalForumonQuantitativeLiteracyheldattheNationalAcademyofSciencesinWashington,D.C.,December1-2,2001.
Pratt,C.(1948).Ilearnfromchildren.NewYork:SimonandSchuster.
Reys,B.(ed.),The Intended Mathematics Curriculum as Represented in State-Level Curriculum Standards: Consensus or Confusion? IAP-InformationAgePublishing,2006.
Sarama,J.,&Clements,D.H.(2009).Early childhood mathematics education research: Learning trajectories for young children.NewYork:Routledge.
Schmidt,W.,Houang,R.,andCogan,L.,“ACoherentCurriculum:TheCaseofMathematics,”American Educator,Summer2002,p.4.
Schmidt,W.H.,andHouang,R.T.,“LackofFocusintheIntendedMathematicsCurriculum:SymptomorCause?”inLoveless(ed.),Lessons Learned: What International Assessments Tell Us About Math Achievement.Washington,D.C.:BrookingsInstitutionPress,2007.
Steen,L.A.,“FacingFacts:AchievingBalanceinHighSchoolMathematics.”Mathematics Teacher,Vol.100.SpecialIssue.
Wu,H.,“Fractions,decimals,andrationalnumbers,”2007,http://math.berkeley.edu/~wu/(March19,2008).
Wu,H.,“LectureNotesforthe2009Pre-AlgebraInstitute,”September15,2009.
Wu,H.,“Preserviceprofessionaldevelopmentofmathematicsteachers,”http://math.berkeley.edu/~wu/pspd2.pdf.
MassachusettsDepartmentofEducation.ProgressReportoftheMathematicsCurriculumFrameworkRevisionPanel,MassachusettsDepartmentofElementaryandSecondaryEducation,2009.
www.doe.mass.edu/boe/docs/0509/item5_report.pdf.
ACTCollegeReadinessBenchmarks™
ACTCollegeReadinessStandards™
ACTNationalCurriculumSurvey™
Adelman,C.,The Toolbox Revisited: Paths to Degree Completion From High School Through College,2006.
Advanced Placement Calculus, Statistics and Computer Science Course Descriptions.May 2009, May 2010. CollegeBoard,2008.
Aligning Postsecondary Expectations and High School Practice: The Gap Defined(ACT:PolicyImplicationsoftheACTNationalCurriculumSurveyResults2005-2006).
Condition of Education, 2004: Indicator 30, Top 30 Postsecondary Courses, U.S.DepartmentofEducation,2004.
Condition of Education, 2007: High School Course-Taking.U.S.DepartmentofEducation,2007.
Crisis at the Core: Preparing All Students for College and Work,ACT.
Achieve,Inc.,FloridaPostsecondarySurvey,2008.
Golfin,Peggy,etal.CNACorporation.Strengthening Mathematics at the Postsecondary Level: Literature Review and Analysis,2005.
Camara,W.J.,Shaw,E.,andPatterson,B.(June13,2009).FirstYearEnglishandMathCollegeCoursework.CollegeBoard:NewYork,NY(Availablefromauthors).
CLEPPrecalculusCurriculumSurvey:SummaryofResults.TheCollegeBoard,2005.
CollegeBoardStandardsforCollegeSuccess:MathematicsandStatistics.CollegeBoard,2006.
Miller,G.E.,Twing,J.,andMeyers,J.“HigherEducationReadinessComponent(HERC)CorrelationStudy.”Austin,TX:Pearson.
On Course for Success: A Close Look at Selected High School Courses That Prepare All Students for College and Work,ACT.
Out of Many, One: Towards Rigorous Common Core Standards from the Ground Up.Achieve,2008.
Ready for College and Ready for Work: Same or Different?ACT.
RigoratRisk:ReaffirmingQualityintheHighSchoolCoreCurriculum,ACT.
The Forgotten Middle: Ensuring that All Students Are on Target for College and Career Readiness before High School,ACT.
Achieve,Inc.,VirginiaPostsecondarySurvey,2004.
ACTJobSkillComparisonCharts.
Achieve,MathematicsatWork,2008.
The American Diploma Project Workplace Study.NationalAllianceofBusinessStudy,2002.
Carnevale,AnthonyandDesrochers,Donna.Connecting Education Standards and Employment: Course-taking Patterns of Young Workers,2002.
ColoradoBusinessLeaders’TopSkills,2006.
Hawai’i Career Ready Study: access to living wage careers from high school,2007.
States’CareerClusterInitiative.Essential Knowledge and Skill Statements,2008.
ACTWorkKeysOccupationalProfiles™.
ProgramforInternationalStudentAssessment(PISA),2006.
TrendsinInternationalMathematicsandScienceStudy(TIMSS),2007.

Common Core State StandardS for matHematICSw
or
KS
Co
nS
Ult
ed
| 93
InternationalBaccalaureate,MathematicsStandardLevel,2006.
UniversityofCambridgeInternationalExaminations:GeneralCertificateofSecondaryEducationinMathematics,2009.
EdExcel,GeneralCertificateofSecondaryEducation,Mathematics,2009.
Blachowicz,Camille,andFisher,Peter.“VocabularyInstruction.”InHandbook of Reading Research,VolumeIII,editedbyMichaelKamil,PeterMosenthal,P.DavidPearson,andRebeccaBarr,pp.503-523.Mahwah,NJ:LawrenceErlbaumAssociates,2000.
Gándara,Patricia,andContreras,Frances.The Latino Education Crisis: The Consequences of Failed Social Policies.Cambridge,Ma:HarvardUniversityPress,2009.
Moschkovich,JuditN.“SupportingtheParticipationofEnglishLanguageLearnersinMathematicalDiscussions.”For the Learning of Mathematics19(March1999):11-19.
Moschkovich,J.N.(inpress).Language,culture,andequityinsecondarymathematicsclassrooms.ToappearinF.Lester&J.Lobato(ed.),TeachingandLearningMathematics:TranslatingResearchtotheSecondaryClassroom, Reston,VA:NCTM.
Moschkovich,JuditN.“ExaminingMathematicalDiscoursePractices,”For the Learning of Mathematics 27 (March2007):24-30.
Moschkovich,JuditN.“UsingTwoLanguageswhenLearningMathematics:HowCanResearchHelpUsUnderstandMathematicsLearnersWhoUseTwoLanguages?”Research Brief and Clip,NationalCouncilofTeachersofMathematics,2009http://www.nctm.org/uploadedFiles/Research_News_and_Advocacy/Research/Clips_and_Briefs/Research_brief_12_Using_2.pdf.(accessedNovember25,2009).
Moschkovich,J.N.(2007)BilingualMathematicsLearners:Howviewsoflanguage,bilinguallearners,andmathematicalcommunicationimpactinstruction.InNasir,N.andCobb,P.(eds.),Diversity, Equity, and Access to Mathematical Ideas.NewYork:TeachersCollegePress,89-104.
Schleppegrell,M.J.(2007).Thelinguisticchallengesofmathematicsteachingandlearning:Aresearchreview.Reading & Writing Quarterly, 23:139-159.
IndividualswithDisabilitiesEducationAct(IDEA),34CFR§300.34(a).(2004).
IndividualswithDisabilitiesEducationAct(IDEA),34CFR§300.39(b)(3).(2004).
OfficeofSpecialEducationPrograms,U.S.DepartmentofEducation.“IDEARegulations:IdentificationofStudentswithSpecificLearningDisabilities,”2006.
Thompson,S.J.,Morse,A.B.,Sharpe,M.,andHall,S.,“AccommodationsManual:HowtoSelect,AdministerandEvaluateUseofAccommodationsandAssessmentforStudentswithDisabilities,”2ndEdition.CouncilofChiefStateSchoolOfficers,2005.